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Abstract

Large-scale pre-trained image-text models demonstrate
remarkable versatility across diverse tasks, benefiting from
their robust representational capabilities and effective mul-
timodal alignment. We extend the application of these mod-
els, specifically CLIP, to the domain of sound source lo-
calization. Unlike conventional approaches, we employ the
pre-trained CLIP model without explicit text input, relying
solely on the audio-visual correspondence. To this end, we
introduce a framework that translates audio signals into to-
kens compatible with CLIP’s text encoder, yielding audio-
driven embeddings. By directly using these embeddings,
our method generates audio-grounded masks for the pro-
vided audio, extracts audio-grounded image features from
the highlighted regions, and aligns them with the audio-
driven embeddings using the audio-visual correspondence
objective. Our findings suggest that utilizing pre-trained
image-text models enable our model to generate more com-
plete and compact localization maps for the sounding ob-
jects. Extensive experiments show that our method outper-
forms state-of-the-art approaches by a significant margin.

1. Introduction
The ability of humans and other animals to pinpoint

the locations of sound sources is crucial for perceiving the

world around us. We receive continuous multisensory infor-

mation, such as auditory and visual inputs, understand their

relationships, infer which object/event is producing sound,

and focus on sounding objects/events. To provide ma-

chine perception with similar abilities, audio-visual sound

source localization has been extensively explored in recent

years [1,4,12,16–18,21,22,24,25,27–33]. One fundamen-

tal approach in this direction involves leveraging the natural
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Figure 1. The proposed text input-free CLIP based sound
source localization method.

correspondence between audio and visual signals without

explicit supervision or the need for annotated data. The

most predominant method for achieving this is by align-

ing audio-visual representations as a self-supervision signal

within a contrastive learning framework.

While sound localization methods are trained with the

aforementioned fundamental assumption, some additional

prior knowledge is also incorporated. These pieces of prior

knowledge are introduced in the form of using visual ob-

jectness [21,22] and object proposal networks [38], or other

modalities such as optical flow [10]. As true sound source

localization methods necessitate a strong audio-visual se-

mantic alignment, the previously mentioned priors might

not contribute to improved alignment, as they can intro-

duce visual objectness or motion bias that may lead to

shortcuts [1, 21, 23]. In this work, our focus is to lever-

age strong multimodal alignment knowledge as a prior to

improve audio-visual alignment for genuine sound source

localization. From this perspective, we employ the Con-

trastive Language-Image Pretraining (CLIP) [26] model for

the sound source localization task. This choice is due to its

robust representation and multimodal alignment capability,

stemming from learning directly from raw text about im-

ages on large scale data. Thus, it provides a broader source

of supervision rather than limited category labels.

The frameworks that leverage the CLIP model generally

include text queries/prompts. However, we aim to explore

this approach without using explicit contextual text infor-

mation. The reasons we do not intuitively utilize direct text

inputs are as follows: (1) There is no available paired text

data in sound source localization benchmark datasets, (2)

the sound source localization task is unlabeled, (3) a gen-

uine sound source localization approach necessitates learn-
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ing pure audio-visual alignment through self-supervision.

Therefore, in this paper, we employ the pre-trained CLIP

model in a textless manner (as illustrated in Figure 1), rely-

ing solely on audio-visual correspondence.

To utilize CLIP in a text input-free manner and train our

sound source localization method through self-supervised

audio-visual alignment, we propose the following steps (de-

picted in Figure 2): First, we introduce a framework that

translates audio signals into tokens compatible with CLIP’s

text encoder. This process yields contextual embeddings

for the provided audio input, a concept we refer to as audio-

driven embedding. Second, our key idea involves aligning

audio and visual features in a self-supervised manner us-

ing contrastive learning. Consequently, we seamlessly inte-

grate this audio-driven embedding to emphasize the sound-

ing regions within the visual scenes. Subsequently, audio-

grounded visual features on both the image and feature lev-

els are extracted from these regions. These features are then

aligned with the audio-driven embedding through audio-

visual correspondence within a contrastive learning frame-

work. The entire model is trained at once with the audio-

visual alignment objective. Through our experiments, we

validate that the proposed method outperforms existing ap-

proaches and baselines. In some instances, it even achieves

competitive results when compared to fully supervised or

text-queried sound source localization baselines.

We summarize the contributions of our work as follows:

• We present a novel self-supervised sound source local-

ization framework that exploits the large-scale pre-trained

CLIP model.

• We propose an end-to-end textless approach, i.e. no ex-

plicit text input. Our framework translates audio signals

into tokens that are compatible with CLIP to obtain audio-

driven embeddings.

• We utilize the audio-driven embeddings to emphasize the

sounding regions and align them with the audio content

for the objective of audio-visual correspondence.

