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ABSTRACT We report two 275-GHz quadrature receivers (Rx’s) with mixer-first and LNA-first 
architectures in a 130-nm SiGe BiCMOS process. Both quadrature Rx’s contain I and Q mixers implemented 
with a modified Gilbert-cell mixer with swapped RF and local oscillation (LO) ports to downconvert the RF 
signal at 260–290 GHz to the I and Q intermediate frequency (IF) bands at 0.1–30GHz. For a cost-effective 
solution, a compact 260GHz quadrature LO chain is integrated with a compact frequency tripler with an E-
band driving amplifier (DA), a 260-GHz DA, and a differential hybrid coupler to generate the quadrature LO 
signals for I and Q mixers. Comprised of a push-push doubler cascaded with a single-balanced mixer, the 
frequency tripler was employed to isolate the LO harmonic leakages from the IF band. A wideband IF 
amplifier was used for an aimed conversion gain higher than 20 dB in each channel. In the measurement, the 
implemented mixer-first and LNA-first Rx’s achieved a minimum single-sideband (SSB) noise figure (NF) 
of 22.3 and 21 dB, a peak gain of 21.4 and 27.5 dB with an IF bandwidth of 30 GHz. The amplitude and 
phase imbalances between the I and Q channels of the mixer-first Rx were measured around 1 dB and 4°. 
The fabricated mixer-firs and LNA-first chips occupy a whole area of 1.418 and 2.030 mm2, and consume a 
DC power of 434 and 490 mW, respectively. 

INDEX TERMS 6G, IQ receiver, SiGe, terahertz. 

I. INTRODUCTION 

he sub-terahertz band is considered a promising 
solution for the 6th generation wireless communication 

networks (6G), applicable in various sectors such as ultra-
high-definition video transmission, seamless remote robotic 
control, automatic production, and surgical video 
transmission. During the 2019 World Radiocommunication 
Conference (WRC-19), the 300 GHz band (275-296 GHz) 
was allocated for land mobile and fixed services. Along with 
the IEEE Standard 802.15.3d which defines the physical 
layer around 300 GHz, these allocations have significantly 
influenced the development of various Terahertz (THz) 
transceivers [3]-[14], standalone transmitters [15], [16], and 
receiver designs [17]-[22] within this frequency range. 
Wireless communication links have proposed achieving data 
transmission speeds of over 100 Gb/s using SiGe technology 
[7],[8], [9], [10], while CMOS transceivers achieved data 
rates of 80 Gb/s by employing double-rat race techniques to 
increase the operating frequency [6].  

Recently, sub-THz transceivers at the 300GHz band also 
present a potential solution for the optical-to-electronic 
interface of future indoor wireline networks [1-2]. The 
proposed 6G indoor wireline network presents a high 
operating bandwidth interface utilizing analog radio-over-
fiber (RoF) technology to fully exploit the advantages of sub-
terahertz frequencies. To support a cost-effective THz 
receiver solution for a recently proposed 6G indoor wireline 
network, our work presents integrated 275GHz quadrature 
receivers in 130nm SiGe BiCMOS technology which offers 
a nominal fT/fmax of 350/450 GHz.  

Two receiver architectures have been implemented, one is 
the mixer-first, and the other is the low noise amplifier 
(LNA)-first receiver. The designed SiGe THz receivers 
downconvert the target RF signal (260-290 GHz) to the 
intermediate frequency (IF) band (0-30 GHz) in two 
orthogonal I and Q channels. To achieve an efficient 
quadrature local oscillation (LO) generation at 260 GHz, a 
differential branchline coupler, a 260 GHz driving amplifier 
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(DA), and a frequency tripler combined with an E-band DA 
were integrated as the LO chain with a compact form factor 
in the quadrature receiver chips.  

The remaining parts of this paper are structured as follows: 
Section II describes detailed designs of the core blocks in the 
integrated sub-Terahertz receiver. In Section III, 
experimental results are presented which demonstrate the 
validity of the implemented THz receivers, followed by the 
conclusion in Section IV.  
 
II.  260GHz INTEGRATED RECEIVERS  

The block diagram of the proposed sub-THz quadrature 
receivers is presented in Fig. 1. The mixer-first architecture 
with a fundamental LO driver can improve the conversion 
gain and NF of the receiver chain owing to the enhanced 
mixer performance under the limited RF performance 
(fRF>fmax/2) of the active device [22]. Alternatively, placing a 
low-noise amplifier (LNA) at the beginning of the receiver 
chain, followed by mixers, can improve the NF and obtain a 
higher signal-to-noise ratio (SNR), enabling higher data 
transmission rates [20].  

