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ABSTRACT Recently, with the expansion of the video platform market, research has been actively
conducted on temporal action localization (TAL) for detecting actions in atypical videos. Most learning
methods for TAL include full and weak supervision (weak supervision with only action classes) approaches.
Full supervision requires considerable time for labeling and weak supervision exhibits low localization
performance owing to the lack of informative annotations. To solve this problem, point-level weak super-
vision using single-point timestamps within the temporal interval of action instances has been proposed,
which demonstrates superior performance to weakly-supervised methods using only action classes of
action instances. In this study, we proposed an improved point-level supervision mechanism that provides
point-level annotations for each action and background instance. In addition, a widely used multiple instance
learning (MIL)-based framework was used to verify the proposed method, and pseudo-labels were used for
action instance boundary learning. Also, the background point loss was designed to leverage the added
point-level annotations. The datasets used in the experiment were THUMOS14, GTEA, BEOID, and
ActivityNet1.2, and improved results were obtained compared to existing point-level supervision. The code
is available from https://github.com/sang9390/An-Improved-Point-Level-Supervision-Method-for-TAL.

INDEX TERMS Temporal action localization, multiple instance learning, fully-supervised learning, weakly-
supervised learning.

I. INTRODUCTION
Recently, research on the weakly-supervised methods in tem-
poral action localization (TAL) has been actively conducted.
Weakly-supervised methods aim to detect and classify action
instances in an untrimmed video, given video-level anno-
tations with action classes of action instances within the
video. Fully-supervised methods require complete annota-
tions, including action instance boundaries and action classes.
Therefore, a full supervision approach necessitates repeat-
edly watching videos to accurately label action boundaries,
indicating a time-consuming labeling operation [1]. However,
for weakly-supervised methods, very little time is required
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for labeling owing to the difference in necessary informative
annotations [2].

Weakly-supervised methods assume that action segments
in a video have a significant influence on video-level
classification. However, these methods lack temporal con-
textual information, indicating that background segments
are likely to significantly affect video-level classifica-
tion [3]. It is evident that certain components do not
comply with the aforementioned assumption. Therefore,
weakly-supervised methods show lower localization perfor-
mance than fully-supervised methods [4], [5], [6], [7]. To
tackle this problem, SF-Net [2] and BackTAL [3] intro-
duced the action instance-based point-level supervision and
background instance-based point-level supervision methods,
respectively. SF-Net [2] confirmed that it takes 45, 50,
and 300 seconds to generate video-level, point-level, and

71260
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0473-0185
https://orcid.org/0000-0002-6616-824X
https://orcid.org/0000-0003-3145-6732
https://orcid.org/0000-0001-7382-1107


S. Lee et al.: Improved Point-Level Supervision Method for TAL

FIGURE 1. Performance and annotation time per 1-minute video
comparison of various supervision methods on THUMOS14.

instance-level annotations, respectively, based on a 1-minute
video. BackTAL [3] confirmed that most errors that occur
in action localization results based on weakly-supervised
methods occur in the background. To annotate video-level
supervision, one only needs to watch the entire video once.
Similarly, to add an annotation to point-level supervision,
it is necessary to watch the entire video once and record
a point when an action or background is recognized. The
annotation process can be completed with an annotation
tool, thus requiring a similar amount of time or point-level
supervision as for video-level supervision. However, frame-
level supervision annotation must accurately record the start
and end frames of an action instance; therefore, the video
must be watched while rolling back, significantly increas-
ing the annotation cost. Each point-level supervision method
demonstrated high localization performance compared to
video-level supervision methods and demonstrated signifi-
cant potential for development.

However, point-level supervision methods still exhibit a
large performance gap compared to fully-supervised meth-
ods at high intersection-over-union (IoU) thresholds. In
this paper, we argue that this is because temporal context
information remains insufficient for point-level weakly-
supervised TAL. Based on this claim, we propose an
improved point-level supervision mechanism.

