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ABSTRACT Recently, a novel neural architecture search method, which is referred to as DynamicNAS
(Dynamic Neural Architecture Search) in this paper, has shown great potential. Not only can various
sizes of models be trained with a single training session through DynamicNAS, but the subnets trained
by DynamicNAS show improved performance compared to the subnets trained by conventional methods.
Although DynamicNAS has many strengths compared to conventional NAS, it has the drawback that
different types of operations cannot be used simultaneously within a layer as a search space. In this paper,
we present a method that allows DynamicNAS to use different types of operations in a layer as a search
space, without undermining the benefits of DynamicNAS, such as one-time training and superior subnet
performance. Our experiments show that common operation mixing methods, such as convex combination
and set sampling, are inadequate for the problem, although they have a structure that is similar to the proposed
method. The proposed method finds, from a supernet of hybrid operations, a superior architecture that cannot
be found from a single-operation supernet.

INDEX TERMS Neural architecture search, NAS, weight-sharing NAS, DynamicNAS, convolutional neural
network, vision transformer.

I. INTRODUCTION
The design of model architecture plays a pivotal role in
the success of deep learning across various tasks, including
image classification [1], speech recognition [2], and natural
language processing [3]. Not only in these traditional fields,
but also in practical domains such as point cloud [4] and coal
mining [5], the impact of architecture design demonstrated
recently. However, designing architectures for the domains is
not an easy task and requires a time-consuming and laborious
process, as each design’s performance needs to be tested indi-
vidually. Therefore, researchers have shifted their attention to
Neural Architecture Search (NAS) to automate and improve
the process of architecture design [6], [7], [8], [9], [10].

NAS has emerged as a powerful tool for discovering
neural network architectures that were previously unknown to
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researchers [11], [12], [13]. Recent advances [14], [15], [16],
[17] in the field of NAS have introduced a novel approach
to building efficient neural networks. This method, referred
to as weight-sharing NAS, has been successfully employed
in models such as Once-For-All [14], AttentiveNAS [15],
NASViT [16] and Autoformer [17]. However, it is important
to note that there is a fundamental difference in the structural
nature of these models compared to conventional weight-
sharing NAS [7], [18], [19], [20], [21]. In weight-sharing
NAS, also known as one-shot NAS, candidate operations
are simultaneously employed in a single layer of a large
network or supernet. The supernet consists of every subnet,
with no sharing of parameters between the candidate
operations. On the other hand, the novel NAS approach
shares weight parameters between the different candidate
operations, thereby increasing the level of weight sharing
as compared with conventional weight-sharing NAS, which
shares weight parameters only at the supernet level. Thus,

10242

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0004-0233-9638
https://orcid.org/0009-0003-4300-7667
https://orcid.org/0000-0002-8751-9205


I. Shin et al.: Method for Expanding Search Space With Hybrid Operations in DynamicNAS

FIGURE 1. Illustration of the concept of this paper. Various scales of subnet can be sampled from a supernet trained by
DynamicNAS. However, there is no option to select an operation due to the intrinsic nature of DynamicNAS, which
forces one to select an operation manually. Our method gives this option to DynamicNAS. (Conv: Convolution, ViT:
Vision Transformer).

we refer to the novel NAS approach as DynamicNAS in this
paper.

From the previous works regarding DynamicNAS [14],
[15], [16], [17], it is worth taking note that previous
researches have not considered using different kinds of scal-
able operations as a search space within a layer. This stems
from the structural nature of DynamicNAS, which shares
weight parameters among candidate operations. As a result,
its ability to explore a wide range of architectures is limited.
In response to this, we propose a novel method to introduce
more flexibility into the search space of DynamicNAS, allow-
ing for the use of different kinds of operations within a layer.
Figure1 illustrates the concept of the paper. In this paper,
we demonstrate the effectiveness of the proposed method in
expanding the search space of DynamicNAS compared to
other naive methods and highlights the potential benefits of
incorporating various types of operations within a layer.

The major contributions of our work can be summarized as
follows:

• We propose a method that provides DynamicNAS an
ability to choose an operation within a layer, while
retaining the strengths of the DynamicNAS approach.
Our approach resembles the one used in ProxylessNAS
but differs in its practical implementation.

• In our method, we prevent interference that could
occur between candidate operations and the impact
of parameters for operation selection on candidate
operations. This method can also be widely applied to
other NAS methods.

• Our method does not require additional agents, which
are typically used in NAS. Additionally, our method
does not require additional training stages or epochs.

• In experiments with our method, we were able to find
architectures that are superior to those extracted from a
conventional single-operation supernet.

• We present experimental results to analyze the process
of choosing preferred operations during supernet train-
ing and show that the process can dramatically change
depending on the design of the search space. However,
our method shows robustness to the change.

The contents of this paper are as follows. In the following
section, we present the conventional works related to this
study. In Section III, we briefly review the structure of
DynamicNAS supernet. In Section IV, we introduce our
method to address the problem presented above. In Section V,
we present the result of experiments in which our method
was used. In Section VI, we discuss the meaning of our
experiments and future work. Finally, we conclude the
presentation of our method in Section VII.