• We conduct extensive experiments on the VGG-SS,

SoundNet-Flickr, VGG-SS OpenSet, AVSBench, and Ex-

tended VGG-SS/SoundNet-Flickr datasets, collectively

demonstrate the effectiveness of our proposed method.

2. Related work

Sound source localization. The predominant technique

employed for audio-visual sound source localization in-

volves cross-modal attention [27, 28, 35], often coupled

with contrastive loss. Following the contrastive learning

paradigm, subsequent enhancements have been made by

explicitly incorporating hard negatives from background

regions [4], utilizing iterative contrastive learning with

pseudo-labels obtained from the same model in previous

epochs [17], applying transformation invariance and equiv-

ariance through data augmentations and geometric con-

sistency [18], considering semantically similar hard pos-

itives [29], implementing negative-free contrastive learn-

ing [32] similar to SiamSiam [7], using momentum en-

coders to mitigate overfitting [21], adding negative mar-

gin into contrastive learning alleviate the effect of noisy

correspondences [24], and applying false negative-aware

contrastive learning via intra-modal similarities [33]. Fol-

lowing a similar trend, our method also integrates self-

supervised contrastive learning.

Besides this trend, some other sound localization meth-

ods attempt to utilize additional prior knowledge or post-

processing approaches. [25, 30] incorporate label informa-

tion to learn backbone audio and visual networks or to re-

fine the audio-visual alignment. Xuan et al. [38] use object

priors in the form of object proposals, while Mo et al. [22]

employ a post-processing approach to refine audio-visual

localization results using pre-trained visual feature activa-

tion maps. In our work, we leverage CLIP’s multimodal

alignment knowledge as a prior in a textless and fully self-

supervised manner without any post-processing.

CLIP in Audio-Visual Learning. Recent contrastive

language-image pretraining (CLIP) models, which are pre-

trained on large-scale paired data [14, 26], demonstrate ro-

bust generalization ability and have been successfully used

in numerous downstream tasks across various research top-

ics. In this section, we review related works that incorpo-

rate CLIP [26] for audio-visual learning. WAV2CLIP [36]

and AudioCLIP [11] expand the pre-trained CLIP model by

aligning audio features with text and visual features in a

shared embedding space, i.e. representation learning. They

achieve this either using paired data or by utilizing the vi-

sual modality as a bridge. Beyond representation learning,

CLIP models are also employed in audio-visual event local-

ization [20] and video parsing [9], as well as audio-visual

source separation [8, 34]. While [34] employs text input

for separation, CLIPSep [8] is trained based on the audio-

visual relationship without text query. Similarly, our pro-

posed method is also trained solely with an audio-visual

alignment objective. Another line of work [2, 39] adapt

pre-trained CLIP models and text encoders for audio. They

achieve this by mimicking contextual text tokens using au-

dio signals, enabling the CLIP text encoder to embed au-

dio signals. Our work also employs a similar approach to

leverage the CLIP model without text input for the sound

localization task.

3. Method

3.1. Audio-Driven Embedder

Our goal is to use the CLIP text encoder to embed au-

dios without any text input. We employ the Audio To-

kenizer module for this purpose, which transforms audio
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Figure 2. Our sound source localization framework. The proposed method takes audio-visual pairs, translating audio signals into CLIP-

compatible tokens via the Audio Tokenizer module to generate audio-driven embedding, A. This embedding highlights sounding regions

within the Audio-Visual Grounder module. With the sounding area masks, the Audio-Visual Alignment module extracts audio-grounded

visual features at both image-level (vI ) and feature-level (vF ). These visual features and audio feature are aligned via contrastive learning.

context into text-like tokens. In essence, an audio segment

is translated into a word token, which can subsequently un-

dergo processing by the pre-trained CLIP text encoder. The

module has two key components: an audio encoder and

a projection network. The projection network contains

two MLP layers and one attentive pooling layer, similar

to [39]. While the audio encoder is pre-trained and fixed

during training, the remaining layers are trained end-to-end

in our sound source localization approach with the objective

of audio-visual alignment.

Audio Encoder, EA, is a transformer-based network

pre-trained in a self-supervised manner, following [6]. It

takes an audio spectrogram and extracts audio embeddings.

Once the audio embedding is extracted, it undergoes pro-

cessing in a small projection network, effectively mim-

icking the textual tokens through the audio. The outcome

is an “audio token” aligned with textual tokens. This to-

ken is then appended to the fixed placeholder text tokens of

“A photo of a” to complete the input token representation

as in Figure 2. This way, the audio signal with its proper

context can be fitted as an additional token for CLIP text

encoder (ECLIPt
). This combination of fixed placeholder

text and audio tokens is processed in the pre-trained ECLIPt
,

and the audio-driven embedding A is obtained. This audio-

driven embedding can then be paired or conditioned with

any CLIP image encoder-based approaches as it contains

the visual alignment knowledge due to ECLIPt
.

