
Received 2 February 2023, accepted 13 March 2023, date of publication 15 March 2023, date of current version 22 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3257571

Integrating Heterogeneous Graphs Using
Graph Transformer Encoder for Solving
Math Word Problems
SOYUN SHIN1,2, JAEHUI PARK 1, AND MOONWOOK RYU3
1Department of Statistics, University of Seoul, Seoul 02504, South Korea
2AR-Bridge, Daejeon 34129, South Korea
3Content Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea

Corresponding authors: Jaehui Park (jaehui@uos.ac.kr) and Moonwook Ryu (moonwook@etri.re.kr)

This work was supported by the Culture, Sports and Tourism Research and Development Program through the Korea Creative Content
Agency funded by the Ministry of Culture, Sports and Tourism, in 2022 (Project Name: Development of a Functional Content Platform
for Stress Relief) (Contribution Rate: 100%) under Project R2020060003.

ABSTRACT This paper introduces a novel method that integrates structural information with training
deep neural models to solve math word problems. Prior works adopt the graph structure to represent rich
information residing in the input sentences. However, they lack the consideration of different relation types
between other parts of the sentences. To provide various types of structural information in a uniform way,
we propose a graph transformer encoder to integrate heterogeneous graphs of various input representations.
We developed two types of graph structures. First, the Dependency Graph maintains long-distance lexical
dependency between words and quantities. Second, theQuestion Overlap Graph captures the gist within the
problem body. The two graphs are encoded as a single graph for graph transformation. Experimental results
show that our method produces competitive results compared to the baselines. Our model outperforms state-
of-the-art models in Equation and Answer accuracy near three percent in SVAMP benchmark. Moreover,
we discuss that integrating different types of textual characteristics may improve the quality of mathematical
logic inference from natural language sentences.

INDEX TERMS Math word problems, heterogeneous graphs, graph transformer networks, graph neural
networks.

I. INTRODUCTION
Solving math word problems (MWP) requires a comprehen-
sive understanding of the meaning of the natural language
question and the mathematical knowledge in the given sen-
tences. It is challenging because it is hard to derive math-
ematical knowledge from several given sentences. Utilizing
the latent information from the sequences of words and num-
bers would be a key factor for developing accurate solvers.
Due to the complexity of the problems, the class of MWP
can be divided into arithmetic word problems, equation set
problems, geometry word problems, and others. [1].

Table 1 shows an example of an arithmetic word prob-
lem. The problem comprises three parts: problem, equation,

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia .

TABLE 1. An example of an arithmetic word problem.

and answer. Pieces of evidence are described in the body,
and a question sentence follows. Given the problem, the
MWP solver should predict the equation, and then derives the
answer. The equation is described as a sequence of operators
and numbers. A final answer is a number. In the example, the
number of birds in a tree is the variable we want to infer. The
equation ‘∗ 1 12’ is estimated based on the quantity words,

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 27609

https://orcid.org/0000-0002-7385-5494
https://orcid.org/0000-0002-7565-5963

S. Shin et al.: Integrating Heterogeneous Graphs Using Graph Transformer Encoder

FIGURE 1. An example of MWP that contains various types of
relationships.

‘dozen.’ Predicting a correct equation is challenging because
the solver should understand themeaning of themathematical
operations and thewords illustrating some quantities and their
relationships. Figure 1 describes the associations between the
words and the numbers that occurred at different parts of
the sentences. For example, the quantity ‘12’ indicates the
number of ‘fruit candies’. Also, the word ‘they’ refers to the
twowords ‘Sam’ and ‘her sister,’ which are occurred at differ-
ent positions. Different types of associations are expressed in
different colors. However, existing studies, for example, [2],
may lack the consideration of structural information of prob-
lem body sentences. The sequence-to-sequence models may
not be suitable for identifying the relationships between the
quantity and the words to explain it. Moreover, the work [2]
may ignore the connection between the word ‘fruit candies’
and the number ‘21’ because they are not adjacent. To resolve
this issue, the work, Graph-to-tree [3], adopts the graph struc-
ture to represent the input to generate an expression tree.
Although the graph may represent rich structural information
in the input sentences, it cannot distinguish the different
relation types, such as dependency, adjacency, or ordering.

Automatic solving of MWP has been one of the most
challenging tasks in artificial intelligence because the solver
requires an ability to derive complex equations from natural
language sentences. However, it could overfit to the limited
set of training sentences. Therefore, traditional studiesmainly
focused on adapting existing rules and statistics to deduce the
mathematical equation. However, with the increasing pop-
ularity of natural language processing (NLP) method based
on machine learning (ML) studies, recent MWP studies have
shown success in improving the ability to infer the sequence
or the structure of mathematical symbols based on ML [2],
[3], [4]. Recent studies utilize deep neural models [1], such as
a sequence-to-sequence architecture to derive the equation [2]
and Graph-to-tree approach [3] for representing the structural
inputs. The recent improvements may be affected by deep
learning, such as neural language models [5], [6], sequence
learners [7], and attention mechanisms [8].

This paper proposes a novel graph transformer encoder to
integrate heterogeneous graphs of various input representa-
tions. We presume that latent features can be easily captured

by existing graph neural models, such as Graph-to-tree [3]
with a graph transformer network [9]. The motivation of our
method is to provide different types of structural information
to a single trainingmodel in a uniformway. The encodermod-
ule accepts multiple edges with different types if they are rep-
resented in graph structures. The graph transformer encoder
converts the various inputs into a single representation with
deduced structure. We mean that the deduction identifies
potential linkage between the nodes with no connections.
We train the model with the new relationships, which may
affect the quality of generated MWP solutions. For evalua-
tion, we developed two types of graph structure, Dependency
Graph, and Question Overlap Graph, and encoded them as a
single input. The dependency Graph was constructed based
on the directed binary grammatical relations between words.
To extract the relations, we used SpaCy [10], a popular toolkit
for NLP. The Question Overlap Graph was constructed based
on the co-occurrence of words in the problem body and the
question. A tree-based decoder generates the final equations
by using these two graphs.