In this work, both receivers are designed to down-convert 
a modulated signal (260~290 GHz )from a single-ended RF 
input port into I and Q IF signals (0.1~30GHz) with a 
differential output. While the mixer-first receiver (Rx1) 
converters the single-ended signal into the differential one 
and distributes it directly to the RF ports of the I and Q 
mixers with RF Distributer1 using a single Marchand balun 
followed by a power splitter, the RF input signal of the LNA-
first receiver (Rx2) is amplified first by the 275 GHz LNA. 
Then, the amplified RF signal is evenly distributed to the 

RFports of the I and Q mixers using the RF Distributer2 with 
a Wilkinson power divider followed by two Marchand 
baluns. A compact quadrature LO chain is integrated into the 
receivers for a cost-effective design. The 275 GHz RF signal 
is mixed with 260 GHz LO signals at I and Q mixers, 
generating I and Q IF signals. The down-converted IF signals 
are amplified by the wide-band IF amplifiers to drive 
external DSP blocks.  

The integrated LO chain takes an 86.67 GHz sinusoidal 
signal from the external signal generator and provides a 260 
GHz quadrature signal to the LO ports of the I and Q mixers. 
The 260GHz LO chain consists of the frequency tripler 
combined with an E-band driving amplifier (DA), and two 
single-ended 260GHz DAs to provide the required LO power 
to the mixers. The quadrature signals are generated by the 
differential hybrid coupler at the end of the LO chain.  

A. 275 GHz Low Noise Amplifier  
A 275 GHz low noise amplifier (LNA) is employed at the 

front end to maximize gain and bandwidth improvement for 
noise figure (NF) enhancement in the receiver. Figure 2 
shows the schematic of the designed LNA. The LNA is 
composed of six unit cells, each consisting of a common-
emitter amplifier, cascaded to achieve the desired gain. 
Impedance matching in each stage is accomplished using 
microstrip transmission lines (MSTLs) and series-matching 
capacitors. The simulated S-parameters of the LNA are 
shown in Fig. 3. The designed 275 GHz LNA achieves a 
maximum gain of 8 dB, a 3 dB gain bandwidth of 56GHz  
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FIGURE 1. Block diagram of the mixer-first quadrature receiver (Rx1) (a) 
and the LNA-first quadrature receiver (Rx2) . 
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FIGURE 2. Schematic of the 275 GHz LNA. 

 

FIGURE 3. Simulated S-parameters and noise figure (NF)  of the designed 
275 GHz LNA.  
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(245~301 GHz), and the NF between 14.2 dB and 16.5 dB in 
simulation. It is noteworthy that the output of the LNA does 
not include the matching network. Instead, the input 
impedance of the RF distributer was designed close to the 
conjugate of the LNA output. Thus, the resulting return loss 
between LNA output and RF distributer input is better than 
10 dB. Figure 4 presents the simulated large-signal results of 
the designed six-stage LNA and it shows an input third-order 
intercept point (IIP3) of 14.22 dBm with  31.6 mA of DC 
current consumption at 1.6 V supply. 

B. RF Signal Distributor  
To provide a differential RF signal to I and Q mixers of the 
mixer-first receiver (Rx1), a compact-size RF distributor 
using a Marchand balun followed by an RF power divider 
was employed [22]. The simulated insertion loss is around 2 
dB while the isolation between I and Q RF ports is about 
11dB at 275 GHz. For the LNA first receiver (Rx2), a new 
RF signal distributor was implemented using a Wilkinson 
divider followed by two Marchand baluns to achieve 
improved isolation between I and Q RF ports in trade-off 
with the area occupancy. Figure 5 shows the 3D 
electromagnetic (EM) model of the RF signal distributor 
implemented in HFSS. The realized RF signal distributor of 
the Rx2 achieves an intrinsic insertion loss of less than 2 dB 
between 260 GHz and 300 GHz with a return loss better than 
10 dB at the input and output ports. The isolation between 
the I and Q RF ports is larger than 25 dB as shown in Fig.6.  