3.2. Audio-Visual Grounder

For a given input batch of audio-visual pairs, which con-

sist of images and their corresponding audios, our audio-

visual grounder performs grounding to detect the regions

with sound and then generates masks. These masks are sub-

sequently utilized to extract visual embeddings at both the

image-level and feature-level, which are used in the audio-

visual alignment objective. Our Audio-Visual grounding

module is designed with three components: 1) an image

encoder, 2) a grounder, and 3) mask generators.

We use a pre-trained CLIP image encoder as our image

encoder, denoted as ECLIPv
. It is responsible for encoding

the provided input images into both global features and spa-

tial features. For our grounder, G, we employ off-the-shelf

CLIP-based segmentation network known as CLIPSeg [19].

It is important to note that CLIPSeg requires CLIP-based vi-

sual features and text conditioning to perform segmentation.

We leverage the outputs from our image encoder as visual

features for grounder. However, since our approach does

not use any text input directly, we utilize our audio-driven

embedding, A, for conditioning. The result of the grounder

G, MG, is potential sounding regions. Both the image en-

coder and the grounder remain fixed during training.

To obtain audio-grounded visual embeddings for the pro-

vided paired images XI and audios XA within the Audio-

Visual Alignment module during training, it is essential to

have differentiable binary masks for sounding regions. We

introduce two masking methods: Image Masker (MaskerI )

and Feature Masker (MaskerF ), both of which serve to ex-

tract audio-grounded visual embeddings at the image-level

and feature-level, respectively. Similar to [3], MaskerI uti-

lizes a learnable scalar projection (w ·MG + b) on the out-

put of the grounder, MG, and then applies the Gumbel-Max

technique [13] to generate a differentiable binary mask, re-

ferred to as MI . This mask is used to identify sound-

ing areas in the image. MaskerF is designed with min-
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max normalization and soft-thresholding functions applied

to MG to obtain MF , which allows the extraction of audio-

visually correlated areas at the feature level. The utilization

of these maskers is explained in the following section.

3.3. Audio-Visual Alignment

After obtaining sounding area masks for the given au-

dio from the audio-visual grounder, our method extracts vi-

sual embeddings from the masked areas at both the image-

level and feature-level, aligning them with the audio-driven

embedding, A, for the audio-visual alignment objective.

For this purpose, we define two contrastive learning losses:

image-level and feature-level audio-grounded contrastive

losses, ACLI and ACLF respectively. In a nutshell, our

model learns to maximize the alignment between the visual

features of sounding regions and audio features.

Image-Level Audio-Grounded Contrastive Loss. Differ-

ent from typical global image and audio correspondence,

our focus is on alignment between sounding region and

audio. One approach to achieve this is by highlighting

the sounding regions (foreground pixels) in the image and

masking out the background areas, as depicted in Figure 2.

To begin, the mask MI
i obtained from MaskerI for audio-

visual pair of ith clip to mask out the irrelevant areas in

the image. Our image-level audio-grounded contrastive

loss, ACLI , consists of CLIP image encoder ECLIPv
. This

masked image is then transformed into a visual embedding,

vI
i = ECLIPv

(
MI

i · XI
i

)
. The audio-visual similarity be-

tween the audio-driven embedding Aj from jth clip and

the audio-grounded visual embedding vI
i is computed using

cosine similarity and defined as SI
i,j = (vI

i ·Aj). We em-

ploy symmetric InfoNCE for the contrastive loss. We note

that image-level masks are computed only for positive pairs.

Thus, the objective of this loss is to maximize the similarity

between the positive sounding region and the corresponding

audio pair, while also ensuring dissimilarity between nega-

tive audios and the actual sounding region. The ACLI loss

is defined as follows:

LACLI
= InfoNCE(SI)

=− 1

2B

B∑

i

log
exp(SI

i,i/τ)∑B
j exp(SI

i,j/τ)

− 1

2B

B∑

i

log
exp(SI

i,i/τ)∑B
j exp(SI

j,i/τ)
(1)

where τ is the temperature parameter and SI is image-level

audio-visual similarity matrix within batch. With the help

of this loss, the sounding region and the generated mask

MI gradually cover the target sounding area. However, we

observe that ACLI alone can not enable the model to com-

pletely suppress the background regions.