We summarize the main contributions as follows:
1) We propose a novel graph transformer encoder to inte-

grate graphs for various input representations.
2) We evaluate the proposed encoder by proposing two

types of graph structure, Dependency Graph and Question
Overlap Graph.

3) An experimental study shows that our model yields
state-of-the-art performance with equation accuracy and
answer accuracy in benchmark datasets.Moreover, our model
performs with robustness in the variational datasets.

An experimental study is described with several bench-
mark datasets. We evaluated the proposed method using three
datasets: MAWPS, ASDiv-A, and SVAMP. We measure the
answer and equation accuracy as two performance metrics.
Experimental results show that our model yields state-of-
the-art performance with the equation-accuracy of 88.54 and
the answer-accuracy of 89.58. Moreover, we evaluated three
quality measures, question sensitivity, reasoning ability, and
structural invariance. As adding variations to the problems,
our model shows superior performance, demonstrating the
robustness of our model in complex problem settings.

The organization of this paper is as follows. Section II
presents the related studies in the field of MWP. Section III
introduces our proposed methods and training algorithms.
Section IV illustrates the experimental studies with bench-
mark datasets, experiment settings, and results. Section V
summarizes and concludes our paper with future work.

II. RELATED WORKS
Traditional approaches to MWP considers the rule-based
matching method [5]. However, the method can solve the
problems analyzed by several simple patterns. They cannot
extend to the natural language problem sentences whose
structure is complex. Several studies [11], [12] use logical
expressions to match mathematical problem sentences. They
improve the prior work by adding reasoning ability to infer

27610 VOLUME 11, 2023

S. Shin et al.: Integrating Heterogeneous Graphs Using Graph Transformer Encoder

FIGURE 2. Overview of our proposed model.

the meaning of the word. However, they are only feasible to
small-sized datasets.

Recent studies have adopted the neural models and pro-
posed benchmark datasets [13], [14], [15]. These approaches
use encoder-decoder models whose input is a sequence
of math words, and the output is a sequence of oper-
ators and numbers. These models exploit the merits of
deep learners who can learn the latent features residing in
the input sequences. The first neural method, deep neural
solver [2], uses the sequence-to-sequence architecture. The
work, Seq2SeqET [16], transforms the quantity words into
a generalized template. For example, the template equation
X = n1 + n2 represents the given equation X = 2 + 3.
This method can identify operators whose processing orders
are the same. An expression tree can be constructed based on
the identification to merge the template equations. The work,
StackDecoder [17], extracts the meaning of the quantities
expressed in the input sentences while encoding. For decod-
ing, they use a stack structure to contain the meaning of the
operands. Most recent approaches exploit the techniques of
ML, such as attention mechanism [18] and Transformer [8].
The works [19], [20] use the Transformer to generate the
expression of infix, prefix, and postfix notations. Expression-
Pointer Transformer (EPT) [21] adds the expression frag-
mentation and the operand context separation to improve
the transformer-based approach. Some work [22] uses the
BERT encoder [6] to benefit from the power of the state-
of-the-art language model to learn the meaning of natural
sentences. However, they lack the structural understanding of
MWPs, which are the relationships between the numbers of
the words.

Sequence-to-Tree (Seq2tree) [23] proposed a tree-structured
equation decoding. The difference from the previous
work [17] is that they generate an expression tree whose root
node has the operator rather than generating the expression
sequentially. The most recent work, Graph-to-tree [3], which
adopted Graph Convolution Network [24], to integrate the
quantities and the adjacent words as a uniform representa-
tion, which is a graph. The state-of-the-art approach [25]

defines amath word problem as a relation extraction problem.
It models a deductive reasoning process to classify relations.
Iterative operations to generate intermediate operation results
are proposed. Then, they refine the intermediates until they
obtain accurate solutions. This work is closely related to ours
because they focus on the explicit reasoning process. The
main difference between the work [25] and ours is that it
concentrates on transforming the deductive reasoning process
to solve MWPs. However, ours focuses on representing and
merging a variety of mathematical knowledge. The other
recent work, Graph-to-tree [3] is different from ours in that
we replace their graph convolution network with the graph
transformer network. Also, our method is extensible with the
input graph representations.

III. METHOD
We represent the text of the math word problem as P, where
P is a sequence of word tokens and numeric values. The
problem P = {p1,p2, · · · , pn}, is divided into Body and
Question as follows: Body= {p1,p2, · · · , pk} and Question=
{pk+1,pk+2, · · · , pn}. For example, given problem P, ‘‘Sally
saw 1 dozen birds in a tree. How many birds did Sally see?’’.
The body part is ‘‘Sally saw 1 dozen birds in a tree.’’ and the
question part is ‘‘Howmany birds did Sally see?’’. p1 denotes
the word ‘Sally’ in the given problem and p5 denotes the
word ‘birds’ in the body part. Also p11 denotes the word
‘birds’ but it is from the question part. Moreover, p13 also
denote ‘Sally’, which is in the question part. There are three
types of words: number Np, wordWp and constantWcon. The
number Np is the set of quantities in the problem. The word
Wp is the word that occurred in the problem. The constant,
for example, dozen is the unit or predefined constants repre-
sented by numbers in the problem. Lastly, the operator Wop,
for example,× is amathematical operator in a set of operators
{+,−,÷,×}. For example, np1 represents the number 3,wp1
represents the word ‘Sally’ and wcon1 represents the constant
word ‘dozen,’ where Np = {np1, np2, · · · , npl}, Wp = {wp1,
wp2, · · · , wpm}, and Wcon = {wcon1, wcon2, · · · , wconn} are
given. In this formulation, wp11 also represents the word

VOLUME 11, 2023 27611

S. Shin et al.: Integrating Heterogeneous Graphs Using Graph Transformer Encoder

‘Sally’. Two matching word type elements, wp1 and wp11, for
a single word ‘Sally’ will be used to identify the associations
in the problem. We assume the association is meaningful in
understanding a set of related sentences and is constructed
by the word co-reference relationships. The body {Np, Wp,
Wcon} and the question = {Np,Wp,Wcon} are also represented
as a set of three typed words. Given a problem, our goal is
to map P to a valid and correct mathematical expression Ep
(e.g., 1× 12) composed of numbers from P andmathematical
operators from the setWop = {+,−,÷,×}.
The architecture we propose is shown in Figure 2. Our

model consists of three parts: text node representation, graph
transformer encoder, and tree-based decoder. First, the model
encodes the problem text into a vector representation based on
a pre-trained language model. Second, the vector representa-
tion is converted to token-level representations using a bidi-
rectional LSTM. Moreover, several graphs are constructed
to encode the heterogeneous structural information and are
integrated using the graph transformer encoder. Finally, the
tree-based decoder generates the solution expression tree.

