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Abstract

Despite the growing interest in using deep reinforcement learning (DRL) for drone control, several challenges remain to be addressed,
including issues with generalization across task variations and agent training (which requires significant computational power and time).
When the agent’s input changes owing to the drone’s sensors or mission variations, significant retraining overhead is required to handle the
changes in the input data pattern and the neural network architecture to accommodate the input data. These difficulties severely limit their
applicability in dynamic real-world environments. In this paper, we propose an efficient DRL method that leverages the knowledge of the
source agent to accelerate the training of the target agent under task variations. The proposed method consists of three phases: collecting
training data for the target agent using the source agent, supervised pre-training of the target agent, and DRL-based fine-tuning. Experimental
validation demonstrated a remarkable reduction in the training time (up to 94.29%), suggesting a potential avenue for the successful and
efficient application of DRL in drone control.
© 2024 The Authors. Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recently, the development of deep reinforcement learning
(DRL) algorithms has enabled drones to excel in various
applications, such as navigation [1,2], obstacle avoidance [3],
drone racing [4], drone taxi [5], and patrolling [6]. In these
DRL-based approaches, drones act as autonomous agents.
They interact with their environment through trial and error
and are optimized by feedback in the form of rewards. How-
ever, a recurring challenge is the need for DRL-based drone
agents to adapt seamlessly to various tasks, as the sensors or
missions in real-world applications often vary. Predictably, a
drone agent optimized for RGB sensor inputs will suffer a
significant performance drop when the sensor is switched to
depth or RGB-D due to its lack of knowledge of these new
input patterns. Similarly, a drone agent optimized for reaching
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a target given its position (target navigation) may perform
poorly if its mission changes to reaching the target using only
image sensors without knowing its position (target search).
The core issue is the limited ability of a DRL-based drone
agent to adapt across different tasks, frequently necessitating
resource-intensive retraining from scratch.

Potential solutions, such as knowledge distillation [7–9],
domain-adaptive DRL [10], imitation learning [11,12], and
meta-learning [13], have been explored. [8] introduced
KnowRU, a method for efficient knowledge reuse in multi-
agent reinforcement learning, leveraging knowledge distilla-
tion [7]. It utilizes the tuples of (si , ai , ri ) from the teacher’s
replay buffer to train the student’s actor and critic networks. [9]
explored various distillation methods and proposed expected
entropy regularized distillation, which incorporates an entropy
term in the loss function to accelerate learning. In [10],
the agents were trained to generate disentangled represen-
tations invariant to domain shifts. In particular, they aim
to ensure that, once trained in a source domain, an agent
can generalize its learning to a new, unencountered target
domain with minimal to no additional training. In [11], an
imitation learning algorithm was proposed to disentangle vi-
sual mappings from game dynamics, thereby enhancing the
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/licenses/by-nc-nd/4.0/).
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isual transfer-based policies. Similarly, BAIL [12] lever-
ges imitation learning to select actions that are likely to
ield high performance, and these selected actions are sub-
equently employed to train a policy network. [13] proposed a
eta-learning-based domain-adaptation technique for adapting

gents across different domains with minimal trials. Although
ignificant research progress has been achieved, a crucial gap
emains in addressing the unique challenges posed by task
ariations in DRL. This gap is particularly pronounced in
rone control, where missions (target navigation and target
earch) and sensors (depth, RGB to RGB-D) vary frequently,
ltering the observation and action spaces, and consequently,
he neural network architecture.

To tackle the challenge of limited adaptability in DRL-
ased drone agents, we introduce an efficient DRL method
hat enhances training speed and flexibility through knowledge
ransfer. This method involves transferring knowledge from a
rone agent trained on one task (the source agent) to another
hat needs to learn a different task (the target agent). Our
pproach is structured into three phases: initially, we collect
ata with the source agent, which is then used to pre-train
he target agent under supervision; following this, we fine-tune
he target agent using DRL. This methodology was evaluated
cross four drone control tasks, each with distinct mission
nd sensor setups, and we observed a substantial reduction in
raining times. Our contributions are as follows:

• We introduce a novel knowledge transfer method that
significantly speeds up the training process. By using
data from a source agent for pre-training, followed by
DRL-based fine-tuning, we achieved up to a 94.29%
reduction in training time.
• Our method offers flexibility in the neural network ar-

chitecture, including input layers between the source
and target agents. This means that the architectures of
the source and target agents do not need to be identi-
cal, allowing for adjustments and customization to meet
the specific needs of each mission or to accommodate
technical requirements.

he remainder of this paper is structured as follows: We detail
ur proposed method in Section 2, followed by a description
f our experimental setups and results in Section 3. Finally,
oncluding remarks are presented in Section 4.