In our method, we propose leveraging both action and
background points. Improved point-level annotations are
extracted from the annotations of the fully-supervised meth-
ods. The action instance is extracted using a Gaussian distri-
bution and the center point is extracted for the background
instance. To assess the proposed method, the MIL-based
framework was used as a baseline. Among the MIL-based
frameworks, LACP [8], which demonstrated high perfor-
mance in point-level supervision, was used. The frame-
work learns point-level annotations to extract the action
scores, which are then used to generate pseudo-labels
(i.e., sequences) and learn the action instance boundaries.
Also, background instance loss is proposed to utilize the

added background instance-based point-level annotations.
We can more clearly distinguish the temporal context by
learning improved point-level annotations with very little
annotation time added compared to existing methods and
show significant performance improvement (see Figure 1).

In this paper, the experiments were conducted using four
datasets and demonstrated that the proposed method gener-
ally outperformed existing point-level supervision methods.
The datasets used were THUMOS14 [9], BEOID [10],
GTEA [11], and ActivityNet 1.2 [12]. THUMOS14 com-
prises 20 action classes, BEOID 30 action classes, GTEA 7
action classes, ActivityNet 1.2 100 action classes.

The contributions of this study can be summarized as
follows:

1) We propose a point-level supervision based on action
and background instances for the temporal action local-
ization task.

2) A background point loss is proposed to effectively
utilize background point annotations.

3) We have performed extensive experiments on the
three benchmarks and demonstrated that the proposed
method outperforms LACP [8], the state-of-the-art
(SOTA) method in point-level supervision.

II. RELATED WORK
Section II introduces the latest research trends in TAL [5],
[13], [14]. First, we examine the fully-supervised method
and the widely used one-stage [15], [16], [17] and two-stage
[18], [19], [20], [21], [22] frameworks. Second, weakly-
supervised methods are investigated. Finally, we explore the
point-level supervision method, which is the basis of the
proposed method.

A. FULLY-SUPERVISED TEMPORAL ACTION LOCALIZATION
learns based on accurate annotation for each frame. Existing
methods are largely divided into one-stage and two-stage
frameworks and primarily use a two-stage framework. The
one-stage framework simultaneously infers action instance
boundaries and classes, while the two-stage framework cre-
ates action instance proposals and classifies them separately.
There are several methods of creating proposals. One method
uses the sliding-window technique [19], [23], [24], [25], [26],
[27], [28]. Another method extracts the probability that each
frame is the start or end point of an action instance and then
uses a combination of probable action instances as a proposal
or proposes an anchor mechanism [22], [29], [30], [31],
[32]. The latest fully-supervised methods, such as TALL-
Former [33] and RCL [34], exhibit outstanding localization
performance.

B. WEAKLY-SUPERVISED TEMPORAL ACTION
LOCALIZATION
employs video-level labels as annotation to reduce the labo-
rious labeling process of fully-supervised methods. Based on
the MLP framework, a method is devised to select and learn
segments that influence video-level classification, similar to
approaches such as UntrimmedNet [35] and STPN [36]. This
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FIGURE 2. Point-level supervision types. (a) Action instance based [2]. (b) Background instance based [3]. (c) Action and background instance based
(ours).

method also aims to localize action instances by utilizing spe-
cific action score thresholds. Subsequently, various methods
for leveraging weak supervision annotations have been stud-
ied. One method focuses on background instance modeling
[3], and the EM-MIL approach [37] leverages pseudo-label
extraction to learn the boundaries of an action instance.
Despite the various approaches described above, weakly-
supervised TAL demonstrates extremely poor performance
compared to the fully-supervised method, owing to the lack
of temporal context information. To solve this fundamental
problem, several methods have used external information
such as action count [7], [38] or audio [39].

C. SINGLE-FRAME SUPERVISED TEMPORAL ACTION
LOCALIZATION
is a type of weakly-supervised method where the time
required for the labeling operation is similar to that of
the weakly-supervised method, and the localization perfor-
mance is similar to that of the full instruction method.
A representative example is SF-Net [2]; using point-level
annotations and extracted pseudo-labels, a higher localiza-
tion performance was obtained compared to that of the
weakly-supervised method. BackTAL [3] argued that the
localization performance of SF-Net [2] was inferior to that of
the fully-supervised method because of background errors;
a background instance point annotation was proposed to
improve this. In addition, it exhibits better localization per-
formance than SF-Net [2]. LACP [8] argued that existing
point-level instruction methods do not consider the com-
pleteness of the action instance. To provide completeness,
we contrast the action instance with the background instance.
This approach exhibits a significant performance improve-
ment at a low IoU threshold. However, it still exhibits lower
localization performance than the fully-supervised method
[33], [34].