A. TEXT NODE REPRESENTATION
First, the text node representation module transforms the
MWP P texts into vector representations. We learn the
word-level hidden state representations of the input MWP
text using the RoBERTa [26] pre-trained embeddings E(pi)
to initialize the node representations,. We use pre-trained
RoBERTa because our preliminary study showed that its
overall performance of it is the best. However, it can be easily
replaced with other state-of-the-art language models.

B. HETEROGENEOUS GRAPH-BASED ENCODER
Second, we put E(pi), which is an embedding matrix of a
sequence pi into the BiLSTM neural network. The BiLSTM
neural network encodes the tokens represented in E(pi) and
generates a series of hidden states hi = [

−→
h i,
←−
h i]:

−→
h i = LSTM(E(pi),

−→
h i−1) (1)

←−
h i = LSTM(E(pi),

←−
h i−1) (2)

where the arrow represents the forward direction of each
LSTM. The combined hidden states, hi =

−→
h i +

←−
h i, incor-

porate the contextual information in E(pi). Thus, the set of
hidden states H = {h1, h2, · · · , hN} represents the holistic
context of the problem.

The embedding E(pi) is also converted to graph structures
for the Graph Transformer Network [9] (GTN). We adopt
the GTN in our encoder to integrate the input graphs. GTN
is the state-of-the-art model in the node classification prob-
lem for graph data. According to the work [9], GTN can
identify hidden relationships between the original graphs.
This means that GTN has the advantage of being able to
learn latent information behind the MWP compared to the
one that was constructed in a heuristic manner [3]. This
ability may correspond to human’s reasoning process of solv-
ing math problems. Moreover, we find that the meta-paths

FIGURE 3. Dependency Graph illustrated by an adjacency matrix.

among heterogeneous types of edges overcome the limitation
of graph neural networks [27], which assume a fixed and
homogeneous graph structure. The GTN in our encoder takes
two input representations: the adjacency matrices of multiple
graphs and the context vectors from the BiLSTM. Our main
idea is that we can find the hidden relationships between
quantities and words using GTN.

To validate our idea, we propose two graphs, Dependency
Graph Gdep and Quantity Overlap Graph Gq.o. These two
graphs provide meaningful paths between the nodes con-
nected by the edges of different types. In our encoder, the
GTN finds useful meta-paths for enriched expression for
generating a final solution. The graph structureGBase in [3] is
used as a baseline for our graph representation. In the encoder,
the node types of each graph are denoted as {E(Np), E(Wp),
E(Wcon)}, and the edges types are denoted as {A1,A2,A3}:
• A1 : Lexical dependency between words
• A2 : Words that appear in common in the problem body
and the question

• A3 : Quantity comparison (used by [3])
In this encoder setting, additional edge types can be easily
adopted as Ai. The intuitions of the proposed graphs and their
edges are described as follows.

1) DEPENDENCY GRAPH
First, we consider the lexical dependency structure between
words in the problem. In some cases, the words that are
far apart would play an important role in understanding the
problem. For example, in Figure 1, we can find the verb ‘got’
has an association with the subject ‘Sam’, at the same time,
has an association with the quantities, ‘‘32 chewing gums
and 15 chocolate bars’’. Similarly ‘Her sister’ is associated
with 23 gums and 16 bars. To maintain such a relationship
between tokens for MWP, dependency parsing [28] is one
of the effective methods in NLP. We adopt the well-known
dependency parser [10] to capture the association of distant
words and quantities based on lexical dependency. This idea
resolves the problem of the prior work [3], which may ignore
the relationships between distant tokens that are not adjacent
to quantities.

27612 VOLUME 11, 2023

S. Shin et al.: Integrating Heterogeneous Graphs Using Graph Transformer Encoder

FIGURE 4. Question overlap Graph illustrated by an adjacency matrix.

We introduce Dependency Graph with edges that repre-
sent the lexical dependency between nodes (Figure 3). Once
a dependency parser determines the dependency structure
between token embedding E(pi), an adjacency matrix A1 is
constructed. Based on the parser, un-directed edges, and their
weights are assigned to a matrix, which is a graph repre-
sentation. We ignore the direction of the edge for simplicity.
According to [29], dependency structure forms an important
role in converting text into logical formulas. We presume the
enhancement of the logical formulations into a trainingmodel
could affect the final performance of solving MWP.

Figure 3 shows an example of the adjacency matrix to
illustrate the dependency relationship between words in the
sentence ‘‘There are 4 boys and 5 girls’’. We used the popular
NLP toolkit, SpaCy, for dependency parsing. In this study,
the parser assigns one for each cell in the matrix if there
is a dependency relationship between two words; otherwise,
it assigns zero for the cell.

2) QUESTION OVERLAP GRAPH
Second, we try to emphasize the question part of the problem.
We conjecture that the previous works, for example, [3],
consider adjacency relationships without distinction between
the body and the question part. We believe that the words
that occurred in the question part are more critical than those
in the body part because the question part is comprised of
keywords to get a final solution.

An MWP is separated into two parts, the body part and the
question part, yet common question words exist. We intro-
duce a co-occurrence graph, called the Question Overlap
Graph, with the un-directed edge representing the existence
of tokens that occurred in the body part and the question part
simultaneously.

