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Abstract

Determining whether an autonomous self-driving agent is in the middle of an

intersection can be extremely difficult when relying on visual input taken from

a single camera. In such a problem setting, a wider range of views is essential,

which drives us to use three cameras positioned in the front, left, and right of

an agent for better intersection recognition. However, collecting adequate

training data with three cameras poses several practical difficulties; hence, we

propose using data collected from one camera to train a three-camera model,

which would enable us to more easily compile a variety of training data to

endow our model with improved generalizability. In this work, we provide

three separate fusion methods (feature, early, and late) of combining the infor-

mation from three cameras. Extensive pedestrian-view inter-

section classification experiments show that our feature fusion model provides

an area under the curve and F1-score of 82.00 and 46.48, respectively, which

considerably outperforms contemporary three- and one-camera models.
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1 | INTRODUCTION

In autonomous agent navigation, it is vital that the agent
be capable of identifying its relative location at all times.
Notably, when the agent enters an intersection, it must
take appropriate actions, such as turning or continuing
forward. Several studies have provided methods of

classifying intersections using still images or videos [1–6];
most of these studies use one-camera data. However, the
one-camera approach fails to detect the intersection when
the agent is inside the intersection as it can no longer
detect the notable features, as illustrated in Figure 1. Fur-
thermore, the single camera is inherently incapable of
measuring distances; hence, the autonomous agent will
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have difficulty timing its motions and logistics, as illus-
trated in Figure 1A. In this work, we overcome these
problems by using three cameras placed in the front, left,
and right of the agent. As illustrated in Figures 1C and 2,
the three simultaneous views give the agent the required
decision information, even when traversing the middle of
the intersection.

However, this adds new burdens related to fusing the
imagery from three sources. First, collecting sufficient
three-camera training data would be difficult in terms of
equipment, transportation, and power; moreover, it
would require extensive human labor in the field.
Second, synchronization among the three cameras is
required. To cope with these practical difficulties, we
propose collecting single-camera data to train the three-
camera model.

In addition to simplifying data collection, our pro-
posed augmentation technique uses the power of permu-
tations via the combination of three randomly selected

images, which is far less expensive than the alternatives.
Additionally, we can easily achieve class balance at no
cost just by constructing intersection and non-intersection
data equally. Moreover, the direct collection of
three-camera data would produce considerably more
non-intersection data than intersection data, which would
create strongly imbalanced data classifications that can
potentially impair the model’s performance. Lastly, the
dataset can be largely constructed and/or expanded using
the vast amounts of one-camera data available on
the Internet.

The contributions of our work are as follows.
(1) We introduce a three-camera scheme for intersection
classification to determine whether an agent is in the
middle of intersection. (2) We propose an augmentation
technique for utilizing one-camera data to train a three-
camera model. (3) We propose three methods of combin-
ing the information from the three cameras. (4) We per-
form extensive experiments using various setups to
evaluate the importance of our model and justify our
design choice.

2 | RELATED WORKS

2.1 | Intersection classification

Several intersection classification models have been
tested using a variety of external input, such as images
[1–7], videos [8], global positioning system (GPS) data [9],
light detection and ranging [10, 11], or combinations
thereof [2, 12–15]. In this work, we use images as input
owing to the simplicity and low cost (e.g., hardware,
labor, and computation). Although GPS sensors may be
helpful, they routinely lack precision and fail to operate
in indoor environments [7].

Conversely, relying solely on one-camera image data
invokes the depth perception and loss-of-periphery
problems described above (see Section 1). Seff and

F I GURE 1 Single- versus three-camera view. (A) The agent

has difficulty determining the distance to the middle of the

intersection. (B) Upon entering the intersection, the front view no

longer shows the intersection’s features. (C) Our three-camera

(front, left, and right) agent view that tracks intersection features

from multiple perspectives.

F I GURE 2 Intuition of our three-camera intersection classification. Based on the imagery taken from the three cameras, (A) if fewer

than two road structures are seen, the scene is classified as non-intersection. (B) If two or more road structures are seen from three cameras,

the scene is classified as intersection.
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Xiao [16] built a model that predicts the distance to the
middle of intersections using distance labels constructed
from Google Street View images. However, those data are
taken from GPS receivers [17]. Our proposed method
uses three one-camera images to form three-camera
training data and does not require GPS information.