. Efficient DRL under task variations

In this section, we describe an efficient DRL method for
ask variation. The task variations covered in this study include
ariations in the mission of the drone and sensors utilized in
he drone. These variations inherently cause changes in the
bservation space between the source and target agents (e.g., a
94-dimensional vector to 84×84×3 images), which can lead

to changes in the neural network architecture (e.g., a fully
connected network to convolutional neural networks). The pro-
posed method is applicable regardless of these changes. The
proposed method consists of three phases: (1) data collection,
(2) supervised pre-training, and (3) DRL-based fine-tuning. It
focuses on transferring knowledge from a trained source agent
to a randomly initialized target agent to accelerate the training
of the target agent for the target task.
 p
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2.1. Phase 1: Data collection

We assume that the trained policy (πψ ) and value (Vϕ)
networks of the source agent are provided and that the obser-
vation spaces of the source task (OS) and target task (OT ) are
included in the state space (S) of the environment, i.e., OS

∈ S
nd OT

∈ S.
In Phase 1, we collect data by rollout with πψ in the

nvironment. The main idea in this phase is that the source
gent determines the action and rollout based on observations
f the source task. However, we collected observations for the
arget task instead of the source task. Specifically, for each
ollout step t , the tuple in the format (oT

t , yt , vt ) is collected,
here oT

t is the observation of the target task while (yt )
and (vt ) are the action logit and value determined by the
observation of the source task (oS

t ):

yt = πψ (oS
t ), vt = Vϕ(oS

t ). (1)

This tuple may be mismatched because oT is not used
o calculate yt and vt . This process has several significant
dvantages.

• We can easily and quickly obtain the target task’s data
with the source task’s trained agent.
• We can freely configure the target agent (e.g., neural

network architecture) as the target agent is not involved
in the process.
• The pre-trained agent itself performs well, as detailed in

the experiments section.

his phase continues until the termination condition for data
ollection, condcollect , is satisfied. The possible conditions
ould be a 100-episode rollout, which we utilized for the
xperiments, data size, or time.

.2. Phase 2: Supervised pre-training

We begin by setting the training data and leveraging the
uples acquired in Phase 1. The action logit and value of the
ource observation are used as the labels of the target observa-
ion for the supervised pre-training of the target agent’s policy
nd value neural network, respectively. The target agent’s
olicy and value networks are randomly initialized with pa-
ameters ψ and ϕ, respectively. Subsequently, we set the loss
unctions Lπ and Lv to guide the iterative updating of these
arameters. The loss functions for pre-training are defined as
ollows:

π =
1⏐⏐OT

⏐⏐ ∑
oT

t ∈OT

πψ (oT
t )− yt

2
2 , (2)

v =
1⏐⏐OT

⏐⏐ ∑
oT

t ∈OT

(
Vϕ(oT

t )− vt
)2
, (3)

here | · | denote the cardinality of the set. With a learning
ate α, the gradient descent method updates the parameters
o reduce the loss. Pre-training continues until the predefined
ondition, condpre−train , such as an early stopping with the
atience of 30 utilized for the experiments, is satisfied.
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Fig. 1. Environment and a sample of the depth and RGB images captured
from the sensors in the drone. They are used for training the drone agent
via DRL.

2.3. Phase 3: DRL-based fine-tuning

Using DRL with an agent pre-trained from the source, we
can reduce the computation time by enabling effective explo-
ration based on the transferred knowledge. In this phase, we
fine-tuned the pre-trained target agent from Phase 2 via DRL.
We used proximal policy optimization (PPO) [14] as the DRL
algorithm. Specifically, the agent performs a rollout to collect
experiences stored as tuples of observations, actions, rewards,
and subsequent observations, denoted by {(oT

t , at , rt , oT
t+1)},

here at denotes the action sampled from Softmax(πψ̂n
(oT

t )).
ubsequently, the parameters of the policy πψ̂ and value Vϕ̂

networks are updated by maximizing the policy objective and
minimizing the value loss. Refer to [14] for a description of
policy objectives and value loss. This phase persists until the
termination condition, cond f ine−tune, is satisfied.