Figure 4 shows an example of the adjacent matrix to indi-
cate the overlapping words between the body part, ‘‘Liz sold
27 history books and 15 puzzle books’’, and the question part,
‘‘How many books did she sell’’. In this study, we assign one
for each cell in the matrix if common words exist along with
the rows and the column of the matrix; otherwise, we assign
zero for the cell.

Using the various graph representations with heteroge-
neous types of edges {A1,A2,A3} described above, GTN
predicts new edges to generate a new adjacency matrix Anew.
Then, the encoder generates an output Z obtained by perform-
ing a graph convolution operation between Anew and H . Fol-
lowings are the chain of operations processed in the encoder.

Z = GraphConvolution(GTN(A1,A2, · · · ,Ak),H) (3)

where

GraphConvolution(Ak ,X) = relu(AkXTWk) (4)

GTN(A) = F(A;Wφ)

= φ(A; softmax(Wφ))

A = {A1,A2, · · · ,Ak} (5)

where φ(·) is the 1 × 1 convolution layer and Wφ ∈ R1×1×K

is the parameter of φ. We use Dependency graphA1, Question
overlap graph A2, and adjacency matrix used by baseline A3.
We apply Layer normalization and Residual connection to Z
to produce the node representation Z̄ .

Ẑ = Z + LayerNorm(Z) (6)

Z̄ = Ẑ + LayerNorm(FFN(Ẑ)) (7)

where

LayerNorm(x) =
γ

σx
· (x − µx)+ β (8)

µx = E(x), σx = (E(x − µx)2)1/2 (9)

FFN(x) = max(0, x ·Wf1 + bf1) ·Wf2 + bf2 (10)

where γ , and β are trainable parameters, Wf1 and Wf2 are
trainable matrices.

We apply the element-wisemin pooling operation on all the
nodes to learn the global node representation. Next, the global
feature is input to a fully connected neural network(FC) to
generate the final output zg of the encoder.

zg = FC(MinPool(Z̄) (11)

From the output of the encoder, Z̄ is used as a node rep-
resentation of quantities, entries, and relationships. zg is used
as a global context representation for the decoder.

C. TREE-BASED DECODER
Finally, the mathematical equation is generated at the tree-
based decoder. We model the tree-based decoder inspired
by the Graph-to-tree model [3] to accept the representation
output from the encoder module. The decoder takes the inte-
grated context of the problem to generate the sub-expressions
sequentially for a final equation.We set the output form of the
decoder as a binary tree whose leaf nodes are the numbers
and the constants, and non-leaf nodes are the operators. The
equation consists of constants, numbers, and operators: Ep =
{ Ncon, Np, Wop}. We use the pre-order traversal to generate
the expression tree in the form of prefix representation since
we confirmed that the location of the operator affects the
accuracy of generated expressions [19].

VOLUME 11, 2023 27613

S. Shin et al.: Integrating Heterogeneous Graphs Using Graph Transformer Encoder

1) TREE INITIALIZATION
First, the root node qroot is initialized as the output zg of the
graph encoder. Given a problem P, each word y is defined as
three types of token embedding as follows.

E(y|P) =


Mop(y), if y ∈ Wop

Mcon(y), if y ∈ Ncon
z̄ploc(y,P), if y ∈ NP

(12)

where E(·) is the embedding matrix, z̄p is the hidden state
from the output of the graph encoder, and loc(y,P) is the
location index of the word y in the corresponding Problem P.
For each word in the vocabulary: WEqu

= {Wop,Ncon,NP},
embedding matricesMop andMcon are trained independently.
Then, the context vector c is initialized by the initial node

qroot

c =
∑
s

asZ̄ (13)

where

as =
exp(score(q, Z̄))∑
i exp(score(q, Z̄))

(14)

and

score(q, Z̄) = vTa tanh(Wa[q, Z̄]) (15)

where va and Wa are trainable parameters, and [·, ·] denotes
concatenation operations. The s(·) generates an output token
y given the target word setWEqu.

s(y|q, c,P) = wTn tanh(Ws[q, c,E(y|P)]) (16)

where wn is a trainable vector, Ws is a trainable matrix and
E(y|P) is the token embedding of y in Equation (10).
We calculate the probability of the output word y by nor-

malizing the s(y|q,c,P) using softmax.

prob(y|q, c,P) =
exp(s(y|q, c,P)∑
i exp(s(yi|q, c,P)

(17)

We can estimate the output token ŷ with the highest prob-
ability as follows.

ŷ = argmax
y∈WEqu

prob(y|q, c,P) (18)

With the predicted output token ŷ, we determine whether to
generate a sub-tree or terminate. If ŷ is a constant or quantity,
the decoder stops the generation and decodes it as a leaf node.
Otherwise, the decoder proceeds to generate the sub-tree.

2) SUB-TREE GENERATION
We adopt the pre-order traversal to construct the expression
tree. In this traversal manner, all the left branches are gen-
erated before the right branches. The left child node ql is
constructed as followings:

ol = σ (Wol[q, c,E(ŷ|P)]) (19)

Cl = tanh(Wcl[q, c,E(ŷ|P)]) (20)

hl = ol ⊙ Cl (21)

where Wol and Wcl are trainable matrices, and hl is defined
as the hidden state passed by the parent node to the left child
node.

gl = σ (Wglhl) (22)

Qle = tanh(Wlehl) (23)

ql = gl ⊙ Qle (24)

whereWgl and Wle are trainable matrices.
After generating all the left branches of the sub-trees,

the right branches are generated in a similar manner. The
difference from generating a left child node is that it utilizes
the generated left sub-tree tl .

or = σ (Wor [q, c,E(ŷ|P)]) (25)

Cr = tanh(Wcr [q, c,E(ŷ|P)]) (26)

hr = or ⊙ Cr (27)

where Wor and Wcr are trainable matrices, and hr is defined
as the hidden state passed by the parent node to the right child
node.

gr = σ (Wgr [hr , tl]) (28)

Qre = tanh(Wre[hr , tl]) (29)

qr = gr ⊙ Qre (30)

where Wgr andWre are trainable matrices.
Generated the left and right sub-trees are combined to

construct t as follows:

t =

{
comb(tl, tr , ŷ) if ŷ ∈ Wop

E(ŷ|P), if ŷ ∈ Np ∪ Ncon
(31)

comb(tl, tr , ŷ) = gt ⊙ Ct (32)

gt = σ (Wgt [tl, tr ,E(ŷ|P)]) (33)

Ct = tanh(Wct [tl, tr ,E(ŷ|P)]) (34)

Suppose the predicted token value ŷ is an operator. In that
case, the decoder generates the operator and proceeds the
prediction for the operands in the form of two sub-trees, tl
and tr based on the combination comb(tl, tr , ŷ), where Wgt
and Wct are trainable matrices. If the predicted token value ŷ
is a number or a constant, the decoder generates the operand
in the form of a value, E(ŷ|P).
If the output meets the valuesNp,Ncon, and all the sub-trees

are generated, the tree-based decoder outputs the equation
generated so far.