2.2 | Augmentation

Data augmentation techniques are widely used to
increase the variety and quantity of training data with
the goal of improving the generalizability of image classi-
fication models [18, 19]. Typically, the augmented data
share the same categories as the original data. However,
in our method, we create new categories (intersection and
non-intersection) from one-camera road and non-road
classifications.

Several augmentation methods of fusing multiple
data into a single training datum have been proposed
[20–22]. Specifically, these techniques create a new single
image via the combination of multiple images. Our
method differs from contemporary methods in that we
create a triplet image. These techniques are further
explored in Section 4.3.9.

2.3 | Transfer learning

Transfer learning is used to train a model from a
source domain to a new target domain, where the source
and target data are assumed to come from dissimilar dis-
tributions and tasks [23, 24]. This would imply different
input spaces and dimensionalities, which is not necessary
for our task. Our proposed augmentation technique
assumes that the augmented one-camera data have
the same distribution as the three-camera data. As such,

we leverage an ImageNet-pretrained model to transfer
knowledge from 1000 generic image into the three-
camera training set.

3 | METHODOLOGY

Our augmentation technique is described in Section 3.1,
and the three separate combination methods are
explained in Section 3.2.

3.1 | Augmenting one-camera data into
three-camera data

Given one-camera data inputs (Figure 3A), labeled as
either road or non-road, we mix and match the types to
generate our triplets, each consisting of left XL, center
XC, and right XR images (Figure 3B). Algorithm 1
explains the process. We adjust the probability of obtain-
ing intersection data using hyperparameter p. By default,
we set p¼ 0:5 for a 50% chance of synthesizing inter-
section or non-intersection triplets to ensure balanced
sampling. In our setup, we must also balance the dataset
depending on the distribution of road images. Hence, a
non-intersection triplet includes two or three road inputs
(Figure 2A), and a non-intersection sample includes zero
or one (Figure 2B).

Another sampling method uniformly samples the eight
cases illustrated in Figure 2. A comparison of the afore-
mentioned method to Algorithm 1 is provided in Section
4.3.5. This essential level of sampling flexibility is not
possible when directly using real-world three-camera data.

In terms of augmentation, the number of inter-
section classification data that can be obtained from k
one-camera items is k3. This equates to one-billion data
when k¼ 1000.

F I GURE 3 Examples of (A) one-camera data and (B) three-camera data generated via one-camera data fusion. Even more three-

camera data can be generated via data augmentation techniques.
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3.2 | Combining information from
three views

Given the three inputs, XL, XC , and XR, we fuse them
based on the p-guided choice of intersection or non-inter-
section label. In the next sections, we describe our feature,
early, and late fusion methods.

3.2.1 | Feature fusion

With feature fusion, XL, XC, and XR features are com-
bined after global average pooling using a shared-weight
feature extraction subnet. Cross entropy loss is used for
training, as illustrated in Figure 4A.

3.2.2 | Early fusion

With early fusion, XL, XC, and XR features are
concatenated along the channel dimension prior to

network input. Because the number of input
channels grows three times larger than the original
ResNet input in the channel dimension, we enlarge
the convolution filter channel size of the first con-
volution to accommodate the concatenated input,
and the convolution filters are randomly initialized.
Similar to the feature fusion scheme, this process predicts
intersection and non-intersection classes as illustrated in
Figure 4B.

3.2.3 | Late fusion

We train our late fusion method using a road/non-road
classification model using the road and non-road ground
truth as-is. During testing and validation, we feed each
XL, XC, and XR to the trained model and post-process its
outputs using a voting mechanism. Given two or more
road class predictions, the final prediction is an intersec-
tion. Figure 4C presents an illustration of the late fusion
method.
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In contrast to feature and early fusion methods, the
late-fusion method does not use the proposed augmenta-
tion technique described in Section 3.1. Hence, it has the
potential disadvantages of class imbalances due to
the heavy road data proportion; furthermore, it has
reduced augmentation opportunities. Additional compar-
isons are discussed in Section 4.3.1.

4 | EXPERIMENTS

4.1 | Datasets

We conducted our experiments as a pedestrian-view
intersection classification problem [1], which is com-
monly applied to autonomous agent navigation on pedes-
trian paths. We collected our data in urban areas using
phone and action cameras. In theory, the problem
addressed by this paper can be adequately addressed with
pedestrian-view data, as discussed in Astrid et al. [1].
Moreover, because there are no public pedestrian-view
intersection classification datasets, our proposed tech-
nique can be beneficial in reducing the cost of data col-
lection and labeling.