 C. Down Conversion Mixer 
To achieve broad bandwidth performance, improved 

operational efficiency, and enhanced isolation between the 
LO and RF signals, an active double-balanced mixer 
structure was chosen for the frequency down-conversion 
mixer in the quadrature receiver. The receivers utilize a 
modified Gilbert-cell mixer as I and Q mixers to improve the 
noise figure (NF) and the conversion gain by avoiding the 
effects of the parasitic capacitances at the common nodes 
[22]. The output current of the BJT-based Gilbert cell is 
given by 

tanh tanh
2 2

LORF
tail

T T

VVI I
V V

      
∆ =       

             (1) 
Thus, there is no theoretical difference in the conversion gain 
by swapping RF and LO ports in the mixed output current. 
In this design, a Gilbert-cell mixer with swapped LO and RF 

 

FIGURE 4. Simulated large signal result of designed 275GHz LNA.  
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FIGURE 6. Simulated S-parameters of the designed RF signal distributor. 
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FIGURE 5. 3-D structures of the 275GHz RF signal distributor. 
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FIGURE 7. Schematic of the modified Gilbert-cell mixer [22].  
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FIGURE 8. Simulated (a) Gma and (b) minimum NF (NFmin) of the 
standard Gilbert-cell mixer and the modified version with swapped RF-
LO ports at PLO = 0 dBm.  
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ports was introduced to achieve better NF performance than 
the conventional one. As shown in Fig.6, the Gilbert-cell 
mixer with swapped LO and RF ports does not see Cp at the 
common node as each differential pair connected with 
RF+/RF- is fully activated in differential mode during each 
half cycle of the LO signal. Thus, it does not suffer from the 
gain degradation from Cp. In contrast, the gain degradation 
of the conventional Gilbert-cell mixer caused by Cp at the 
common emitter node is estimated by  

_ 1,2

2 2 2
1,2

v conv m

v_swap p m

A g
A C gω

=
+

                     (2) 
Thus, the input-referred noise of the proposed mixer must be 
less degraded as frequency increases for a given Cp at the 
emitter node of the differential pair owing to the complete 
differential operation during each half period of LO.  

Figure 7 illustrates the schematic of the designed 
frequency down-conversion mixer. The modified Gilbert-
cell mixer with the absence of the input impedance matching 
inductor at the RF port was compared with a conventional 
Gilbert-cell mixer to observe the maximum available gain 
(Gma) and minimum NF (NFmin) of each mixer with PLO = 0 
dBm as presented in Fig. 8. In the simulation, the swapped 
mixer achieved around 2.3-dB less NF and 0.8-dB more gain 
than the values of the conventional mixer. 

D. Broadband IF Amplifier 
Figure 9 depicts the schematics of the designed broadband 
IF amplifier (IF AMP). To achieve a wideband operation, we 
employed the inductive peaking technique. Inductors and 
resistors were serially connected to serve as a wideband load. 
In this design, spiral inductors were used to provide 
relatively large inductance to compensate for parasitic 
capacitance while keeping a small physical size with a low 
quality(Q) factor. 

To achieve broadband characteristics, a staggered 
matching technique was also applied by adjusting the 
resistance values of the load in each stage to slightly offset 
the center frequencies of the peaking load at each stage. 
Figure 10 shows the simulated voltage gain, output reflection 
coefficient(Гout), and group delay of the IF AMP. The peak 
gain of IF AMP is 35 dB at 40 GHz. It is noteworthy that the 
IF AMP was co-designed to provide lower gain in the lower 
frequency range to compensate for the gain variation with the 
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FIGURE 9. Schematic of the broadband IF amplifier.  
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FIGURE 10. Simulated voltage gain, output reflection coefficient (Гout), 
and the group delay of the broadband IF AMP under the down-conversion 
operation with the co-designed mixer (fLO=259GHz).  

 

 

FIGURE 11. Simulated output power (Pout) versus input power (Pin) of the 
IF AMP with the conjugate-matched source at 25-GHz. 
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FIGURE 12. Power budget of the designed 260GHz LO chain.  

 

FIGURE 13. Schematic of the E-band DA cascaded with the tripler.  