D. TRAINING
Our objective is tominimize the negative log-likelihood of the
set of MWPs. The loss function we used for model learning
is as follows.

L(Ep|P) =
∑

(−log p(Ep|P)) (35)

p(Ep|P) =
n∏
i=1

prob(yi|qi, ci,P) (36)

27614 VOLUME 11, 2023

S. Shin et al.: Integrating Heterogeneous Graphs Using Graph Transformer Encoder

FIGURE 5. Statistics of three MWP datasets.

where n denotes the length of Ep, and qi and ci are the tree
node vector, and its context vector at the i-th token, the prob-
abilities prob(·|·) are calculated by Equation (15). We used
Adam optimizer to train the model with the fixed learning
rate 1e-3. The weights are initialized using a normal distribu-
tion with zero mean and one standard deviation. The weights
of GTN layer are initialized with zero mean and 0.01 standard
deviation.

IV. EXPERIMENTS
A. DATASETS
To evaluate our proposed method, we use three benchmark
datasets: MAWPS [14], ASDiv-A [15], and SVAMP [13].
MAWPS is a dataset that contains simple MWPs that can be
solved by a linear equation with a single variable. It has a total
of 2373 problems with 1311 single operator problems and
1062 multiple operator problems. This dataset is constructed
by merging several public datasets, such as AI2 [30], IL [31],
and SingleEQ [32]. ASDiv(Academia Sinica Various MWP)
is a dataset of simple MWPs similar to MAWPS. Moreover,
it contains useful information about the problem difficulty
and the problem types. We use the type of Arithmetic prob-
lem, ASDiv-A, that includes 1218 problems. SVAMP is a
special subset of ASDiv-A to sample 1000 problems with a
variation. The problems in the datasets we used are described
in English only.

TABLE 2. Statistics of Dataset.

Table 2 shows the statistics of three different datasets. The
number of problems and unique words, the average number
of operators, and the Corpus Lexicon Diversity (CLD) are
illustrated. Based on [15], the CLD metric shows that a
dataset with higher CLD has more diverse tokens to express
the corpus. For MAWPS, which has the largest number of
questions and unique words, we observed that the sentence
structures are similar, yet only the objects and quantities
are distinct. For ASDiv-A, which is about half the size of
MAWPS, has 2877 unique words, and the CLD of it is the
highest.We can consider that ASDiv-A contains more diverse
tokens, which can form various problem statements than

other datasets. The SVAMP dataset is created by applying
certain variations to a set of seed examples sampled from the
ASDiv-A dataset. The problem with this dataset is that there
exist many augmentation data derived from a single sample.
As a result, the CLD is low because the vocabulary is too
small; also the sentences have a few variations with the same
sentence structure.

Figure 5a and 5b show that MAWPS has a relatively large
number of problems with two or three quantities and one or
two operators, and SVAMP has a relatively large number of
problems with four quantities.

B. EXPERIMENTAL SETTINGS
The experiments were performed on the Intel i7 3.2 GHz
workstation with 256GB of RAM. Furthermore, the gen-
eral graphics processing unit, RTX 3090 was used to train
our models and other baseline models. Every model is
implemented using the libraries, such as Python 3.6.9,
Pytorch 1.7.1, Pandas, Numpy, Scikit-Learn, Huggingface
Transformers, NLTK, and SpaCy, on the Ubuntu 18.04
LTS operation system environment. We optimized the
hyper-parameters of our model of input embedding size
of 768, the number of units in a hidden layer of 384, and
two layers in the encoder with an RTX3090 24GB GPU.
We trained our model for 50 epochs with hyper-parameters
(learning rate: 1e-3, batch size: 8, weight decay: 1e-5, beam
size:5, dropout: 0.5).

To test the model performance, we compare the Equa-
tion Accuracy and the Answer Accuracy of our model and
the baseline models. We measure the metric using 5-fold
cross-validation. For comparison, the recent studies [3], [16],
[19], [23] are presented as baseline methods denoted as,
Sequence-to-Sequence, Transformer, Seq2tree, and Graph-
to-tree, respectively.

Our approach is presented with four variants, Base(Gdep),
Base(Gq.o), Base(GTN), and HGTE2Tree to illustrate the
increasing performance by adding heterogeneous graphs and
GTN to a single end-to-end model. The followings summa-
rize the baseline methods and our model variants. Our code
is at ‘‘https://github.com/soyunshin/HGTE2Tree’’.

1) Sequence-to-Sequence model is denoted as seq2seq.
It is the encoder-decoder architecture using a
Bi-directional GRU for encoding and a Uni-directional
GRU for decoding.

2) Vanilla Transformer in the Pytorch library is denoted
as Transformer. It is constructed as a single layer of
encoder and decoder with four heads.

3) Sequence-to-Tree model is denoted as Seq2tree. It uses
a Bi-directional GRU to represent the goal vector for
tree generation.

4) Graph-to-tree model, denoted as Graph2tree(Base),
transforms the problem inputs into a word embedding
using a Bi-directional GRU. TheQuantity Cell Graph is
constructed with the most adjacent two words as input
graph representation. The decoder generates the final
tree of equations whose depth is only two.