II. RELATED WORKS
This work is about how to expand the search space of
DynamicNAS. The concept of DynamicNAS is based on
SlimmableNet [22], which is a Convolutional Neural Net-
work (CNN) that first applied a scalable width structure. The
authors of Once-For-All [14] further developed this concept
and increased the number of types of scalable structure,
including depth, width, kernel size, and resolution, in CNN.
While the concept of DynamicNAS was initially applied to
CNNs, it has also been extended to other architectures such
as Vision Transformer (ViT) [17]. The authors of NASViT
[16] proposed a CNN-ViT hybrid network, but it is important
to note that the choice of operation (CNN or ViT) for each
layer in NASViT was determined manually by the authors.
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Recent studies have focused on improving the per-
formance of the final architecture of DynamicNAS. The
subnet sampling method has been considerably addressed in
AttentiveNAS [15] to achieve better results. Similarly, the
authors of FocusFormer [23] have also concentrated on a
method using a specialized architecture sampler instead of
a uniform sampler to sample subnet architectures for each
training step. On the other hand, the authors of PreNAS [24]
proposed a different approach. They utilize a zero-cost proxy
to reduce the search space before executing the main session
and concentrate on training subents included in a smaller
preferred search space. It is worth noting that PreNAS and our
work take opposite directions. Where PreNAS aims to shrink
the search space for better performance, our work expands
the search space to explore a greater variety of architectures.

III. PRELIMINARIES
In this section, we briefly present the structure of a layer of
DynamicNAS supernet, which will be used in the subsequent
parts of this paper. A detailed explanation of the structure is
presented in Appendix A with examples.

The lth layer of the DynamicNAS supernet can be
represented as follows:

Xl = F1(Xl−1) + F2(Xl−1) + F3(Xl−1) + · · ·

Here, Xl represents the output of the lth layer. Fi(·) represents
the ith candidate operation of the lth layer. The structure of
the layer can be changed based on the decision of whether
to use each operation. There is a difference from weight-
sharing NAS, where all operations can work independently.
In DynamicNAS, only the first operation F1(·) can work
independently. If we want to use Fi(i̸=1)(·), we must also use
Fi−1(·) together with it. For example, let’s suppose that F1(·)
is 3 × 3 convolution and F2(·) is surrounding operations of
5 × 5, except the core part (i.e., 3 × 3) of 5 × 5 convolution.
F2(·) is considered a strange operation that is not commonly
used when used standalone. However, when combined with
F1(·), the sum of F1(·) and F2(·) results in a 5×5 convolution,
which is a commonly used operation in CNNs.

In this study, if an operation can be obtained by sum-
ming extra terms to another operation, we consider them
homogeneous and they can be entangled through summation.
However, if one operation cannot be obtained solely by
summing additional terms to another operation, we consider
them heterogeneous and they cannot be entangled through
summation. For example, 3 × 3 convolution and 5 × 5
convolution are homogeneous as 5 × 5 convolution can be
made only by summing extra terms to 3 × 3 convolution.
On the other hand, 3 × 3 convolution and multilayer
perceptron are heterogeneous as one operation cannot be
made only by summing extra terms to the another operation.
To summarize, DynamicNAS combines candidate operations
by allowing them to shareweight parameters. As a result, only
homogeneous operations can be used in DynamicNAS as a
search space.

IV. METHODOLOGY
This section describes our approach to using heterogeneous
operations as a search space within a layer of the Dynamic-
NAS supernet.

A. METHODOLOGY CONSIDERATIONS
Before we present our method, we emphasize the criteria
we have considered while developing the method. We estab-
lished two main criteria for our proposed method. The
first one is that the method must maintain the benefit of
DynamicNAS, namely, that it requires only one training
stage over all stages until implementation. The second one
is that it must be capable of identifying a better architecture
than the single-operation supernet can identify. We utilize
heterogeneous operations concurrently to expand the search
space. Thus, we argue that at least it should find the same
architecture as the architecture found in a single-operation
supernet. If the proposed method does not meet both criteria,
our approach may be redundant. For a test, we consider a
Conv and a ViT block as heterogeneous candidate operations,
which are commonly used in vision models.

A Conv block cannot be entangled with a ViT block, so we
first considered applying the operation-mixing approaches
of weight-sharing NAS, although the approaches do not
entangle Conv and ViT blocks. In the previous section,
we presented the concept of two primary weight-sharing
NAS methods, namely the convex combination, and the
set sampling methods, which have been widely used in
recent NAS studies. The convex combination method, which
combines a Conv block and a ViT block, can be represented
as:

Xl = αConv(Xl−1) + βViT (Xl−1), (1)

where α and β are trainable parameters that control the
contribution of the two blocks, and they are subject to the
constraints α, β ∈ (0, 1) and α + β = 1. Likewise, the
set sampling method also combines a Conv block and a ViT
block, but in a discrete manner:

Xl =

{
Conv(Xl−1)
ViT (Xl−1),

(2)

where each operation is randomly sampled following the
uniform probability distribution for each step.