Feature-Level Audio-Grounded Contrastive Loss. Sup-

pressing masks derived from negative pairs is essential for

enhancing robustness against background regions. How-

ever, due to memory constraints, generating high-resolution

image-level masks for all negative pair combinations within

a batch is infeasible. As an alternative, we introduce the

feature-level audio-grounded contrastive loss, ACLF , al-

lowing the use of masks in lower-resolution (on features),

effectively bypassing the memory constraints. A strategic

approach involves emphasizing regions within the spatial

visual features, as shown in Figure 2. To elaborate, the mask

MF
i,j ∈ R

h×w obtained from the MaskerF for given im-

age XI
i and audio XA

j is applied during spatial pooling of

the spatial visual features vD
i ∈ R

c×h×w to focus on re-

gions within the features that exhibit high correlation with

the paired audio. Feature-level audio-grounded visual em-

bedding vF
i,j ∈ R

c is as follows:

vF
i,j =

∑
h,w MF

i,j,h,w · vD
i,h,w∑

h,w MF
i,j,h,w

. (2)

In contrast to ACLI , which focuses on the sounding region,

ACLF focuses on the highly correlated area, regardless of

positive or negative audio-visual pairs. The audio-visual

similarity between the audio-driven embedding A and the

feature-level audio-grounded visual embedding vF for both

positive and negative pairs is computed using cosine sim-

ilarity defined as SF
i,j = (vF

i,j · Aj). The ACLF loss is

defined as follows:

LACLF
= InfoNCE(SF ), (3)

where SF is feature-level audio-visual similarity matrix

within batch. While it is possible to replace the mask MF

with MI in Equation 2, this may lead to unintended train-

ing. The reason is that MI may generate a mask that is close

to a zero matrix when dealing with negative pairs. This

can result in the numerator of Equation 2 effectively being

zero, making vF
i,j arbitrary. To simplify, this replacement

may cause the InfoNCE loss to generate random similarity

scores for negative pairs.

3.4. Area Regularization

We observe that even using ACLI and ACLF losses

during training, the model can take a shortcut and output

masks that contain both irrelevant and sounding regions,

such as the entire image. In this case, the CLIP image en-

coder in the Audio-Visual Alignment module can still gen-

erate relevant visual features. Therefore, similar to [3, 37],

we formulate an area regularizer loss, as defined below:

LReg =
∑

i

‖p+ −MI
i,i‖1 +

∑

i�=j

‖p− −MI
i,j‖1, (4)
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where MI
i,i and MI

i,j are the image masks from the pos-

itive and the negative pairs respectively. The area of these

masks are denoted as M. p+ and p− represent the area prior

hyperparameters, which are set to 0.4 and 0.0. The area

regularizer constrains the size of the mask during learning

to ensure that the intended sounding regions are contained

while irrelevant areas are discarded.

3.5. Training

The overall training loss term is defined as follows:

L = λACLI
LACLI

+ λACLF
LACLF

+ λREGLREG, (5)

where λACLI
, λACLF

, and λREG are the hyper-parameters

weighting the loss terms.

3.6. Inference

For the provided image and audio pairs, an audio-driven

embedding is acquired and fed into the grounder G along

with the visual features obtained from the image encoder.

The resulting output of the grounder, MG, is subsequently

used in MaskerI . Unlike training, during inference, it

is adjusted using σ
(
MG + b/w

)
, where w, b are scalar

projection parameters learned during training in the image

masker MaskerI and σ is sigmoid function. The final out-

put mask is then thresholded using the hyperparameter t to

obtain the localization result.

4. Experiments

Datasets. Our approach is trained using the VGGSound

dataset [5], comprising around ∼200K videos. After

training, we evaluate sound localization performance on

VGG-SS [4] and SoundNet-Flickr-Test [27, 28] datasets.

These evaluation sets provide bounding box annotations

for sound sources, totaling about 5K and 250 samples, re-

spectively. Further evaluations are conducted using AVS-

Bench [40] and Extended VGG-SS/SoundNet-Flickr [21]

datasets. AVSBench includes binary segmentation maps

indicating audio-visually related pixels and is divided into

Single-source (S4) and Multi-sources (MS3) subsets, cate-

gorized by the number of sounding objects. These subsets

contain around 5K samples in (S4) and about 400 samples

in (MS3). Lastly, the Extended VGG-SS/SoundNet-Flickr

datasets proposed by [21] are used to explore non-visible

sound sources.

Implementation details. We employ frozen pre-trained

“ViT-B/16” CLIP [26] model as image encoder, BEATs [6]

for audio encoder and CLIPSeg [19] for grounder. Dur-

ing training, we used 10-second audio segments sampled

at 16kHz, and the center frame of the video resized to

352x352. For the overall loss, we set the parameters λACLI
,

λACLF
, and λReg all to 1. Additionally, we used τ as 0.07

in Equation 1. The model is optimized for 20 epochs with a

batch size of 16, using the Adam optimizer with a learning

rate of 10−3 and a weight decay of 10−3.

4.1. Quantitative Results

Baselines. Besides the existing works, we also compare our

proposed method with closely-related baselines that can be

obtained using different components of our overall architec-

ture. The details of these baselines are introduced below:

• CLIPSeg w/ GT Text. We utilize the ground truth class

labels of test samples as text conditions to obtain the seg-

mentation results from CLIPSeg, essentially serves as an

oracle method.