VOLUME 11, 2023 27615

S. Shin et al.: Integrating Heterogeneous Graphs Using Graph Transformer Encoder

5) Baseline +Gdep is our approach to introduce the depen-
dency structure to adopt the heterogeneity into the
graph representation, denoted as Base+Gdep. It extends
the Graph2tree model by adopting the Dependency
Graph Gdep.

6) Baseline + Gq.o is our approach to introduce the
word overlaps, denoted as Base+Gq.o. It extends the
Graph2tree model by adopting the Question overlap
Graph Gq.o.

7) Baseline + GTN is our approach to integrate the hetero-
geneous graphs, denoted as Base+GTN. It extends the
encoder of Graph2tree(Base) by adopting GTN. This
approach integrates the Quantity Cell Graph and the
Quantity Comparison Graph into a single graph.

8) Heterogeneous Graph Transformer Encoder-to-Tree is
our proposed model, denoted as HGTE2Tree. It trans-
forms the input with integrated two novel graphs,
Dependency Graph Gdep and the Question Overlap
Graph Gq.o, and BiLSTM for the GTN in the encoder.
They are transformed into a single graph representation
for the tree-based decoder.

TABLE 3. Overall performance: equation accuracy and answer accuracy.

C. OVERALL PERFORMANCE
Table 3 shows the overall performance of MAWPS, ASDiv-
A, and SVAMP. HGTE2Tree illustrates better results than
the baseline for three datasets. This result explains that the
input representation of heterogeneous edges contributes to
the accuracy of reasoning a final equation and solution given
MWPs. With the results of two models, Base+Gdep and
Base+Gq.o, we find that additional information on relation-
ships between words and numbers in the problem is helpful in
improving performance. Moreover, the integration with het-
erogeneous graph representations using GTN, Base+GTN,
yields a large portion of the improvement in Equation accu-
racy compared to the baselines. Also, HGTE2Tree shows
state-of-the-art performance in Answer accuracy.

For Base+Gdep, which adds the Dependency Graph to the
baseline, the accuracy of equation generation on the MAWPS
dataset is reduced compared to the baseline. Still, the accu-
racy of answer generation is improved. By adding the depen-
dency graph, the relationship between quantities and distant
words may be considered, resulting in an error in the order
of equations. Still, even if the order of equations is predicted
differently, the accuracy of the correct answers calculated
increases by 0.54%. For the ASDiv-A dataset, the equation
accuracy and the answer generation accuracy are improved
by about 1%. These results illustrate that the Dependency
Graph can efficiently incorporate far-flung word information
involved in equations and correct answers in the problem
of ASDiv-A, which is relatively complex compared to other
datasets. Even in the case of SVAMP datasets, the accuracy
of equation and answer generation has been improved.

For Base+Gq.o with Question overlap Graph added to the
baseline, the generation accuracy for the equation and the
answer is improved for all datasets. By adding a Question
overlap Graph, it can be inferred that the process of finding
the necessary information in the body part of the question
in the question part of the problem and inferring it by an
equation has a good effect on performance.

For Base + GTN, the accuracy of equation and answer
generation on the MAWPS dataset is improved. Adopting the
GTN to our encoder, the model can find a new meta-relation
based on the initial relationship information with the quantity
and theword has a positive effect on performance. In addition,
the generation accuracy of equations and answers on the
ASDiv-A dataset is improved. However, for SVAMPdatasets,
the accuracy of equation generation decreased by 0.04%,
but the accuracy of correct answer generation improved.
In the case of various variations of existing problems, such
as SVAMP datasets, it can be considered that the method
of inferring information through meta-relation generated
through learning data negatively affects the accuracy of equa-
tion generation.

For our proposed model HGTE2Tree, the equation and
answer generation accuracy on the MAWPS dataset is
improved by approximately 1%. On the ASDiv-A dataset,
the equation and answer generation accuracy is improved by
more than about 2%. The equation and answer generation
accuracy on the SVAMP dataset was improved by more than
about 3%. It can be observed that the use of GTN has a
positive effect on performance improvement so that the infor-
mation of the graph representing each structural information
is not excessively learned in the process of generating a new
relationship structure by adding the dependency graph and
question overlap graph.

D. VARIATIONS IN MWP
Based on the benchmark dataset, SVAMP [13], we conducted
an experiment to analyze the reasoning ability of the models
in terms of three metrics: Question Sensitivity, Reasoning
Ability, and Structural Invariance. The followings are the
candidate variations for each metric.

27616 VOLUME 11, 2023

S. Shin et al.: Integrating Heterogeneous Graphs Using Graph Transformer Encoder

FIGURE 6. Statistics of SVAMP variation data.

1) Question Sensitivity is measured while changing the
question part. We applied the following variations to
the models with the problem body part fixed.

a) Same Object, Different Structure - changed the
structure of the question while the objects in the
question are fixed.

b) Different Object, Same Structure - changed the
objects in the question while the question struc-
ture is fixed.

c) Different Object, Different Structure - changed
the objects and the question structure.

2) Reasoning Ability is measured while adding some
changes to the problem. We evaluated the changing
performance according to the following variations.

a) Add relevant information - added relevant infor-
mation that could affect the output equation qual-
ity into the problem.

b) Change Information - changed the object infor-
mation in the problem.

c) Invert Operation - changed the quantity of objects
in the problem while the question was fixed.

3) Structural Invariance is a metric to evaluate how the
model performance could be affected if some superfi-
cial changes occurred in the problem. The followings
are the changes we performed.

a) Change order of objects - changed the order of the
quantities and the objects in the problem.

b) Change order of Phrases - changed the order of
the quantities and the phrases in the body part.

c) Add irrelevant information - added irrelevant
information to the problem.

We conducted this experiment to evaluate the performance
of our model using SVAMP datasets. We assess the ability
to reason the equations and answers concerning each variant
category. Each problem can be classified into at least one or
more categories (maximum of four). In Figure 6a, the number
of problems belonging to 9 variants described above is illus-
trated. Figure 6b shows the number of variant properties in
each problem. That is, (a) means having one variant property,
(b) means having two variant properties at the same time,
(c) means having three variant properties at the same time,
and (d) means having four variant properties at the same
time. We measure the metric using 5-fold cross-validation.