These methods were considered and tested as possible
ways to address our problem. However, as expected, our
experimental evaluation results showed that these methods
may be inadequate for effectively exploring the architecture
space while maintaining the advantages of DynamicNAS.
We found that neither of these methods identified superior
architectures that could outperform the single-operation
supernet. This suggests that more sophisticated and efficient
weight-sharing NAS methods may be needed to achieve
better performance and generalization. The evaluation results
of these methods will be presented in Section V.
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B. PROPOSED METHOD
As a solution to give DynamicNAS an option to choose the
operation, we propose amethod that combines the advantages
of two operation-mixing methods - convex combination and
set sampling - to address their individual limitations. On the
one hand, convex combination can update the importance
of each operation during the training stage, as will be seen
in Section V, it does not converge completely toward a
preferred operation. On the other hand, the set sampling
method restricts the number of operations for an inference
step to one but does not update the importance of each
operation. Consequently, the set samplingmethod shows poor
performance. Thus, we present a unified solution that utilizes
the strengths of both of these methods.

Ourmethod, which combines bothmethods, has a structure
such that:

Xl = S(α + α′)Conv(Xl−1) + (1 − S)(β + β ′)ViT (Xl−1),

(3)

where S is a stochastic binary switch that selects between
two candidate operations for each step. S is generated from
a Bernoulli distribution with a parameter value of α. The
trainable parameters α and β satisfy the constraint α+β = 1.
Meanwhile, the variables α′ and β ′ are not trainable and are
defined for each step, such that α+α′ and β +β ′ are equal to
1. The sampling probability of each operation, that is, α and
β, is included in the model structure to be updated during the
searching stage with the weight parameters.

Eq. (3) can be rewritten as:

Xl =

{
(α + α′)Conv(Xl−1), if S = 1
(β + β ′)ViT(Xl−1), if S = 0,

where S ∼ Bernoulli(α) (4)

Eq. (4) shows that, more clearly, either Conv or ViT is
selected as a candidate operation for each step based on a
samplewith a probability ofα from the Bernoulli distribution.
The output of (4) is either Conv(Xl−1) or ViT (Xl−1), which is
the same as the output of the set sampling method. This is due
to constraints α+α′

= 1, β+β ′
= 1, Practically, our method

works in the same manner as Algorithm 1 in the supernet
training stage. The process from 10 to 14 of Algorithm 1 is
the part especially added for our method.

C. METHOD ANALYSIS
We demonstrate the effectiveness of our method through
experiments and show that it outperforms both the convex
combination and the set sampling methods individually in
Section V. Prior to conducting the experiments, we conduct
an analysis by comparing the operational output of a layer
and the gradient of the loss function with respect to α to
observe the differences between the proposed method, the
convex combination, and the set sampling during the forward
and backward processes.

In the forward process of our method, the output of each
step, layer l, and its corresponding expected value can be

Algorithm 1 Proposed Method
1: Initialize weight parameters of supernet
2: Initialize trainable variables {ai, bi}Li=1 with zeros
3: for epoch = 1, 2, . . . ,E do
4: for b = 1, 2, . . . ,B do
5: X0 = Stem(inputb)
6: lb ∼ U (Lmin,L)
7: for l = 1, 2, . . . , lb do
8: The scale of Convl ∼ U
9: The scale of ViTl ∼ U
10: α, β = softmax([al, bl])
11: S ∼ Bernoulli(α)
12: α′

= 1 − α.detach()
13: β ′

= 1 − β.detach()
14: Xl = S(α + α′)Convl(Xl−1) + (1 − S)(β +

β ′)ViTl(Xl−1)
15: end for
16: output = Head(Xlb )
17: loss = criteria(output, label)
18: loss.backward()
19: optimizer .step()
20: end for
21: end for

described as follows:

Xl = SConv(Xl−1) + (1 − S)ViT (Xl−1)

=

{
Conv(Xl−1), if S = 1
ViT (Xl−1), if S = 0

(5)

E[Xl] = αConv(Xl−1) + (1 − α)ViT (Xl−1) (6)

Eq. (4) is rewritten as (5) by substituting α + α′
= 1,

β + β ′
= 1. As mentioned earlier, (4) and (5) show that

the forward process of our method works the same as the
forward process of the set sampling method, which is that
only one of the candidate operations is selected for each step.
The distinction between the twomethods lies in the variations
in their respective sampling probability distributions. In our
method, an operation is selected according to the probability
distribution α for each step, which is different from the
uniform distribution of the set sampling method. Thus, the
expected value of Xl is equal to (6). This aligns with
the expected value obtained from the convex combination
method. In summary, each step of our method works the same
as the steps of the set sampling method, and the expected
value of our method works the same as the expected value
of the convex combination method.

In the backward analysis, we investigate the impact of
operation importance weight α during supernet training.
To do this, we examine the gradient of the loss function L
with respect to the parameter α in the backward phase of
the optimization process. Specifically, we need to compute
∂F(Xl−1)

∂α
, which represents the effect of α on the output of an

operation. There is no mechanism for updating the operation
importance in the set sampling method, so we compare our
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method specifically with the convex combination method
during the backward analysis. In contrast to the backward
process of the convex combination method, the backward
process of our method exhibits slight variations.