• CLIPSeg w/ WAV2CLIP Text. WAV2CLIP aligns text,

vision, and audio embeddings together in the CLIP space.

For a given audio, the most relevant text (class label) can

be retrieved. This retrieved text is used with CLIPSeg to

highlight the sounding region in the image.

• CLIPSeg - Sup. AudioTokenizer We train AudioTok-

enizer module in a supervised manner rather than in a

self-supervised way like our proposed model. The pre-

dicted audio-driven embedding is supervised using the

corresponding GT text XT of each sample directly with

LSup = ‖ECLIPT
(XT ) − A‖1. The audio-driven embed-

dings obtained from this model are used with zero-shot

CLIPSeg to obtain sound localization results.

• WAV2CLIP and AudioCLIP. These models leverage the

pre-trained CLIP model to align text, vision, and audio

embeddings. To enable zero-shot sound source localiza-

tion with these models, we utilize a pre-trained CLIP-like

object detector [15] to extract region proposals from the

images and calculate the cosine similarity between the vi-

sual features of those regions and the audio features. The

region with the highest similarity is employed as the lo-

calization result.

Comparison on standard benchmarks. In this section,

we perform a comparative analysis of our method for local-

izing sound sources in comparison to existing approaches

and the strong baselines. Our evaluations are conducted

within the established setting, similar to prior methodolo-

gies [4, 22, 29, 33]. We train our model on the VGGSound-

144K dataset and subsequently assess its performance on

the VGG-SS and SoundNet-Flickr test sets. It is worth not-

ing that all the models we compare are trained using equiv-

alent amounts of data. However, note that our model does

not use object guided refinement (OGL). We present our

findings in Table 1.

At the outset, we compare our method with other exist-

ing sound source localization models. There is a substantial

gap between the existing self-supervised methods and ours

in VGG-SS evaluation task. Although our model is also
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VGG-SS SoundNet-Flickr
Method cIoU ↑ AUC ↑ cIoU ↑ AUC ↑
Attention [27]CVPR18 18.50 30.20 66.00 55.80

CoarseToFine [25]ECCV20 29.10 34.80 - -

LCBM [30]WACV22 32.20 36.60 - -

LVS [4]CVPR21 34.40 38.20 71.90 58.20

HardPos [29]ICASSP22 34.60 38.00 76.80 59.20

SSPL [32]CVPR22 33.90 38.00 76.70 60.50

EZ-VSL (w/o OGL) [22]ECCV22 35.96 38.20 78.31 61.74

EZ-VSL (w/ OGL) [22]ECCV22 38.85 39.54 83.94 63.60

SSL-TIE [18]ACM MM22 38.63 39.65 79.50 61.20

SLAVC (w/o OGL) [21]NeurIPS22 37.79 39.40 83.60 -

SLAVC (w/ OGL) [21]NeurIPS22 39.80 - 86.00 -

MarginNCE (w/o OGL) [24]ICASSP23 38.25 39.06 83.94 63.20

MarginNCE (w/ OGL) [24]ICASSP23 39.78 40.01 85.14 64.55

HearTheFlow [10]WACV23 39.40 40.00 84.80 64.00

FNAC (w/o OGL) [33]CVPR23 39.50 39.66 84.73 63.76

FNAC (w/ OGL) [33]CVPR23 41.85 40.80 85.14 64.30

Alignment (w/o OGL) [31]ICCV23 39.94 40.02 79.60 63.44

Alignment (w/ OGL) [31]ICCV23 42.64 41.48 82.40 64.60

Baselines:
WAV2CLIP [36]ICASSP22 37.71 39.93 26.00 29.60

AudioCLIP [11]ICASSP22 44.15 46.23 47.20 45.22

CLIPSeg (w/ GT Text) 49.50 48.62 - -

CLIPSeg (w/ WAV2CLIP Text) 24.84 26.01 37.20 32.14

CLIPSeg (Sup. AudioTokenizer) 49.09 45.75 68.00 54.96

Ours (w/o OGL) 49.46 46.32 80.80 64.62

Table 1. Quantitative results on the VGG-SS and SoundNet-
Flickr test sets. All models are trained with 144K samples

from VGG-Sound. SLAVC [21] does not provide AUC scores.

SoundNet-Flickr has no GT text.

purely trained in a self-supervised manner with the audio-

visual correspondence objective, it is evident that leverag-

ing CLIP’s strong multimodal alignment knowledge signif-

icantly impacts the performance. However, note that even

though we leverage CLIP, we do not employ any explicit

text input. These results thus demonstrate that our AudioTo-

kenizer module effectively encodes the audio context, en-

abling proper learning of the audio-visual correspondence

objective. Interestingly, we observe that the zero-shot per-

formance of our model on the SoundNet-Flickr test lags be-

hind that of the existing models. We hypothesize that this

result stems from the fact that our model generates more

fine-grained outputs, resembling segmentation. Nonethe-

less, the ground-truth bounding boxes are relatively coarse,

causing our method to yield lower cIoU scores despite suc-

cessfully highlighting the sounding region. We provide

some illustrative qualitative results for this in Section 4.3.