Table 4 shows that ourmodel, HGTE2Tree outperforms the
baseline, Graph2Tree, for the several variations we applied.
In most cases, our model has improved formulation and cor-
rective inference performance. Except for the one inwhichwe
changed the objects with the same structure in the question,
the accuracy of our model did not deteriorate with various
problem changes. However, in the case of Question Sensitiv-
ity’s Different Object and Same Structure, it was confirmed
that the baseline model’s performance was about 1.3% higher
for Equation generation and about 3.8% higher for Answer
generation. The Graph-to-tree model predicted one equation
and two answers more accurately than the proposed model.
This is the case when an object that does not exist in the
training data appears in a new question, and our proposed
HGTE2Tree model recognizes objects that are semantically
associatedwithQuantity as Quantity-linked information, so if
the object changes and the structure remains the same, it is
observed that the performance is relatively low.

TABLE 4. SVAMP variation.

V. QUALITATIVE EVALUATION RESULTS
We performed the case study to discuss the qualitative eval-
uation results concerning the SVAMP variation. The results
are shown in Figure 7.
The first case is the problem of Question Sensitivity.

The problem requires the number of ‘files’ remaining after
‘delete’. It is necessary to distinguish between the quantity
related to ‘files’ and quantity related to ‘apps’. Our model
successfully finds the quantities associated with ‘files’ and
deduces the equation. However, the baseline fails to recognize
the order of appearance of ‘files’ and ‘apps’ has changed at
the beginning and the end of the sentence, and the quantity 17
of ‘apps’ are included in the equation.

The second case is the problem of Reasoning Ability. Dif-
ferent operators are observed in generating equations in our

VOLUME 11, 2023 27617

S. Shin et al.: Integrating Heterogeneous Graphs Using Graph Transformer Encoder

FIGURE 7. Case Studies on Variations in SVAMP.

model and baseline. It was observed that the baseline added 8
to create an equation. The 8 is the amount that ‘his dad’ lost.
However, our model successfully deduced the quantity of ‘his
dad.’

Finally, the third case is the problem of Structural Invariant.
It is necessary to identify the quantity associated with ‘eggs’
to solve the problem. Our model successfully finds a quan-
tity 18 related to ‘eggs’ and deduces the equation. However,
for the baseline, the equation contains the quantity 72 of
‘bananas’ located close to ‘eggs’ instead of the quantity 18 of
‘eggs’.

To provide various types of structural information in a
uniformway, we propose a graph transformer encoder to inte-
grate heterogeneous graphs of various input representations.

VI. CONCLUSION
This paper introduces a novel method to integrate hetero-
geneous graphs into a single uniform graph representation
using a graph transformer encoder for solving MWP.We pro-
posed two graphs, Dependency Graph, and Question Overlap
Graph, to extract the structural information for reasoning a
mathematical equation from the problem sentences. We dis-
cussed that adopting the graph transformer network helps
reconstruct the latent structures behind the problem sentences
and decode them in tree-structured expressions. Our eval-
uation indicates that our method outperforms the baselines
regarding equation accuracy, answer accuracy, question sen-
sitivity, reasoning ability, and structural invariance.

The limitation of this paper is that we have only proposed
two types of heterogeneous graphs. They may be considered
the same type of graphs because they can be represented as
an adjacent matrix. If we would elaborate our work more
concretely in a unified framework for various input graphs,
more numbers of graph edges and nodes to generalize our
claims. The graph-based models have the potential to gather

a variety of mathematical components into a single unified
framework. The second limitation of this work is that it only
considers the arithmetic operators, and a limited set of exper-
iments has been presented. Although arithmetic problems are
in the scope of this work, we believe our graph transformer
encoder would be optimized for the equation set problems.

As a future work, we will try to apply our method to other
types of MWP, such as equation set problems. Moreover,
additional graphs, such as Abstract Meaning Representation
graph [33], are to be considered for rich information. As a
future work of model enhancement, we plan to improve our
model performance by relying on large-scale language mod-
els, such as PaLM [34] or GPT3 [35]. We believe adopting
the pre-trained models would broaden the range of reasoning
tasks at the math word problem representation level.

ACKNOWLEDGMENT
(Jaehui Park and Moonwook Ryu contributed equally to this
work.)

REFERENCES
[1] D. Zhang, L. Wang, L. Zhang, B. T. Dai, and H. T. Shen, ‘‘The gap of

semantic parsing: A survey on automatic math word problem solvers,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 9, pp. 2287–2305,
Sep. 2020.

[2] Y. Wang, X. Liu, and S. Shi, ‘‘Deep neural solver for math word prob-
lems,’’ in Proc. Conf. Empirical Methods Natural Lang. Process., 2017,
pp. 845–854.

[3] J. Zhang, L. Wang, R. K.-W. Lee, Y. Bin, Y. Wang, J. Shao, and E.-P. Lim,
‘‘Graph-to-tree learning for solving math word problems,’’ in Proc. Assoc.
Comput. Linguistics, 2020, pp. 3928–3937.

[4] N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzilay, ‘‘Learning to
automatically solve algebra word problems,’’ in Proc. 52nd Annu. Meeting
Assoc. Comput. Linguistics (Long Papers), vol. 1, 2014, pp. 271–281.

[5] C. R. Fletcher, ‘‘Understanding and solving arithmetic word problems: A
computer simulation,’’ Behav. Res. Methods, Instrum., Comput., vol. 17,
no. 5, pp. 565–571, Sep. 1985.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[7] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ 2018,
arXiv:1802.05365.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 5998–6008.

[9] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, ‘‘Graph trans-
former networks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 11960–11970.

[10] B. Srinivasa-Desikan, Natural Language Processing and Computational
Linguistics: A Practical Guide to Text Analysis With Python, Gensim,
Gensim, spaCy, Keras. Birmingham, U.K.: Packt Publishing Ltd, 2018.

[11] D. Goldwasser and D. Roth, ‘‘Learning from natural instructions,’’ Mach.
Learn., vol. 94, no. 2, pp. 205–232, Feb. 2014.