To derive ∂F(Xl−1)
∂α

, we begin with:

∂L
∂α

=
∂L
∂Xl

∂Xl
∂α

=
∂L

∂F(Xl−1)
∂F(Xl−1)

∂α
(7)

In our method, ∂F(Xl−1)
∂α

can be represented as:

∂

∂α
F(Xl−1) =

∂

∂α
((α + (1 − α))F(Xl−1))

=
∂

∂α
αF(Xl−1) +

∂

∂α
(1 − α)F(Xl−1)

=
∂

∂α
αF(Xl−1) +

∂

∂α
α′F(Xl−1) (8)

Eq. (8) presents the principal idea behind our method.
There’s a difference between theoretical manner and practical
manner. Theoretically, the output of (8) is 0, which implies
that α will be unchanged during the training process.
Practically, we defined α′(= 1 − α) as a non-trainable
parameter to ensure that ∂

∂α
(1−α)F(Xl−1) = 0. By doing so,

∂
∂α
F(Xl−1) becomes equal to ∂

∂α
αF(Xl−1) during the training

process, which allows us to train α.
To further examine this, let g = α + 1 (g, 1 ∈ R), where

1 is a constant variable. Then, we observe that:

∂

∂g
gF(Xl−1) =

∂

∂α
αF(Xl−1) =

∂

∂α
gF(Xl−1) (9)

Eq. (9) shows that the gradient of (α+1)F(Xl−1) with respect
to the operation importance parameter α is calculated as the
same as the gradient of the output where α were multiplied
by the output of a selected operation. However, it is important
to note that in our method, the actual output is not affected by
g itself, because 1 is defined such that α + 1 = 1. This is in
contrast to a method where only α is multiplied by the output
of a selected operation. In summary, by defining α′ as a non-
trainable parameter, we are able to make α trainable in our
method and still maintain the desired output.

In addition to performing an analysis of the forward
process, we examine the gradient of the loss function Xl with
respect to the operation importance parameter α for each step
and the expected value of the gradient.We compare the results
obtained from the convex combination method with those of
our proposed method. In our method, the gradient and the
expected value of the gradient are shown such as:

∂Xl
∂α

=


∂

∂α
αF(Xl−1), if S = 1

∂

∂α
(1 − α)G(Xl−1), if S = 0

(10)

E[
∂Xl
∂α

] = α
∂

∂α
αF(Xl−1) + (1 − α)

∂

∂α
(1 − α)G(Xl−1)

(11)

= αF(Xl−1) − (1 − α)G(Xl−1) (12)

In the convex combination method, the gradient and its
expected value are shown such as:

∂Xl
∂α

=
∂

∂α
(αF(Xl−1) + (1 − α)G(Xl−1)) (13)

= F(Xl−1) − G(Xl−1) (14)

E[
∂Xl
∂α

] = F(Xl−1) − G(Xl−1) (=
∂Xl
∂α

) (15)

The key difference between the two methods lies in
the expected value of the gradient. Our analysis of the
conventional convex combination method showed that its
expected value is given by F(Xl−1) − G(Xl−1). On the other
hand, the expected value of the proposed method is given by
αF(Xl−1)− (1− α)G(Xl−1). In the conventional method, the
gradient is always affected by the value ofG(Xl−1), regardless
of the importance weight α. In contrast, in our proposed
method, the effect of G(Xl−1) on the gradient decreases as
the importance weight α increases.

These findings suggest that our proposed method has a
distinct advantage over the conventional method in that it
allows us to control the influence of each operation on the
gradient of the final output, depending on the value of α.
This feature may be particularly useful when one operation
dominates another, as we can adjust the value of α to ensure
that both operations contribute equally to the final output.

Overall, our findings provide new insight into the behavior
of NAS when a convex combination method is used, and they
highlight the potential benefits of our proposed method to
improve its performance.

D. COMPARISON WITH PREVIOUS WORK
We compared our proposed method with ProxylessNAS [21],
which has a mechanism similar to ours. Although the overall
approach of ProxylessNAS is similar to that of ours, there
are some implementation differences that are worth noting.
Basically, ProxylessNAS is a weight-sharing NAS method,
whereas our method is based on DynamicNAS. Specifically,
ProxylessNAS uses operation importance parameters, similar
to our α, and binary gates, similar to our S, to evaluate
the importance of each operation. ProxylessNAS selects one
operation at a time from among the candidate operations
of a supernet to update at each step, like ours. By doing
this, the authors of ProxylessNAS intended to reduce the
memory requirement of a supernet. However, the operation
importance parameters in ProxylessNAS are not included in
the model architecture. Therefore, the operation importance
parameters cannot be updated during supernet training.
Instead, they derive the gradient with respect to operation
importance parameters through the following process [25]:

∂L
∂αi

=

|O|∑
j=1

∂L
∂pj

∂pj
∂αi

≈

|O|∑
j=1

∂L
∂gj

∂pj
∂αi
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=

|O|∑
j=1

∂L
∂gj

∂ eαj∑
k e

αk

∂αi

=

|O|∑
j=1

∂L
∂gj

∑
k e

αk (1i=jeαj ) − eαjeαi

(
∑

k e
αk )2

=

|O|∑
j=1

∂L
∂gj

pj(1i=j − pi)

where |O|, g, and α represent the number of candidate
operations in a layer, the binary gate, and the operation
importance parameter, respectively.

To update the operation importance parameters, the authors
of ProxylessNAS implemented an additional backward mod-
ule in the backward process. Unlike the operation importance
parameters of ProxylessNAS, the operation importance
parameters of our method are included in the model structure,
so there is no need to implement an additional backward
module. ProxylessNAS and our proposed method have
similarities, but the practical approach of our method is
more straightforward as we do not need an additional
backward module. In addition, our method simultaneously
trains the weight parameters and the operation importance
parameters, which is another difference between our method
and ProxylessNAS.