In summary, the proposed method, structured as Algorithm
, presents a systematic approach for transferring knowledge
rom the source to the target tasks, providing efficient train-
ng under task variations. Moreover, the rollout processes in
hases 1 and 3 can be accelerated by increasing the number
f rollout workers. Six rollout workers were used in this
xperiment. Additional details of the experimental settings
sed to validate our approach, including the missions, neural
etwork architectures, and input descriptions, are described in
he following section.

. Experiments

.1. Experimental settings

In this study, we investigated two drone-control scenarios:
arget navigation and target search. Although the primary

ission in both scenarios is to reach the target object while
voiding obstacles, the operational methods are different. The
nvironment and samples of the depth and RGB images are
hown in Fig. 1. A red box in Fig. 1(a) illustrates the target
bject.

• Target Navigation (TN)
Mission Considering the target’s position, the drone uses
the position and sensor input to navigate to the target.
Network Architecture For this scenario, we implemented
a fully connected network (FCN) with two hidden layers,
each with 256 nodes.
578
Algorithm 1: Pseudo-code of the proposed method.
Input: The trained policy (πψ ) and value (Vϕ) networks
for the source task

Output: The trained policy (πψ̂ ) and value (Vϕ̂)
networks for a target task

# Phase 1: Data Collection
for e = 1, 2, · · · do

Initialize the state s0;
for t = 0, 1, 2, · · · do

Retrieve the observations for the source task oS
t

and the target task oT
t from state st ;

Compute the action logit yt = πψ (oS
t ) and the

value vt = Vϕ(oS
t );

Store tuple (oT
t , yt , vt );

Sample action at ∼ Sof tmax(yt );
Forward (t + 1)th step with at ;
Retrieve the next state st+1;
if done then

break;
end

end
if condcollect then

break;
end

end
# Phase 2: Supervised Pre-training
Set the training data for the policy network as (oT

t , yt );
Set the training data for the value network as (oT

t , vt );
Initialization: ψ ′0 ← ψ , ϕ′0 ← ϕ;
for n = 0, 1, 2, · · · do

Compute the loss Lπ in Eq. (2);
Compute the loss Lv in Eq. (3);
(Update ψ ′): ψ ′n+1 ← ψ ′n − α∇ψ ′Lπ ;
(Update ϕ′): ϕ′n+1 ← ϕ′n − α∇ϕ′Lv;
if condpre−train then

break;
end

end
# Phase 3: DRL-based Fine-tuning
Initialization: ψ̂0 ← ψ ′, ϕ̂0 ← ϕ′;
for n = 0, 1, 2, · · · do

Rollout with πψ̂n
for T ;

We store the tuple (oT
t , at , rt , oT

t+1) Update policy ψ̂n

by maximizing the policy objective;
Update the value ϕ̂n by minimizing value loss;
if cond f ine−tune then

break;
end
ψ̂n+1 ← ψ̂n , ϕ̂n+1 ← ϕ̂n;

end

Input Description The network processes a 194-dimen-
sional input vector. In particular, 192 dimensions are
derived from a 640×480 depth image downscaled by
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a factor of 1/40 along both axes. The remaining two
dimensions quantify the distance and angular direction
relative to the target.
• Target Search (TS)

Mission Without prior knowledge of the target’s position,
the drone must search the environment for the target,
relying solely on its sensor inputs. This scenario is more
challenging than the target navigation scenario.
Network Architecture Considering the visual input, we
implemented a convolutional neural network (CNN) with
three hidden layers. Refer to the experimental setup
in [15] for details.
Input Description This CNN assumes a resolution of
84×84 pixels, downscaled from an original 640×480
image. The channel configuration is adapted to the type
of sensor used. In our experiments, we tested with 1-
channel depth, 4-channel RGB-D, and 3-channel RGB
sensors.

We used target navigation as the source task and target
earch as the target task to emphasize the efficacy of the
roposed method. We showed that we could significantly
educe the training time for (more difficult) target search
y using the knowledge of (easier) target navigation. Please
efer to the experimental results presented in the following
ubsections. We employed the PPO algorithm [14] as the DRL
lgorithm to train the agents from scratch (baseline) and fine-
uning the pre-trained target agents (proposed). The training
ermination criterion was a success rate of 90% or higher for
ve consecutive training iterations.