Hybrid Coupler

Ext. LO
86.33 GHz

x3FM

E-band 
DA

F=86.33 GHz
Pin=-10

Psat=11.9 dBm
Op1dB=10 dBm
Gain=23 dB@86.3GHz
Pout=10 dBm

Pout=-1.6 dBm
CG=-11.6 dBm

Psat=9.5 dBm
Op1dB=4.9 dBm
Gain=15 dB@260GHz
Pout=8.6 dBm

Mixer LO
PLO>4 dBm

IL_I=3.9 dB
IL_Q=3.9 dB

Pdc=67.5mW

Pdc=23.4mW

Pdc=159mW

C1: 40 fF
C2: 30.9 fF
C3: 10 fF
C4: 15 fF

Vb1: 0.9 V
Vb2: 1.7 fF
Cc1: 6.4 fF
Cc2: 14 fF

Q1: 4x70nx900n
Q2: 8x70nx900n
Q3: 3x70nx900n
Rb: 1kΩ

V
cc

TF2

V
b
1

TF1

V
b
1

Cc1

Cc1

FRin 

C2 V
cc

TF3

V
b
1

Cc2

Cc2

V
cc

2

TF4

Vb2

Vb2

Out+

Out-

C1

C3
C4

Cac

Cac Rb

Rb

Q1

Q1

Q2

Q2

Q3 Q3

Q3 Q3

E-band DA Frequency
Tripler

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3340023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2023 5 

IF band considering the conversion gain of the mixer is 
relatively higher in the lower frequency band. The simulated 
result shows about 4% of the group delay variation between 
1GHz and 40GHz of the IF band. Figure 11 presents the 
simulated large signal characteristic of the designed 
broadband IF amplifier with the conjugate-matched source 
at 25 GHz. The 1 dB compression point (OP1dB) of the IF 
amplifier is about -12.3 dBm. The designed IF amplifier 
consumes Icc=40 mA with Vb=1V and Vcc=2.3V. 

E. 260GHz Quadrature LO Chain  
To demonstrate a cost-effective quadrature receiver solution, 
we integrated an LO chain in each receiver chip. Figure 12 
illustrates the configuration of the LO chain. The E-band 
sinusoidal signal  (86.67 GHz) from an external signal 
generator is converted to a 260 GHz signal using a frequency 
tripler. 

  

A differential hybrid coupler is used to produce the in-
phase (I) and quadrature (Q) LO signals for the down-
conversion of the double-balanced mixers with an insertion 
loss of less than 1 dB. A 260 GHz DA provides around +4.7 
dBm of LO power to the LO ports of the I and Q double-
balanced mixers. The designed frequency tripler consists of 
a push-push doubler (PPD) followed by a single-balanced 
mixer as presented in Fig. 13. An E-band push-pull driving 
amplifier (DA) was co-designed to drive the PPD and the 
single-ended mixer simultaneously using a relatively small 
LO input power (~ -10dBm). Under the bias condition of 
Vcc2=2.6V and Vb2=1.7 V, it consumes Icc2=9mA and 
Ib2=17.3uA. Since we employed the tripler in the LO chain 
with an input frequency of 86.67GHz, unwanted harmonic 
leakages from the LO chain may not contaminate the IF band 
(0-30GHz).  
 The peak gain of the E-band DA is 26.2 dB at 80 GHz. The 
OP1dB of the E-band DA at 86.6 GHz is 11.3 dBm, 
achieving a maximum output power of 12.3 dBm and a 
maximum power-added efficiency of 19.5%. The designed 
E-band DA consumes a DC of 42.2 mA at Vbb1=0.9V and 
Vcc1 = 1.6V supply. The integrated harmonic balance (HB) 
simulation results of the frequency tripler with E-band DA 
are shown in Fig.14. The tripler generates a differential 
signal of -1.7 dBm (-4.7dBm in each single-ended output) at 
260 GHz from -10 dBm input power of the E-band signal 
source at 86.67 GHz. 

Figure 15 illustrates the transient simulation results of the 
tripler combined with the E-band DA. Two 260GHz DAs are 
used for a wanted LO power generation to drive the balanced 
hybrid coupler. The schematic of the designed 260 GHz DA 
is shown in Fig. 16. The final stage of the DA utilizes a larger 
HBT compared with the preceding stages. The schematic 
configuration of the LO DA is identical to the 275GHz LNA, 
composed of the cascaded 10-unit cells to provide the 
optimal LO power level from the external E-band signal. 
Operating in the wide range of 240-270 GHz, the DA 
exhibits a good gain characteristic, allowing it to operate at 
different LO frequencies in case the down-converted IF 
signal is within the IF band (0-30GHz).  