V. EXPERIMENTS
In this section, we demonstrate the effectiveness of our
method numerically. Specifically, we present the implemen-
tation details and performance test results on ImageNet [26].
We also analyze how the operation importance parameters
converge and show that the convergence process of the
operation importance parameters can change considerably
depending on the search space.

A. IMPLEMENTATION DETAILS
The entire process for our experiments is identical to the
Autoformer process [17]. As in [17], a two-stage search is
used, which consists of supernet training and evolutionary
search. The hyperparameters for supernet training and
evolutionary search are also the same as those used for
Autoformer.

1) MODEL ARCHITECTURE SPACE
As a baseline model, Autoformer-T supernet [17] is used for
our experiments. To make a hybrid operation such as (3),
a scalable Conv block of AttentiveNAS [15] is added to each
layer of Autoformer-T. The search spaces for each operation
are summarized in Table 1. When Conv is added to each
layer, reshaping modules are included before and after Conv
to fit the shape of the input of ViT into Conv. The shape
of the input and output of ViT is (B, S,D), where B means
batch size, S means the length of the sequence, and D means
embedding dimension. The shape of the input and output of
Conv is (B,H ,W ,C), where B means batch size, H means

TABLE 1. Search space of Conv/ViT blocks.

TABLE 2. Principal hyperparameters used in experiments.

height, W means width, and C means channel. Thus, the
shape (B, S,D) changes to (B,

√
S,

√
S,D) before Conv and

changes to (B, S,D) after Conv.
It is important to note that batch normalization [27]

is commonly incorporated into Conv operations to train
neural networks. Batch normalization plays a crucial role in
enhancing model performance. In DynamicNAS, the number
of channels, and kernel sizes change at each step, which
results in different statistical values for batch normalization
at each step. This variability can adversely affect model
performance. Some methods, such as those in [15] and [22],
have been proposed to mitigate this. Our experiments
employed the methodology proposed in [22]. Unlike [15],
this approach does not require an additional statistical value
training process for batch normalization, but still delivers
desirable outcomes.

2) SUPERNET TRAINING
Supernet training works in the same manner as the process
presented in Algorithm 1. As in [17], the size of the
operation is chosen according to the uniform distribution.
Only operation selection process is additionally added to the
conventional process for each step. The principal hyperpa-
rameter for supernet training is summarized in Table 2.

3) EVOLUTIONARY SEARCH
The implementation of evolutionary search follows the same
protocol as in [17], and [28]. The only difference is that
the preferred operation for each layer is determined by the
operation importance parameters. If the operation importance
parameter of a layer is greater than 0.5, Conv is used for the
layer. If the operation importance parameter of a layer is less
than 0.5, ViT is used for the layer. The population size for the
evolutionary searching is 50. The number of generations is set
to 20. At each generation, we select the top 10 architectures.
The mutation probabilities pd and pm are set to 0.2 and 0.4.
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FIGURE 2. Autoformer-T model structure vs. the model structure found by
our method.

4) PERFORMANCE TEST
To verify the performance of our algorithm, we test the
performance of the models in each model size segment of the
Autoformer-T supernet. In a supernet trained with Dynam-
icNAS, multiple subnets of different sizes can be extracted.
To evaluate the overall performance of the supernet trained
by ourmethod, we divided the subnets sampled from supernet
into size intervals and used the performance of themodel with
the highest performance in each segment as the representative
performance. The segments are divided into 2M (M stands
for 1e6) intervals based on the number of parameters, and the
model that performs the best is selected within the 0M-6M,
6M-8M, 8M-10M, and 10M-12M segments. All models are
tested using PyTorch 1.8.1 on 4 Nvidia Tesla A100 GPUs.

5) DATASET
We use the ImageNet2012 dataset [26] for the experiments.
ImageNet2012 is a benchmark dataset for image classifica-
tion. It consists of a training set of about 1.2M and a validation
set of 50,000 color images of 1,000 objects. The images vary
in size, so we resize them to 224 × 224.

B. PERFORMANCE ON IMAGENET
Finally, we present the results of our method. The final model
structure found by our method is presented in Figure 2. All
layers except for the last two are determined to use ViT. The
last two layers are determined to use Conv. A detailed analysis
of the convergence process of the operation importance
parameters is presented in the following subsection. The
performances of each model are presented in Table 3. The
models found by our method show superior performance
across all ranges of model sizes. The minimum improvement
was 0.09% and the maximum improvement was 0.28%.

TABLE 3. Evaluation of our method and classical operation-mixing
methods on ImageNet.