The training data are single-camera images collected
from phone or action camera. Testing and validation data
are three-camera data collected with synchronized
three-camera systems (mentioned in Figure 5). In the
case of three-camera data, a triplet image is labeled
intersection if the data were collected in the middle of an
intersection.
One-camera data. We collected 568257 road and
101386 non-road images. The non-road data include vehi-
cle roads as seen from sidewalks and dead-ends. The road
data consist of clear agent paths, including pedestrian
crossings. Note that the one-camera data are used only
for training. Figure 5A presents some examples.
Three-camera data. For validation and testing, we
recorded real three-camera videos and extracted
triplet frames corresponding to left, right, and front
views. The validation set consists of 11435 triplet
frames of 1216 intersection and 10219 non-intersection
types. For the testing set, we collected 81230 triplet
frames of 10035 intersection and 71195 non-intersection
types. The goal is to label the triplet as an intersection
type if the agent is located in the middle of an
intersection in reality. Figure 5B presents samples of the
collected three-camera data.

F I GURE 4 Three image fusion methods. (A) feature fusion, (B) early fusion, and (C) late fusion. In feature and early fusion, the model

is trained using our proposed technique (Section 3.1). Although tested according to the Figure 2 scenario, the late fusion method was trained

with road and non-road categories.

F I GURE 5 Training set image samples collected using (A) one camera (train) and (B) three synchronized cameras (validation and test).
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4.2 | Experimental setup

4.2.1 | Evaluation metrics

Given intersection as positive class and non-intersection as
negative class, we measure the performance of models
using recall, precision, and F1-score. A prediction is con-
sidered positive when the confidence of the intersection
class is greater than 0.5. A low recall value may indicate
a high false-negative rate, and a low precision value may
denote a high false-positive rate. The overall model
performance considering both recall and precision is
reflected in the F1 score. Note that accuracy may not be a
proper metric when relying on a highly imbalanced vali-
dation and testing set.

In binary classification problems, the area under
receiver operating characteristic curve (AUC) can be used
to measure the separability of positive and negative clas-
ses based on the given confidence threshold. A higher
AUC value denotes better class separability and assumes
a superior binary classifier. Note that AUC cannot be
used for the late fusion model because its predictions are
based on voting rather than confidence values.

4.2.2 | Implementation details

By default, we train each of our models in an end-to-end
manner for 100000 iterations using an Adam opti-
mizer [25] with a mini-batch size of 64, a learning rate of
10�5, and a weight decay of 10�6. Validation is conducted
at every 5000 iterations, and we save the best F1 model.
At testing time, the saved model is evaluated with the
testing set using precision, recall, and F1. AUC is also cal-
culated for the early and feature fusion models. For all
metrics, we report the average and standard deviations of
five repeated experiments. In addition to the proposed
augmentation technique, we apply standard augmenta-
tion methods to each image during training, including
random contrast, brightness, sharpness, color balance,
horizontal flip, and cropping with a scale range of [0.8,
1.0] of the image size. We then resize each frame to 224�

224 and normalize its pixel values to the range of ½0,1�.
During validation and testing, we preprocess the input
using only resizing and normalizing. The method was
implemented using PyTorch [26], and unless otherwise
specified, we used the ImageNet-pretrained ResNet-18
backbone with feature fusion.

4.3 | Quantitative results

4.3.1 | Comparisons of fusion techniques

Table 1 presents comparisons of the three fusion methods
described in Section 3.2. Although the early fusion
method achieved the highest recall performance, the
feature fusion performed the best overall. The early
fusion model randomly initializes the first layer, which
evidently creates the tendency to falsely identify images
as the intersection class.

The high performance of the feature fusion method
justifies combining information at the feature-level so
that the model benefits from the intact pretrained
ResNet-18 feature extraction process. As indicated, the
late fusion model has disadvantages of being trained with
a less balanced training dataset.

4.3.2 | Importance of the ImageNet-
pretrained ResNet-18 network

Pretrained models are commonly used to improve overall
network performance [27–30]. However, true success
depends on the nature of the computer vision task and
how well the model fits the task. Hence, in the next
experiment, we compared our ImageNet-pretrained
model with one trained from a randomly initialized
network. As seen in Table 2, fine-tuning a pretrained
model leads to higher overall F1 and AUC scores than a
from-scratch model. Notably, the latter provided a higher
recall but a lower precision value, which seems to indi-
cate that the model tends to produce intersection class
false positives.