.2. Hardware and software specifications

The experiments were conducted on a Dell Precision 7920
quipped with an Intel Xeon Gold 6240 processor, 64 GB
f RAM, and an Nvidia Quadro RTX 8000 with 48 GB
f graphics memory. The operating system installed on the
orkstation is Ubuntu 18.04. Gazebo 9 and ROS Melodic were
sed for simulation purposes. The algorithm was developed
sing Ray [16] (version 1.13), which incorporates RLlib [17]
ith a PPO implementation, and TensorFlow (version 2.8)
as used for execution. Leveraging Ray, we employed six

imulators (workers) running in parallel to collect data and
xpedite the DRL process across all experiments that required
imulators, namely the Baseline and Phases 1 and 3 of the
roposed method.

.3. Experiment I: Baseline (train from scratch)

This subsection outlines the baseline results of training a
rone agent using DRL. For the baseline DRL experiment, we
nitialized the agent training from scratch using a randomly
nitialized policy and a value network across four distinct
asks. These tasks consisted of one target navigation task
nd three target search tasks employing depth, RGB-D, and
GB sensors. These baseline results provided a benchmark for
valuating the efficacy of the proposed methodology, which is
etailed in the following subsections.
579
Fig. 2. Success rate (%) over training iteration for baseline. Smoothed using
an exponential weighted moving average. The results for five randomly
initialized networks are visualized with different colors. TN, TS, and D are
the abbreviations for target navigation, target search, and depth, respectively.

Table 1 lists the training time taken for each experiment,
with five random initializations conducted for each task. Fig. 2
supplements these results by visually depicting the success
rates achieved over training iterations. Each experiment had
varying time and iteration, owing to the termination criterion
mentioned in the experimental settings, achieving a success
rate of 90% or higher for five consecutive iterations.

A review of these baseline results reveals extensive time
requirements for training the drone agent via DRL, even
within the relatively simple environments depicted in Fig. 1.
More specifically, the target search scenario, which realisti-
cally omitted the target’s position, required training durations
of 30.05 h, 19.01 h, and 11.32 h for depth, RGB-D, and
RGB sensors, respectively. This indicates that repeated train-
ing from scratch, necessitated by task variations, results in
excessive time and computational power consumption, thereby
challenging the application of DRL in real-world drone-control
settings.

Our observations also indicate that the target navigation
task, despite the limitations of sensor type (depth only) and
neural network architecture, was completed faster than the
target search tasks – 3.39, 5.35, and 8.99% of training time for
depth, RGB-D, and RGB sensors, respectively. These results
suggest that the availability of the target position significantly
reduces task difficulty, leading to quicker training termination.
Moreover, as noted in the experimental settings, the target
object, being a “red” box, is harder to identify with only depth
information as opposed to using RGB-D or RGB.

3.4. Experiment II: Evaluation of the proposed method

This subsection describes the results of training the drone

agent using the proposed method. As described in Section 2,
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Table 1
Training time (s) for baseline.

Target navigation
(with Depth)

Target search
(with Depth)

Target search
(with RGB-D)

Target search
(with RGB)

1st 3,024 155,643 56,363 39,749
2nd 3,439 73,135 64,639 40,655
3rd 3,602 98,812 78,691 37,400
4th 3,842 100,932 76,666 45,597
5th 3,735 112,365 65,883 40,432

Avg 3,528 108,177 68,448 40,766
Table 2
Comparison of training time (s) between the baseline and the proposed method. “Gap” means the ratio between the proposed method and
the baseline training time.

Baseline Proposed method Gap

Phase 1
Data collection

Phase 2
Supervised pre-training

Phase 3
DRL-based fine-tuning

Total

Target Search with
Depth

108,177.17 68.54 1,750.67 20,192.02 22,011.23 79.65% ↓

Target Search with
RGB-D

68,448.47 71.37 1,581.59 1,429.09 3,906.08 94.29% ↓

Target Search with
RGB

40,766.48 66.75 1,738.97 2,244.08 4,876.13 88.04% ↓
this includes three phases: (1) data collection, (2) supervised
pre-training, and (3) DRL-based fine-tuning.

First, we depict the overall time comparison to the base-
line in Table 2. We observed 79.65%, 94.29%, and 88.04%
reductions in the training time for target searches with depth,
RGB-D, and RGB, respectively, meaning that the proposed
method is a practical and efficient alternative to training from
scratch.

From now on, we will examine the results for each phase
of the proposed method.