Although our method found an improved architecture
compared with the conventional single-operation supernet,
it does not necessarily imply that our approach can find the
best architecture in the given search space. However, the
results demonstrate that our method is capable of effectively
leveraging the expanded search space. The subnets sampled
from a supernet trained using the set sampling exhibit a
performance degradation of around 4%. The set sampling
method provides equal training opportunities to Conv and
ViT in the training stage. A preferred operation is chosen
during the searching stage. Consequently, the performance of
every subnet was affected. We consider that the root cause of
the performance degradation is due to providing equal train-
ing opportunities to Conv and ViT. In the case of the convex
combination, a regularization termwas used in addition to the
loss function of the supernet to force the operation importance
parameters to converge toward a preferred operation:

−λ

l∑
i=1

(αi − 0.5)2,

where λ was set to 1e-3. Without the regularization term,
the operation importance parameters failed to converge
toward a preferred operation. It leads to the necessity
of using both operations in conjunction. Although it was
possible to select one operation based on the final operation
importance parameters without the regularization term, then
the subnets showed an accuracy lower than 10%. When the
regularization termwas used to encourage the convergence of
operation importance parameters toward a single operation,
the performance of the subnets still experienced a noticeable
decrease even with this approach, as can be seen in Table 3.
Despite the expanded search space, the convex combination
and set sampling methods demonstrated limitations in
effectively utilizing it.

Some competitive vision transformer models, which have
a similar size to ours, are also compared in Table 4.
DeiT [29], ConViT [30], TNT [31], and FocusFormer [23]
are pure vision transformer architecture. LVT [32] is a
hybrid architecture built of Conv and ViT blocks. Our
model demonstrates an overall increased size but competitive
performance compared to other models.
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FIGURE 3. Graph of the convergence process of the operation importance parameters by epoch using
our method.

TABLE 4. Performance comparison: proposed model vs. vision
transformers with similar model sizes.

C. OPERATION IMPORTANCE PARAMETER
CONVERGENCE ANALYSIS
We also analyzed how the operation importance parameters
converge. Table 6 and Figure 3 present the convergence
process of the operation importance parameters by epochs.
If the graph goes to 1, the preferred operation is Conv, and
if the graph goes to 0, the preferred operation is ViT. We can
see that the preferred operations of all layers except the 14th
layer are determined before the 20th epoch. The operation
importance parameter of the 14th layer converges to 1 in the
latter part of the training. We focused on the behavior of the
12th layer, which came close to 1 and then changed direction
after a few epochs.

We regarded the behavior of the 12th layer as a phe-
nomenon that needs to be addressed. The candidate operation,
which will eventually become the preferred operation, loses
the opportunity to train when the operation importance
parameter is poorly converged. Although this phenomenon
should be thoroughly checked, we naively assumed that it
happened because the 12th layer may be the last layer or may
be the middle layer of the supernet depending on the choice
of depth. To address this issue, we add a Conv-ViT block to

FIGURE 4. Graph of the convergence process of the operation importance
parameters by epoch using our method after the last layer is fixed.

the Head layer of the supernet. We remove a block from the
layers of the supernet to maintain the total number of layers.
By doing this, we ensure that the layers used as the search
space are always used as the middle layer.

Figure 5 and Table 5 show the result of the modification
(the one referred to as Proposed Mod1 in Figure 6 and
Table 5). The result shows that our assumption was wrong.
The convergence process of the operation importance param-
eters of the 12th and 13th layers became more unstable.
Nevertheless, the performance was slightly improved, even
though the convergence process became more unstable.
However, we observed that our method exhibited a novel
characteristic, which is that the operation importance param-
eter could converge toward one side, even after it almost
converged toward the other side. This may be another strength
of our method.

In terms of convergence stability, we stabilized the
convergence by utilizing a fixed last layer as described above,

VOLUME 12, 2024 10249



I. Shin et al.: Method for Expanding Search Space With Hybrid Operations in DynamicNAS

FIGURE 5. Graph of the the convergence process of the operation
importance parameters by epoch using our method after the last layer is
fixed and the kernel size of Conv is fixed to 5 × 5.

TABLE 5. Performance analysis of modified methods.

FIGURE 6. Performance on ImageNet.

and consequently by giving Conv a kernel size of only
5 × 5. Figure 5 shows the result of the modification (the one
referred to as Proposed Mod2 in Figure 6 and Table 5). Every
operation importance parameter converges to ViT except the
one in the Head layer. The operation importance parameters
for the 12th and 13th layers converge quickly toward ViT as
well as the operation importance parameters for the 1st∼11th
layers. In addition, there is another notable phenomenon.
In comparison to the operation importance parameter of the
14th layer of Figure 3, the operation importance parameter
of the 14th layer of the modified method converges to
Conv more rapidly. The impact of the modifications can be
observed in Figure 6 and Table 5. The performance of all
model segments improves after the modifications are used.

TABLE 6. Ablation study.

We could have conducted additional experiments, but we
decided that continuing further would extend the scope of the
study and so have left it for future research. Our observations
suggest that the convergence process can vary significantly
depending on the architecture of the supernet. Nevertheless,
it is interesting to note that the final architecture consistently
converged to the architecture that utilizes Conv in the last
layer, regardless of variations in the supernet. This seems to
be an interesting phenomenon.

D. ABLATION STUDY
In the ablation study, we tested our method without α′ and
β ′ to observe the ablation effect. In our method, α′ and
β ′ were used to make α and β equivalent to 1 so that the
output of the candidate operations could be transferred to
the next layer as it was. There is no difference between
the proposed method with α′ and β ′ and without them,
considering the gradient of the loss function with respect
to the operation importance parameters. The experimental
result of the proposed method without α′ and β ′ is presented
in Table 6. We can see that the performance of subnets is
degraded by approximately 4% without α′ and β ′. From this
observation, we can conclude that removing the effect of
the operation importance parameters in the forward process
significantly affects the final result.