TAB L E 1 Comparisons of the three fusion techniques described in Section 3.2.

Fusion F1 Precision Recall AUC

Feature 46.48 � 1.44 34.63 � 1.72 70.95 � 4.00 82.00 � 1.13

Early 31.48 � 0.63 19.54 � 0.60 81.28 � 4.88 73.93 � 1.48

Late 43.79 � 1.31 30.37 � 1.88 79.19 � 1.13 -

Note: Feature-level fusion works better than the other two fusion methods. Values in bold refer to the best performance for each metric.
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4.3.3 | Number of training data

As mentioned in Section 3.1, our proposed augmenta-
tion technique enables us to obtain vast amounts of
training samples without having to collect new
real-world data. With k¼ 568257þ101386¼ 669643
(one-camera data), we can produce more than 3�1017

three-camera training data, giving us practically
an infinite number of data; hence, the ∞ symbol in
Figure 6.

To see how the number of training data affects
performance, we built several three-camera datasets of
various sizes, between 100 and 500K data items, using
augmentation techniques. Figure 6 shows the increasing
trend of ImageNet-pretrained ResNet-18 feature fusion
performance as we increased the number of training
data. As seen, with more training data, the overall F1
and AUC performance improves, plateauing at around
100 000 data, likely due to the model’s capacity. Con-
versely, we did not have to manually collect another
100 000 balanced three-camera data items. Although
the recall value was very high for the 100 training data,

the precision was very low, which led to a lower overall
performance. This indicates that the 100 data model
has a tendency to predict most of the test data as
intersection.

4.3.4 | Balancing the dataset

Our novel class-balancing method was highly advanta-
geous to our model’s improved performance. As
described in Section 3.1 and Algorithm 1, we can set
the p value to different real numbers in [0, 1], where 1 is
producing all intersection data and no non-intersection
at all. Notably, as seen in Figure 7, reducing p¼ 0:5 to
around p¼ 0:3 continues to provide a good data balance
for our three-camera intersection classification model.
However, with lower p values (such as p¼ 0:1), recall suf-
fers considerably owing to the resultant higher false neg-
ative rate. With greater p values (p≥ 0:7), false positives
increase, leading to lower precision. This results in a
higher false positive that lowers precision. Note that it is
extremely difficult to collect a sufficiently large set of real

TAB L E 2 Comparisons between ImageNet- and from-scratch-pretrained networks.

Pretrained F1 Precision Recall AUC

Yes 46.48 � 1.44 34.63 � 1.72 70.95 � 4.00 82.00 � 1.13

No 36.02 � 0.56 23.36 � 0.63 78.84 � 3.26 77.70 � 0.55

Note: Values in bold refer to the best performance for each metric.

F I GURE 6 We built several three-camera intersection classification datasets with different fixed numbers of triplet frames for training.

“Unlimited” refers to our one-camera augmentation method, which can theoretically produce k3 new training data from the original single-

camera images. The average and standard deviation of (A) F1, (B) precision, (C) recall, and (D) AUC are reported. As can be seen, increasing

the number of training data generally improves intersection classification performance.

F I GURE 7 Our model’s performance trained with different class-balancing hyperparameter p. The higher the p, the greater is the

intersection bias and vice versa. The averages and standard deviations of (A) F1, (B) precision, (C) recall, and (D) AUC are reported,

reflecting the importance of having a balanced dataset.
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and balanced data to train a deep model; however, our
approach can adjust the data balance freely by setting p
to an appropriate value.

4.3.5 | Augmentation algorithm
comparisons

Given the augmentation technique described in
Algorithm 1, there is another way to sample road and
non-road datasets to create three-camera inter-
section classification data. In this section, we sample
the eight cases shown in Figure 2, each with an
equal probability. Hence, overall, p still equals 50%. As
shown in Table 3, both are effective in creating
three-camera intersection classification datasets from
one-camera data.