Next, we conduct comparisons against the strong base-

lines introduced earlier. Our method outperforms or

achieves on-par performance with these baselines. It is

worth noting that our method does not explicitly utilize text

information to highlight object regions via CLIPSeg or learn

audio-driven embeddings in a supervised fashion, as done

by these baselines. This indicates that our audio-visual

correspondence objective effectively learns robust audio-

visual correspondence and drives the AudioTokenizer and

Audio-Driven Embedder to accurately project the true au-

dio context into audio-driven embeddings. Interestingly,

Test Class Method cIoU ↑ AUC ↑

Heard 110

LVS [4]CVPR21 28.90 36.20

EZ-VSL (w/o OGL) [22]ECCV22 31.86 36.19

EZ-VSL (w/ OGL) [22]ECCV22 37.25 38.97

SLAVC (w/o OGL) [21]NeurIPS22 35.84 -

SLAVC (w/ OGL) [21]NeurIPS22 38.22 -

FNAC (w/ OGL) [33]CVPR23 39.54 39.83

Alignment (w/o OGL) [31]ICCV23 38.31 39.05

Alignment (w OGL) [31]ICCV23 41.85 40.93

CLIPSeg (w/ GT Text) 49.65 45.74

CLIPSeg (w/ WAV2CLIP Text) 23.24 24.78

CLIPSeg (Sup. AudioTokenizer) 49.73 45.35

Ours (w/o OGL) 48.44 45.06

Unheard 110

LVS [4]CVPR21 26.30 34.70

EZ-VSL (w/o OGL) [22]ECCV22 32.66 36.72

EZ-VSL (w/ OGL) [22]ECCV22 39.57 39.60

SLAVC (w/o OGL) [21]NeurIPS22 36.50 -

SLAVC (w/ OGL) [21]NeurIPS22 38.87 -

FNAC (w/ OGL) [33]CVPR23 42.91 41.17

Alignment (w/o OGL) [31]ICCV23 39.11 39.80

Alignment (w OGL) [31]ICCV23 42.94 41.54

CLIPSeg (w/ GT Text) 49.13 44.77

CLIPSeg (w/ WAV2CLIP Text) 26.25 27.03

CLIPSeg (Sup. AudioTokenizer) 43.65 41.05

Ours (w/o OGL) 41.98 41.55

Table 2. Comparison results on open-set audio-visual localiza-
tion experiments trained and tested on the splits of [4, 22, 24].

our model gives on-par performance with the CLIPSeg w/

GT Text baseline on VGG-SS, which serves as an Ora-

cle. This model is text-conditioned open-world segmenta-

tion approach and utilizes the ground-truth class labels of

the test samples. This signifies that it is important to incor-

porate the audio context properly to enhance performance.

Additionally, the performance difference between CLIPSeg

w/ GT Text and CLIPSeg w/ WAV2CLIP highlights that the

text-queried zero-shot performance of CLIPSeg in sound

source localization is highly dependent on the quality of the

text input. This is due to the fact that the text retrieved from

WAV2CLIP for given audio tends to be noisier compared to

GT text. Nevertheless, it is important to note that sound

source localization is unlabeled task, and these methods

serve as Oracle baselines. Furthermore, the results demon-

strate that training the AudioTokenizer in a supervised way

with GT texts and employing audio-driven embeddings with

CLIPSeg also gives on-par performance to the Oracle. This

implies that audio-driven embeddings indeed provide accu-

rate information for highlighting the sounding regions. Fi-

nally, we acknowledge that our method, which employs an

audio-visual correspondence objective for self-supervised

learning, outperforms CLIPSeg - Sup. AudioTokenizer.

This suggests that our Audio-Visual alignment contrastive

losses offer effective supervision for the model as using ex-

plicit text input, compelling the AudioTokenizer module to

generate richer audio-driven embeddings.