VI. DISCUSSION
A. OUR RESULT VS. EARLY CONVOLUTION
The final model architecture found by our method assigns
Conv in the last layers. This seems contradictory to the obser-
vations in [33]. In [33], the authors argue that convolution
in the early stage of ViT can provide better performance.
However, it is noteworthy that they changed the patch
embedding layer to a module consisting of convolutions.
In our method, we used patch embedding, as it was, as a stem
layer. Therefore, it is difficult to judge if our result refutes the
claims of [33].

B. THE DESIGN OF CANDIDATE OPERATIONS
In our experiments, to prove the effectiveness of our method,
we used the Conv, and ViT operations of previous works. It is
not considered to redesign the internal structure of candidate
operations. The size of an operation or the balance between
candidate operations may be important for the performance.
We will consider these topics in our future work.
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VII. CONCLUSION
In this paper, we proposed a method that enables Dynam-
icNAS to use different types of operations within a layer
as a search space, while preserving the advantages of
DynamicNAS, such as one-time training, and superior subnet
performance. Through experiments, we demonstrated the
effectiveness of our method and showed that it outperformed
the convex combination and the set sampling methods
individually. Furthermore, we observed that the convergence
process of the operation importance parameters can vary
significantly, depending on the design of the search space,
but the final architecture remains robust to the variations. Our
results provide new insight into the behavior of NAS using the
convex combination method and highlight the advantages of
our proposed method in improving subnet performance.

For the future work, we are considering the addition
of more candidate operations, such as MLP-mixer [34].
We are also considering the automatic internal design of each
operation, as mentioned earlier, for another future study. The
automatic internal design would be related to the concept of
Searching the Search Space (SSS), which is concerned by
some previous works [35].

APPENDIX A COMPARISON BETWEEN
WEIGHT-SHARING NAS AND DYNAMICNAS
In this appendix, we will present a more detailed analysis
of the concept of DynamicNAS and compare it with weight-
sharing NAS using examples.

A. WEIGHT-SHARING NAS
In a supernet of weight-sharing NAS, one layer of the
supernet consists of an element-wise summation of the results
of candidate operations. For example, let the set O of
candidate operations in a given layer, denoted as l, comprises
3 × 3, 5 × 5 and 7 × 7 convolutions (Conv3, Conv5, Conv7),
all of which are commonly used in CNNs:

Ol = {Conv3, Conv5, Conv7}

For the sake of simplicity in mathematical notation,
we assume that the convolutions have only one input channel
and one output channel. Then, the output of a weight-sharing
NAS supernet layer can be represented as follows:

Xl = Conv3(Xl−1) + Conv5(Xl−1) + Conv7(Xl−1), (16)

where

Conv3(Xl−1) = [[owh]Ww=1]
H
h=1, owh =

3×3∑
i=1

w3
i x

wh
i

Conv5(Xl−1) = [[owh]Ww=1]
H
h=1, owh =

5×5∑
i=1

w5
i x

wh
i

Conv7(Xl−1) = [[owh]Ww=1]
H
h=1, owh =

7×7∑
i=1

w7
i x

wh
i

In Eq. (16), Xl is the output feature map of the convolutions
at layer l. Convn(Xl−1) denotes that a convolution operation

having a kernel size of n applied to the input feature map
Xl−1. owh is the output value at position (w, h) in the output
feature map, which is calculated as the sum of the element-
wise products of the kernel weightswni and the corresponding
input feature map values xwhi .W and H denote the width and
height of the output featuremap, respectively.Where i iterates
over the n × n kernel size. Eq. (16) finally combines three
convolution operations of different kernel sizes into one.
To apply the optimization method with the operation

importance parameters to (16), it can be reformulated as the
following:

Xl = αConv3(Xl−1) + βConv5(Xl−1) + γConv7(Xl−1)

(17)

where α, β, and γ , which are operation importance parame-
ters, have different types of values according to the optimiza-
tion method. When metaheuristic optimization techniques
such as reinforcement learning and evolutionary algorithm
are used, α, β and γ have the following values for each step
of the training:

{α, β, γ } = {1, 0, 0}, {0, 1, 0} or {0, 0, 1}

We call the method, which has the above optimization
structure, the set sampling method in the remainder of this
paper. The sampling probability of each set is differentiated
by the specific optimization method. When a first-order
optimization algorithm like gradient descent is used, the
values of α, β, and γ typically take on the following values:

α, β, γ ∈ (0, 1), α + β + γ = 1

where α, β, and γ are trainable parameter. We call the
method, which has the above optimization structure, the
convex combination method in the remainder of this paper.
DARTS [7] first formulated an architecture search in a
differentiable manner and introduced the method. Their
method updates the operation importance parameters with
weight parameters during the searching stage. In addition to
that, there is a modification that makes each parameter have
its own probability distribution:

α, β, γ ∈ (0, 1)

where α, β, and γ are also trainable parameters. This modifi-
cation was first proposed in FairDARTS [20]. Removing the
restriction α +β +γ = 1 allows for the selection of multiple
operations as the final operation.
When a supernet composed of small subnets is used,

weight-sharing NAS significantly reduces the computational
cost and time required to search for optimal network
architectures. Before weight-sharing NAS was widely used,
every small subnet was designed, trained, and tested from
scratch, that is, trained, and tested through a trial and error
process [6], [9], [36], [37]. It usually required considerable
computational resources, such as GPUs and large amounts
of memory. This process is expensive and time-consuming,
especially when a large number of candidate architectures are
tested.
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B. DYNAMICNAS
Upon examining the commonalities between [15], [16], [17],
we discover that they employ weight parameter sharing to
combine candidate operations. Let us revisit the scenario in
which the set of candidate operations in a layer l includes
3× 3, 5× 5, and 7× 7 convolutions. Compared with (16) of
weight-sharing NAS, the output of a DynamicNAS supernet
layer can be represented as follows:

Xl = Conv3(Xl−1) + Conv′5(Xl−1) + Conv′7(Xl−1), (18)

where

Conv3(Xl−1) = [[owh]Ww=1]
H
h=1, owh =

3×3∑
i=1

wixwhi

Conv′5(Xl−1) = [[owh]Ww=1]
H
h=1, owh =

5×5∑
i=3×3+1

wixwhi

Conv′7(Xl−1) = [[owh]Ww=1]
H
h=1, owh =

7×7∑
i=5×5+1

wixwhi

It is important to note, in Eq. (18), that the starting indexes
for summation in Conv′5(Xl−1) and Conv′7(Xl−1) differ from
those in Conv5(Xl−1) and Conv7(Xl−1). Moreover, although
each candidate operation of (16) uses its own weight(wni ),
the weights of the candidate operations of (18) are sampled
from the same set(wi). Conv3(Xl−1), which is the smallest
operation, is the same as Conv3(Xl−1) of (16). Conv′5(Xl−1)
cannot be used as a standalone operation. It must be used
with Conv3(Xl−1) to function as a complete operation.
Conv5(Xl−1) of (16) can be obtained from Conv3(Xl−1) +

Conv′5(Xl−1). Similarly, Conv′7(Xl−1) cannot be used as a
standalone operation. Conv7(Xl−1) can be obtained from
Conv3(Xl−1) + Conv′5(Xl−1) + Conv′7(Xl−1). Eq. (18) can
be reformulated to apply the optimization method with the
operation importance parameters in the same way as (17):

Xl = αConv3(Xl−1) + βConv′5(Xl−1) + γConv′7(Xl−1),
(19)

where {α, β, γ } = {1, 0, 0}, {1, 1, 0} or {1, 1, 1}

Conv′5(Xl−1) and Conv′7(Xl−1) cannot be used as a standalone
operation, so the sets α, β, and γ are different from the
sets of the weight-sharing NAS. In practical implementation,
only Conv7(Xl−1) needs to be declared, encompassing
Conv3(Xl−1), Conv′5(Xl−1), and Conv′7(Xl−1). The weight
parameters wi for Conv5(Xl−1) are extracted by isolating the
core parameters of Conv7(Xl−1), excluding the surrounding
ones. Similarly, the weight parameters for Conv3(Xl−1) are
derived from Conv5(Xl−1).
DynamicNAS can also be extended to other aspects of

CNN, such as the number of channels and layers (also known
as the width and depth of CNN) [14], [15], [38]. Additionally,
DynamicNAS can be applied to ViT architectures. For
example, in the Autoformer [17] model, DynamicNAS is
used to optimize the dimension of the representation vector,

the number of heads, the expansion ratio, and the number of
layers.
A layer of a supernet can be modeled as a function that

takes the output of the previous layer as the input; we can
represent 3 layers of a supernet as:

Xl = Fl(Fl−1(Xl−2)), (20)

where Fn denotes the operation of layer n. While (20)
contradicts the structure of DynamicNAS, whose operations
are entangled through summation, it is possible to give
the operations a structure that aligns with DynamicNAS by
adopting the residual connection technique, in which F(x) =

x + f (x) [1]. Then Eq. (20) can be reformulated as:

Xl = Xl−2 + fl−1(Xl−2) + fl(Xl−2 + fl−1(Xl−2)) (21)

If the layers from 1 to l − 1 are included, the output becomes
Xl−2 + fl−1(Xl−2). If the layers from 1 to l − 2 are included,
the output becomes Xl−2. Thus, the use of the residual
connection enables the entanglement of operations between
layers, resulting in a more complex and flexible supernet
structure.
The entanglement of operations in DynamicNAS leads

to a notable reduction in the number of parameters in the
supernet, facilitating the search for various subnets across
a wide range of configurations. DynamicNAS incurs low
memory cost comparedwith weight-sharingNAS. In addition
to that, an important observation is that every subnet of a
trained supernet of DynamicNAS can be used immediately
after the supernet training stage without additional training
or fine-tuning [14], [16], [17]. This is a characteristic of
DynamicNAS. There has been no theoretical analysis of the
advantages of DynamicNAS so far; this remains for future
work. After supernet training is complete, an optimization
technique is often employed to explore the final subnet in
the searching stage. Various architectures may be suitable
for a particular environment. The optimization technique
determines the best subnet for the environment. Such
optimization commonly involves the use of an evolutionary
algorithm [13], [16], [17].
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