4.3.6 | Augmented versus real three-
camera data

To demonstrate the effectiveness of data augmentation,
we compared our model with a baseline trained on real
three-camera data. Owing to the limited number of data
that were available, we used the validation set for train-
ing and the testing set for validation on both models. We
already knew that the baseline model would be more
likely to overfit to the testing set. Nevertheless, as seen in
Table 4, the comparison model had higher precision, but
it produced more false negatives, leading to low recall.
This translated to an overall worse F1 and AUC than our
proposed method.

4.3.7 | Learning rate evaluations

Figure 8 shows the F1 and AUC performances of our
model trained with various learning rates. It shows that
the performance of our model is impaired when the
learning rate is too small.

4.3.8 | Batch size evaluations

Figure 9 shows the overall F1 and AUC scores of our
model under different batch-size training settings. When
the batch size was too large, overfitting occurs [31], par-
ticularly if the training data are not real data.

4.3.9 | Combining with MixUp

MixUp [22] is a widely-used augmentation technique that
linearly combines two images at a randomly selected
ratio. We applied MixUp to road/non-road data to

TAB L E 4 Comparisons between our model trained with the augmented dataset built from one-camera data versus the baseline trained

with real three-camera validation data.

Training data F1 Precision Recall AUC

Augmented 46.48 � 1.44 34.63 � 1.72 70.95 � 4.00 82.00 � 1.13

Real 6.07 � 1.82 52.60 � 6.10 3.24 � 0.90 70.82 � 1.82

Note: Owing to severe data imbalances and a fewer number of images, training with real data is clearly suboptimal. Values in bold refer to the best
performance for each metric.

TAB L E 3 Augmentation algorithm comparisons between uniform sampling from the eight cases illustrated in Figure 2 versus using our

Algorithm 1.

Algorithm F1 Precision Recall AUC

Uniform 8 cases 46.28 � 0.98 33.49 � 1.98 75.75 � 7.12 82.92 � 1.36

Algorithm 1 46.48 � 1.44 34.63 � 1.72 70.95 � 4.00 82.00 � 1.13

Note: Both methods are equally effective in creating three-camera data from one-camera images. Values in bold refer to the best performance for each metric.

F I GURE 8 Averages and standard deviations of (A) F1 and

(B) AUC scores for our model trained with different learning rate

settings. Apart from the case when the rate was too low, our model

is robust to a wide range of rates.
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generate new XR, XC, and XL according to randomly
selected ratios of road data, rR, rC, and rL, respectively.
Intuitively, the larger the road data proportion, the more
likely the triplet data will be judged an intersection.
Therefore, we calculated the final intersection/non-inter-
section labels in two ways:

• Average (avg): y¼ðrRþ rCþ rLÞ=3
• Summation (sum):

y¼
0 if ysum < ¼ 1;

ysum�1 if 1 < ysum < 2;

1 if ysum > ¼ 2;

8
><

>:
ð1Þ

where ysum ¼ rRþ rCþ rL.

Table 5 shows the performance comparisons of our
method with/without MixUp. As seen, although MixUp
was effective for generic image classification tasks, it was
not as effective (or much worse) when attempting to

handle three-camera intersection classification tasks.
This was probably caused by the data distribution of
MixUp being too intuitively distant from the test data.
Conversely, our augmented dataset without MixUp pro-
vided a closer distribution to the real data, which led to a
better overall performance.

4.3.10 | Comparisons with a one-
camera model

To provide a fair comparison with single-camera
approaches, we choose a pedestrian-view intersection clas-
sification model from Astrid et al. [1] and tested it using
our dataset. In Astrid et al. [1], an intersection is tagged
when it is nearby and clearly seen by the front camera.
This comparison model was the most similar to ours, and
it also used ResNet-18 (for pedestrian-view inter-
section classification). Moreover, to cope with cases where
an intersection is defined as the middle of the intersection,
we also trained a one-camera model on the XC of the real
three-camera data taken from the validation set.

The results are listed in Table 6. Compared with our
three-camera model, the significantly lower precision
values of the model provided by Astrid et al. [1] shows
that it detects many intersections before their middle
(Figure 1A), whereas the lower recall value shows that it
misses more intersections in their middle (Figure 1B).
The low performance of the one-camera model trained
with the validation set can be attributed to the confusion
generated when separating intersection and non-
intersection classes during training (Figure 1C). The
rationale for this deficiency was explained earlier.

F I GURE 9 Averages and standard deviations of (A) F1 and

(B) AUC of our model trained on various batch-size settings. Our

model is generally robust for small batch sizes until the setting

reaches 64.