The simulation results of the S-parameters of the 260 GHz 
DA are presented in Fig. 17. The peak gain of the 260 GHz 
DA in the LO chain is 18 dB at 240 GHz. Figure 18 shows 
the large signal simulation results of the 260 GHz DA. The 
simulated OP1dB of DA is approximately +4.3 dBm at 260 
GHz with a DC current consumption of 99.3 mA at 
Vbb=0.93V and Vcc = 1.6V supply. The simulation results of 
output power versus frequency of the 260 GHz DA are given 
in Fig. 19. The designed DA exhibits a gain of over 10 dB in 
the 214-282 GHz range. The LO chain can provide 4.7 dBm 
of quadrature LO signals to the LO ports of each mixer when 
the input LO signal is -10 dBm at 86.67GHz. \ 

 
 
 

 

FIGURE 16. Schematic of 260GHz DA in the LO chain. 
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FIGURE 14. HB simulation results of the the the frequency tripler 
combined with the E-band driving amplifier.

0.40 0.42 0.44 0.46 0.48 0.50

-0.6
-0.3
0.0
0.3
0.6
0.9

Vo
lta

ge
 [V

]

Time [ns]

 Vin  VOp  VOm  VOp-VOm

 

FIGURE 15. Transient simulation results of the frequency tripler 
combined with the E-band driving amplifier. 

0 200 400 600 800 1000
-60

-40

-20

0
-7.9 dBm

Ha
rm

. P
ow

er
 [d

Bm
]

Frequency [GHz]

 Pout_p
 Pout_m

-4.7 dBm

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3340023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2023 6 

III. MEASUREMENTS RESULTS   

Figure 20  shows the chip photograph of the implemented 
sub-THz receiver. The implemented mixer-first receiver 
(Rx1) consumes a DC power of 438 mW while the LNA-first 
receiver (Rx2) dissipates 490 mW in the measurements. The 
power gain of the implemented receivers was measured 
using a continuous-wave (CW) measurement setup. Figure 
21 illustrates the setup for the gain measurements of the 
receiver. The RF signal was generated from the up-
conversion mixer (VDI SGX 3.4), while the 86.67GHz of the 
LO signal was provided from the external frequency 
multiplier and the signal generator (Agilent 83623B). The 

output power of the RF and LO signals was characterized 
using the Erickson power meter (VDI PM-5). 

The down-converted IF signal was measured using a 
spectrum analyzer (Agilent E4407B). The connection losses 
at IF and RF were measured and calibrated to measure the 
receiver gain. The simulated and measured conversion gains 
of the I/Q channels for the implemented receivers (Rx1 and 
Rx2) are shown in Fig. 22. In the measurements, both Rx1 
and Rx2 exhibited a conversion gain similar to the 
simulations and achieved 1dB and 0.7dB of gain errors 
between I and Q channels for Rx1 and Rx2, respectively. The 
Rx1 achieved a peak gain of 21.4 dB with a bandwidth of 30 
GHz, and the gain variation was within 3.1 dB of its peak 
value up to 290 GHz. The Rx2 achieved a peak gain of 27.5 
dB and exhibited gain variations of 2.8 dB in the same 
bandwidth.  

(a)

(b)  

FIGURE 20. Chip photographs of the integrated 275GHz quadrature 
receivers under the measurements: (a) Mixer-first Rx (chip size : 1842 μ
mx770 μm) (b) and LNA-first Rx (chip size :  2010 μmx1010 μm). 
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FIGURE 17. Simulated S-Parameters of the 260GHz DA. 
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FIGURE 18. Simulated output power (Pout) and PAE of the 260GHz 
Driving Amplifier versus input power (Pin) at 260 GHz. 

  

FIGURE 19. Simulated Pout of the 260GHz DA versus W-band input 
frequency of the 260GHz LO chain. 
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FIGURE 21. Measurement Setup for Gain measurement of the 275GHz 
receiver with continuous wave signals.  
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The noise figure (NF) of the receiver was evaluated using 
the gain method by measuring the noise floor level at the IF 
output. The calibrated single sideband (SSB) NF of the Rx1 

is around 23 dB with a minimum value of 22.3 dB at an 
intermediate frequency (IF) of 10 GHz. The LNA-first 
receiver (Rx2) has an NF of 21 dB, with a minimum value of 
20.1 dB at an IF frequency of 10 GHz as shown in Fig. 23. 
The measured Rx2 had more NF degradation compared to 
Rx1 which must be mainly due to the gain reduction in the 
integrated LNA.  