Finally, we compare our model with AudioCLIP and

WAV2CLIP, both of which are contrastively trained on

image-audio pairs, leveraging the pre-trained CLIP. The re-

sults in Table 1 demonstrate that our method outperforms

these approaches. This indicates that our Audio-Driven Em-

bedder module, with the audio-visual alignment objective,

is more effective in learning a stronger audio-visual align-

ment than these previous approaches, as they also leverage
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Extended VGG-SS Extended Flickr
Method AP ↑ max-F1 ↑ LocAcc ↑ AP ↑ max-F1 ↑ LocAcc ↑
SLAVC (w/o OGL) [21]NeurIPS22 32.95 40.00 37.79 51.63 59.10 83.60

MarginNCE (w/o OGL) [24]ICASSP23 30.58 36.80 38.25 57.99 61.80 83.94

FNAC (w/o OGL) [33]CVPR23 23.48 33.70 39.50 50.40 62.30 84.73
Alignment (w/o OGL) [31]ICCV23 34.73 40.70 39.94 64.43 66.90 79.60

WAV2CLIP [36]ICASSP22 26.67 33.00 37.71 20.99 24.80 29.60

AudioCLIP [11]ICASSP22 23.79 32.80 44.15 34.00 38.80 45.22

CLIPSeg (Sup. AudioTokenizer) 34.96 41.00 49.09 55.14 57.00 68.00

Ours (w/o OGL) 40.79 49.10 49.46 76.07 73.20 80.80

Table 3. Quantitative results on Extended VGG-SS and Ex-
tended Flickr-SoundNet benchmark. All models are trained

with 144K samples from VGG-Sound. The results of the prior

approaches are obtained from [21].

pre-trained CLIP knowledge. Additionally, note that these

baseline approaches incorporate powerful object detectors

to obtain object proposals/areas that correspond with the

given audio, in order to achieve sound localization results.

Open Set Audio-Visual Localization. Chen et al. [4] pro-

pose an open-set evaluation scenario to assess the general-

ization ability of sound source localization methods. This

evaluation setting involves testing the models on categories

present in the training data (heard), as well as categories that

are absent (unheard). For this evaluation, 110 randomly se-

lected categories from the VGGSound dataset are used for

training, while an entirely separate set of 110 categories is

held for testing. This ensures that the model encounters new

and previously unseen categories during the evaluation pro-

cess. To make a fair comparison, we conduct the experi-

ments using the the same train/test split as [4, 22, 24]. It

is important to note that unlike previous methods, we do

not utilize object-guided refinement (OGL). The results are

presented in Table 2, showing that our method outperforms

existing approaches in the Heard categories. However, it

lags behind FNAC [33] in the Unheard category, due to the

usage of OGL in their method, which we do not employ.

Extended Flickr-SoundNet/VGG-SS. Existing bench-

marks typically consist of sounding objects/regions in the

scene. However, in reality, silent objects or off-screen audio

are also common occurrences. Mo et al. [21] propose a new

evaluation that extends the existing benchmarks to include

non-audible frames, non-visible sound sources, and mis-

matched audio-visual pairs. In this evaluation scenario, it is

expected that sound localization methods should not high-

light an object/region if the audio and visual signals are mis-

matched. The experiments conducted using the extended

Flickr-SoundNet/VGG-SS datasets in Table 3 demonstrate

that our method outperforms all the existing methods and

baselines. The superiority of our method indicates that it

learns a strong alignment of audio and visual embeddings

with the help of our AudioTokenizer and leveraging CLIP

without text input , as this task requires a robust semantic

relationship between the cross-modalities. One interesting

observation is that, even though baseline approaches lever-

age CLIP, their performance is lower than ours due to the

absence of audio-visual alignment supervision.

S4 MS3
Method mIoU ↑ F-Score ↑ mIoU ↑ F-Score ↑
SLAVC (w/o OGL) [21]NeurIPS22 28.10 34.60 24.37 25.56

MarginNCE (w/o OGL) [24]ICASSP23 33.27 45.33 27.31 31.56

FNAC (w/o OGL) [33]CVPR23 27.15 31.40 21.98 22.50

Alignment (w/o OGL) [31]ICCV23 29.60 35.90 - -

Baselines:
WAV2CLIP [36]ICASSP22 28.70 35.35 25.09 23.84

AudioCLIP [11]ICASSP22 36.57 42.15 27.06 26.48

CLIPSeg (w/ GT Text) 51.32 58.02 50.93 55.41
CLIPSeg (w/ WAV2CLIP Text) 26.52 30.60 30.82 29.97

CLIPSeg (Sup. AudioTokenizer) 49.82 56.43 42.57 46.72

Ours (w/o OGL) 59.76 69.03 41.08 46.67

Table 4. Quantitative results on the AVSBench test sets.

VGG-SS AVS (S4) Extended VGG-SS
ACLI ACLF Reg cIoU ↑ AUC ↑ mIoU ↑ F-score ↑ AP ↑ max-F1 ↑

(A) � � � 40.42 40.84 38.55 45.94 28.59 35.90

(B) � � � 2.30 7.46 4.08 22.59 0.86 1.80

(C) � � � 46.61 44.71 53.06 63.01 40.72 47.90

(D) � � � 41.08 41.01 41.93 48.99 33.37 41.30

(E) � � � 35.15 38.36 32.06 41.05 39.91 47.20

(F) � � � 49.46 46.32 59.76 69.03 40.79 49.10

Table 5. Ablative experiments on our method by using differ-
ent combinations of loss functions.