TAB L E 5 Comparisons between our model with/without MixUp. The data distribution provided by the MixUp algorithm too intuitively

distant from the test data, which led to lower performance.

Model F1 Precision Recall AUC

Ours 46.48 � 1.44 34.63 � 1.72 70.95 � 4.00 82.00 � 1.13

+ MixUp (avg) 33.83 � 2.67 24.79 � 1.07 53.82 � 9.24 74.01 � 2.23

+ MixUp (sum) 35.64 � 0.02 26.47 � 2.62 56.33 � 11.79 74.65 � 0.21

Note: Values in bold refer to the best performance for each metric.

TAB L E 6 Comparisons between our three-camera model, the one-camera model from Astrid et al. [1], and the one-camera model

trained on our real three-camera data (validation set) tested on our testing set.

Model F1 Precision Recall AUC

3-camera 46.48 � 1.44 34.63 � 1.72 70.95 � 4.00 82.00 � 1.13

1-camera (Astrid et al. [1]) 26.50 � 0.76 17.56 � 0.10 54.31 � 5.41 62.81 � 0.84

1-camera (val) 9.11 � 2.55 32.97 � 3.22 5.31 � 1.64 59.62 � 1.19

Note: The results show the superiority of our three-camera model compared with those of the others in detecting whether an agent is in the middle of an
intersection. Values in bold refer to the best performance for each metric.
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4.3.11 | Increasing network capacity

To improve network capacity with respect to the training
data and improved feature extractor, we can apply a dee-
per network as the backbone. As shown in Table 7, we
compared our approach to different ResNet model
depths, from the shallowest ResNet-18 to the deepest
ResNet-50. We found that using deeper networks can
improve performance, which provides considerable
promise in terms of capability improvement.

4.4 | Qualitative results

The qualitative results generated by our model can
be seen in Figure 10. Our model correctly identified inter-
section and non-intersection in diverse scenes. False

positive cases still occur when the data are ambiguous.
Additionally, our model produced some false negatives in
some crosswalk cases. This is likely due to the lack of
crosswalk data in the training dataset.

5 | CONCLUSION

Detecting whether an agent is inside an intersection is
important for autonomous navigation tasks. To improve
upon this capability, we proposed a three-camera inter-
section classification model trained on left–front–right
camera views. To overcome the difficulties of producing
three-camera datasets from real-world conditions, we uti-
lized a small number of publicly available one-camera
data, and built a three-camera intersection classifier
model. To use one-camera data for three-camera classifi-
cation, an augmentation technique and three different
approaches for combining the information from three
cameras were provided. From extensive experiments, we
found that combining feature information achieves the
best performance over other fusion methods. We also
demonstrated the importance of increasing the quantity
of training data, as long as the resulting dataset is bal-
anced. Our augmentation method ensures this. Finally,
owing to the considerable amount of data, we safely
increased the depth of the network without increasing
overfitting, which led to performance improvements.
Therefore, our approach has considerable potential.
Future works should explore the effects of additional
fusion methods and the possibility of generating
360-degree scene data from one-camera images. More-
over, our approach can be adaptable for autonomous
vehicle tasks where new environments are expected to be
encountered. For example, self-navigating mining robots
would benefit greatly from this capability. Moreover,
planetary and moon rovers can benefit from non-road
classifications of crater, cliff, boulder, and other obstacles.

CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of interest.

TAB L E 7 Comparisons of different ResNet depths as the base network.

Base network F1 Precision Recall AUC

ResNet-18 46.48 � 1.44 34.63 � 1.72 70.95 � 4.00 82.00 � 1.13

ResNet-34 47.38 � 1.31 36.30 � 3.16 70.61 � 12.20 82.48 � 1.99

ResNet-50 47.70 � 2.24 36.31 � 3.28 71.09 � 9.11 82.13 � 1.73

Note: We tested on ResNet-18, ResNet-34, and ResNet-50, ordered from shallowest to deepest. As seen, deeper networks improve performance. Values in bold
refer to the best performance for each metric.

F I GURE 1 0 Examples of true negatives (top-left), false

negatives (top-right), false positives (bottom-left), and true positives

(bottom-right) results produced by our model. Each three-camera

datum is given as a left–center–right triplet. Detailed descriptions

are provided in Section 4.4.
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