[12] T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer, ‘‘Scaling semantic
parsers with on-the-fly ontology matching,’’ in Proc. Conf. empirical
methods natural Lang. Process., 2013, pp. 1545–1556.

[13] A. Patel, S. Bhattamishra, and N. Goyal, ‘‘Are NLP models really able to
solve simple math word problems?’’ 2021, arXiv:2103.07191.

[14] R. Koncel-Kedziorski, S. Roy, A. Amini, N. Kushman, and H. Hajishirzi,
‘‘MAWPS: A math word problem repository,’’ in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., 2016,
pp. 1152–1157.

[15] S.-Y.Miao, C.-C. Liang, andK.-Y. Su, ‘‘A diverse corpus for evaluating and
developing Englishmath word problem solvers,’’ 2021, arXiv:2106.15772.

[16] L.Wang, Y.Wang, D. Cai, D. Zhang, and X. Liu, ‘‘Translating a math word
problem to an expression tree,’’ 2018, arXiv:1811.05632.

27618 VOLUME 11, 2023

S. Shin et al.: Integrating Heterogeneous Graphs Using Graph Transformer Encoder

[17] T.-R. Chiang and Y.-N. Chen, ‘‘Semantically-aligned equation generation
for solving and reasoning math word problems,’’ 2018, arXiv:1811.00720.

[18] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ 2014, arXiv:1409.0473.

[19] K. Griffith and J. Kalita, ‘‘Solving arithmetic word problems automatically
using transformer and unambiguous representations,’’ in Proc. Int. Conf.
Comput. Sci. Comput. Intell. (CSCI), Dec. 2019, pp. 526–532.

[20] K. Griffith and J. Kalita, ‘‘Solving arithmetic word problems with trans-
formers and preprocessing of problem text,’’ 2021, arXiv:2106.00893.

[21] B. Kim, K. S. Ki, D. Lee, and G. Gweon, ‘‘Point to the expression: Solving
algebraic word problems using the expression-pointer transformer model,’’
in Proc. Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2020,
pp. 3768–3779.

[22] Z. Liang, J. Zhang, L. Wang, W. Qin, Y. Lan, J. Shao, and X. Zhang,
‘‘MWP-BERT: Numeracy-augmented pre-training for math word problem
solving,’’ in Proc. Findings Assoc. Comput. Linguistics, (NAACL), 2022,
pp. 997–1009.

[23] Z. Xie and S. Sun, ‘‘A goal-driven tree-structured neural model for math
word problems,’’ in Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019,
pp. 5299–5305.

[24] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ 2016, arXiv:1609.02907.

[25] Z. Jie, J. Li, and W. Lu, ‘‘Learning to reason deductively: Math word
problem solving as complex relation extraction,’’ 2022, arXiv:2203.10316.

[26] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘RoBERTa: A robustly optimized BERT
pretraining approach,’’ 2019, arXiv:1907.11692.

[27] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
‘‘The graph neural network model,’’ IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2016.

[28] D. Chen and C. Manning, ‘‘A fast and accurate dependency parser using
neural networks,’’ in Proc. Conf. Empirical Methods Natural Lang. Pro-
cess. (EMNLP), 2014, pp. 740–750.

[29] S. Reddy, O. Täckström, M. Collins, T. Kwiatkowski, D. Das, M. Steed-
man, and M. Lapata, ‘‘Transforming dependency structures to logical
forms for semantic parsing,’’ Trans. Assoc. Comput. Linguistics, vol. 4,
pp. 127–140, Dec. 2016.

[30] M. J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kushman, ‘‘Learning to
solve arithmetic word problems with verb categorization,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process. (EMNLP), 2014, pp. 523–533.

[31] R. Koncel-Kedziorski, H. Hajishirzi, A. Sabharwal, O. Etzioni, and
S. D. Ang, ‘‘Parsing algebraic word problems into equations,’’ Trans.
Assoc. Comput. Linguistics, vol. 3, pp. 585–597, Dec. 2015.

[32] S. Roy and D. Roth, ‘‘Solving general arithmetic word problems,’’ 2016,
arXiv:1608.01413.

[33] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob,
K. Knight, P. Koehn, M. Palmer, and N. Schneider, ‘‘Abstract meaning rep-
resentation for Sembanking,’’ in Proc. 7th Linguistic Annotation Workshop
Interoperability With Discourse, 2013, pp. 178–186.

[34] A. Chowdhery, ‘‘PaLM: Scaling languagemodelingwith pathways,’’ 2022,
arXiv:2204.02311.

[35] T. B. Brown, ‘‘Language models are few-shot learners,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 1877–1901.

SOYUN SHIN received the B.S. degree in
statistics and computer software from Sungshin
Women’s University, Seoul, South Korea, in 2019,
and the M.S. degree in statistics from the Univer-
sity of Seoul, South Korea, in 2022. Her research
interests include statistical learning, data mining,
and machine learning.

JAEHUI PARK received the B.S. degree in com-
puter science from Korea Advanced Institute of
Science and Technology, South Korea, in 2005,
and the M.S. and Ph.D. degrees in computer sci-
ence and engineering from Seoul National Univer-
sity, South Korea, in 2008 and 2012, respectively.
From 2012 to 2018, he was a Senior Researcher
with the Electronics and Telecommunications
Research Institute, South Korea. He was an Assis-
tant Professor with the Department of Com-

puter Science and Engineering, Incheon National University, South Korea,
from 2018 to 2020. Since 2020, he has been an Assistant Professor with
the Department of Statistics, University of Seoul, South Korea. His research
interests include database applications, big data processing, machine learn-
ing, and statistical analysis.

MOONWOOK RYU received the B.S. degree
in electronic and electrical engineering from
Sungkyunkwan University, South Korea, in 2006,
and the M.S. degree in electrical and computer
engineering in South Korea, in 2008. Since 2013,
he has been a Senior Researcher with the Electron-
ics and Telecommunications Research Institute,
South Korea. His research interests include human
behavior recognition, physiological measurement,
and machine learning.

VOLUME 11, 2023 27619