AVSBench [40]. We conduct additional experiments using

the AVSBench S4 and MS3 datasets to demonstrate the pre-

cise sound localization ability of our model. These datasets

are designed to identify audio-visual correspondences at the

pixel level, i.e. audio-visual segmentation. In these exper-

iments, all models are trained on VGGSound-144K and

then tested on the AVSBench datasets in a zero-shot setting.

Our results, presented in Table 4, draw a substantial perfor-

mance gap compared to existing methods. This gap is more

pronounced on audio-visual segmentation datasets than on

standard benchmarks, as our model tends to generate more

fine-grained localization maps due to the grounder and

learnable maskers it employs. Our proposed method also

demonstrates competitive or stronger performance com-

pared to most of the baselines. While our method outper-

forms others on the S4 dataset, CLIPSeg w/ GT Text and

CLIPSeg w/ WAV2CLIP Text (Oracles) achieve better seg-

mentation performance on the MS3 dataset. However, we

emphasize that our model does not employ any direct su-

pervision or usage of the text. Instead, it relies solely on

audio-visual alignment. Also, note that sound source local-

ization task is theoretically unlabeled.

4.2. Ablation Results

Our proposed method is optimized by a combination of

three loss functions, i.e. ACLI , ACLF , and area regular-

ization. Here, we perform ablation experiments to under-

stand the impact of each loss function. We primarily con-

duct the experiments by training our model on VGGSound-

144K and evaluating it on VGG-SS, AVSBench and Ex-

tended VGG-SS datasets. Results are in Table 5.

As revealed by results (A) and (B), using ACLI is

crucial to enable our model to learn the corresponding

audio-visual alignment. On the other hand, relying solely

on ACLF is not effective for learning audio-visual align-
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Figure 3. Sound localization results on VGG-SS, SoundNet-Flickr, and AVSBench datasets, along with a comparison with previous
methods.

Figure 4. Sound localization results by using different combi-
nations of loss functions.

Figure 5. cIoU scores of SoundNet-Flickr samples.

ment, as it primarily focuses on suppressing unrelated areas.

However, as demonstrated by the results of (A vs. C) and (B

vs. C), the combination of these two loss functions are com-

plementary. As mentioned earlier, ACLF contributes to

performance enhancement by suppressing background ar-

eas. Furthermore, an examination of the results from the ex-

periments (C vs. F) highlights that area regularization pro-

vides additional improvements by constraining the size of

the activated regions. Visualization of these ablative studies

can be found in Figure 4.

4.3. Qualitative Results

Comparison to the existing approaches. Figure 3 dis-

plays the comparison results between our method and recent

prior works. The visualized samples illustrate that the local-

ized regions from our proposed method are more compact

and fine-grained compared to the other methods. For ex-

ample, regardless of the test set, our model can accurately

localize small-sized sounding objects compared to recent

methods. Moreover, our model accurately highlights multi-

ple sound sources and separates them, while other methods

tend to cover the entire area as one large region (last column

of the second and third rows).

Visualization of the ablation experiments. The visual re-

sults are presented in Figure 4. As demonstrated, when us-

ing only ACLI , we observe that background areas remain

activated (also discussed in Section 3.3). As evident in the

third column, the addition of ACLF helps eliminate the

background pixels (non-sounding areas). However, it is no-

ticeable that the outputs of ACLI+ACLF can be relatively

less completed. With the area regularizer, the final output

of our model becomes more complete and fine-grained.

Visualization of fine-grained localization with lower
cIoU. We present our localization results along with the

cIoU scores on SoundNet-Flickr. As depicted in Figure 5,

despite our model successfully highlighting the sounding

regions, these results yield lower cIoU scores. This outcome

is consistent with the quantitative results in Table 1, which

demonstrate that our method on SoundNet-Flickr lags be-

hind the other methods due to the fact that the GT boxes and

the localization results of competing methods are coarse.

5. Conclusion
In this work, we explore using large-scale pre-trained

image-text models, specifically CLIP, for sound source lo-

calization. Our aim is to integrate CLIP’s multimodal align-

ment knowledge in a text input-free form through self-

supervised audio-visual correspondence. To this end, we

translate audio signals into CLIP-compatible tokens and

use the resulting audio-driven embeddings for audio-visual

grounding. This process is integrated with contrastive learn-

ing, enabling self-supervised audio-visual alignment learn-

ing. We show that our proposed model significantly outper-

forms existing methods in audio-visual coarse sound source

localization and fine-grained segmentation tasks. Moreover,

it compares favorably with fully supervised or text-queried

baselines. Our study suggests that the true essence of sound

source localization, characterized by strong audio-visual

alignment, can take advantage from the already structured

multimodal alignment offered by large-scale pre-trained

image-text models.
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