To measure the phase imbalance between I and Q channels, 
the two IF outputs were monitored using a 10-GHz digital 
oscilloscope (Keysight UXR0104A), and the phase 
difference versus RF frequency was extracted using 
embedded software in the scope. The phase imbalance 
between I and Q channels was measured to be about 4o up 
within 30 GHz for Rx1, which corresponds well with the 
simulation as shown in Fig. 24. Due to the more balanced 
structure of the RF distributer with a Wilkinson followed by 
two Marchand baluns, the LNA-first receiver shows an 
improved I and Q phase balance. Based on the measured I 
and Q amplitude and phase imbalances, the image rejection 
ratio (IRR) of Rx1 is calculated as shown in Fig. 25. The 
calculated IRR of the receiver was approximately 27 dB, 
with a maximum value of 34.2 dB at an RF frequency of 260 
GHz. Therefore, it is expected that the implemented 
receivers can handle up to 30GHz of the IF bandwidth which 
means more than 100Gb/s of 16QAM is feasible for the 
proposed indoor fiber network. The performance of the 
receiver is summarized in Table I and compared with 
recently published receiver designs operating in similar 
frequency bands.  

Consequently, we verified that both architectures offer 
distinct advantages and trade-offs in designing an integrated 
sub-THz receiver. The LNA-first receiver consumed 13% 
more power dissipation and 43% increased area occupancy 
compared to the mixer-first architecture, which resulted in an  
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FIGURE. 22. Measured and simulated receiver gain of the Rx1 and Rx2. 
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FIGURE. 23. Measured and simulated results of SSB noise figure (NF) of 

the Rx1 and Rx2. 

 
TABLE I. COMPARISON WITH PREVIOUSLY REPORTED SUB-THZ RECEIVERS  

Ref. 
This work 

[3] [4] [5] [6] [17] [18] 
Rx1 Rx2 

Tech 130nm SiGe 130nm SiGe 130nm SiGe 
HBT 

130nm SiGe 
bi_CMOS 130nm SiGe 40nm 

CMOS 
40nm 
CMOS 

65nm 
CMOS 

Frequency 
(GHz) 275 275 240 240 230 265 290 240 

Conversion 
Gain 
(dB) 

21.4 27.5 28 10.5 8 - -19 25 

IF BW 
(GHz) 30*(40**) 30*(40**) 13 17 26 20 26.5 14† 

SSB NF 
(dB) 22.3 20.1 15 15 14 

22.9 
(mean over 

20GHz) 
27 15 

PDC 
(mW) 438 490 - 866 450 897 650 260 

Chip size Rx : 
1.418mm2 

Rx : 
2.030mm2 

Rx : 
1.522mm2 

Rx : 
1.568mm2 - TRX : 

11.05mm2 
RX : 

3.15mm2 
RX :  
2mm2 

*MEASURED BANDWIDTH  **ESTIMATED BANDWIDTH  †DOUBLE SIDE BAND 
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improved 1.3 dB of the receiver NF. Since the designed 
275GHz LNA consumed 8.43mW/stage of extra power with 
about 1 dB/stage of more power gain, its stage can be 
carefully selected to satisfy a desired receiver NF under the 
trade-off with bandwidth, power dissipation, and chip size. 

IV. CONCLUSIONS 
In this paper, we report two 275 GHz quadrature receivers 
with an IF bandwidth higher than 30GHz both in the mixer-
first and LNA-first architectures integrated with a 260 GHz 
LO chain in 130-nm SiGe BiCMOS technology. This work 
aims to provide a cost-effective sub-THz receiver solution 
for the recently proposed optical-to-electronic interface of 
future indoor wireline networks [1-2] in a commercial silicon 
technology. By integrating a compact LO chain that consists 
of a differential hybrid coupler, a 260 GHz driving amplifier, 
and a frequency tripler combined with an E-band driver, the 
measured mixer-first and LNA-first quadrature receivers 
achieved with more than 30GHz of IF bandwidth with 
amplitude and phase error less than 1 dB and 4o, which is 
expected to support more than 100Gb/s of 16QAM network. 
The implemented 275 GHz receivers will be successfully 
applicable for future indoor wireline networks for 6G 
wireless communications.   
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