The data-collection phase involves data collection for the
target search task (target task) using a particular stochastic
policy (πψ ) trained for the target navigation task (source task).
We collected data for 100 episodes using six rollout workers
for each target-search task. Table 3 lists the size and success
rate of the collected data and the time required to collect the
data for the three target tasks. Compared with the baseline
results in Table 1, the time required for data collection listed
in Table 2 was marginal. On an average, it took 68.89 s. This
tends to be proportional to the number of rollout workers used
for data collection. We omitted the time comparison based on
the number of rollout workers because of the marginal effect
on the total training time of the proposed method and space
limitations.

The next phase involves pre-training the target agent us-
ing the collected data under supervision. We performed the
experiments using five randomly initialized networks. The
training epochs, time, policy loss, and value loss averaged over
five experiments are listed in Table 4. 1,750.67 s, 1,581.59
s, and 1,738.97 s were taken for pre-training the target task
with depth, RGB-D, and RGB, respectively, which were only
1.62%, 2.31%, and 4.27% of the computational time for the
baseline. Table 5 presents the evaluation results of five pre-
trained target agents for each task over 100 episodes. The
580
Table 3
Average size and success rate (%) of the collected data, and data collection
time (s) in Phase 1.

Target search
(with Depth)

Target search
(with RGB-D)

Target search
(with RGB)

Size (unit) 21,047 20,421 18,596
Success Rate (%) 90 90 91
Collection Time (s) 68.54 71.37 66.75

average success rates are 82.2%, 76.8%, and 62.6% for the
target search with depth, RGB-D, and RGB, respectively.
Because the source task used only a depth sensor, we can infer
that when pre-training the target task using the data collected
by rolling out the source agent, relatively high performance
was obtained owing to good alignment with depth, and low
performance was obtained owing to poor alignment with RGB.

The final phase involved fine-tuning the target agent in
the target task via DRL. Table 6 lists the training times. The
success rates along the training iterations are presented in
Fig. 3. We observed a significant reduction in the training time
and iterations compared with the baseline. This accelerated
training is attributed to pre-trained networks containing knowl-
edge transferred from the source agent through phases 1 and
2. The training time for Depth in Phase 3 accounted for ap-
proximately 18.7% of the Baseline, whereas RGB and RGB-D
required only 12.0% and 0.2%, respectively. This difference is
attributed to trial-and-error-based DRL’s challenge in locating
the ‘red’ box using a depth image that cannot encode color.

Overall, we can conclude that the proposed method is
suitable for real-world drone applications because of its rapid
adaptation to task variations by leveraging the knowledge of

previously trained agents.
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Fig. 3. Success rate (%) over training iteration for Phase 3.

Table 4
Average training epochs, time (s), and losses for policy and value networks
for Phase 2.

Target search
(with Depth)

Target search
(with RGB-D)

Target search
(with RGB)

Epochs (#) 345 315 361
Time (s) 1,750.67 1,581.59 1,738.97
Policy Loss (Lp) 0.013 0.010 0.012
Value Loss (Lv) 0.025 0.013 0.028

Table 5
Success rate (%) of the pre-trained model obtained through Phase 2.

Target search
(with Depth)

Target search
(with RGB-D)

Target search
(with RGB)

1st 78 79 62
2nd 82 73 64
3rd 82 72 63
4th 84 83 62
5th 85 77 62

Avg 82.2 76.8 62.6

4. Conclusions

In this study, we present a three-phase deep reinforcement
learning (DRL) algorithm designed to improve efficiency and
581
Table 6
Training time (s) for Phase 3.

Target search
(with Depth)

Target search
(with RGB-D)

Target search
(with RGB)

1st 26,226.26 2,282.76 3,361.00
2nd 29,934.55 2,540.64 2,905.41
3rd 22,578.86 2,332.48 1,944.75
4th 13,598.53 2,774.80 2,728.98
5th 8,621.92 1,334.94 4,411.92

Avg 20,192.02 2,253.12 3,070.41

flexibility. The proposed approach facilitates knowledge trans-
fer by efficiently collecting training data for an agent on a
target task with a trained agent on a source task. This mech-
anism accelerates the training process under task variation as
well as provides flexibility to change the input modality and
neural network architecture. Empirical evaluations covering
different missions, sensor types, and architectures of drone
agents showed a significant reduction in the training time of
up to 94.29%. Future research could address the incorporation
of real-world drone flight data or even extend the application
spectrum to other relevant domains. Considering the frequency
of task variations in real-world scenarios, we are optimistic
that our approach will advance DRL-driven autonomous drone
control.
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