III. METHOD
Section III describes our improved point-level supervision
method in detail. After that, the TAL framework used in this
study and the proposed background point loss are examined.
Problem Setting: In this study, the task of instance-click

supervision for TAL was set based on the research concern-
ing SF-Net [2] and BackTAL [3]. Given an input video,
point and class labels were provided for each action and

background instance. The corresponding label is expressed

as follows: Bins =
(
ti, yti

)M ins

i=1 , where the i-th instance is
labeled with the Yti -class in the ti-th frame. Yti represents
the category of C + 1 including the background in the total
number of classes and the one-hot labeling method is used.
M ins is the total number of instances including the number
of action and background instances in the video, aiming to
distinguish each action instance boundary and class in the
training and test videos using the above annotation. The
differences with existing point-level annotations are shown in
Figure 2.

A. BASELINE FRAMEWORK
The framework used in this study is based on LACP [8],
as shown in Figure 3. Subsequently, we briefly describe the
pipeline.

1) EXTRACTED FEATURES
We use RGB and optical flow images as the inputs. The
feature extractor uses I3D [38], which is widely used in TAL
tasks and has achieved satisfactory performance. The follow-
ing steps briefly describe the extraction of these features.
First, the input images are divided into 16 frames to create
snippets. The snippet is then fed into an I3D feature extractor
[38] to generate the extracted features X . A feature has a size
of D × T , where D is the number of channels and T is the
total number of snippets in the video.

2) EMBEDDED FEATURES
The TAL task requires the localization of actions along
the temporal domain. Therefore, the model consists of 1D
convolutions with strengths in temporal feature modeling.
Embedded featuresF are generated by inputting the extracted
features X into a 1D convolutional layer. The extracted
features X are then embedded to optimize the TAL task.
The size, D × T , is equal to the number of extracted
features X .

3) ACTION SCORES
The embedded features F are input into the 1D convolutional
layer. Subsequently, the generated feature is input into the
sigmoid function to obtain the action scores P, which have
a magnitude of C × T . P represents the probability that the
snippet belongs to the class c.
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FIGURE 3. Baseline framework.

4) BACKGROUND SCORES
The embedded features F are input into the 1D convolutional
layer. Afterward, the generated feature is input into the sig-
moid function to obtain the background scores Q. The size
is 1 × T and Qt is the probability that the snippet is in the
background.

5) FINAL SCORES
In order to have completeness, the final scores P̂ are extracted
using the element-wise product of P and 1 − Q. This is the
same size as P.

6) VIDEO-LEVEL CLASSIFICATION SCORES
This is a video-level classification score obtained by perform-
ing temporal top-k pooling on the action scores P.

7) PSEUDO GT
As the pseudo GT outputs through the optimal sequence
search of LACP [8], it is possible to obtain an optimal
sequence (i.e., the pseudo-ground truth) that is most likely
to be similar to the action instance.

B. BACKGROUND POINT LOSS
In this section, we briefly review the loss in the existing
method [8] and describe the proposed background point loss.

The losses used in the existing method are as follows:

Ltotal = λ1Lvideo + λ2Lpoint + λ3Lscore + λ4Lfeat , (1)

where λ∗ denotes the hyperparameter. Assessing each loss,
Lvideo is the loss valuemeasured by comparing the video-level
annotation and classification scores. Lscore is a loss value
measured by comparing the pseudo-labels. Lfeat is a loss
value measured by comparing the pseudo-labels. Lpoint can
be divided into the following two types:

Lpoint = Lactpoint + Lbkgpoint (2)

The background point loss is calculated using binary cross-
entropy, and the focal loss [22] is employed. The expression
is defined as follows:

Lbkgpoint = −
1

Mbkg

∑
∀t∈Bbkg

(
C∑
c=1

p̂t [c]β log
(
1 − p̂t [c]

)
+ (1 − qt)β log qt ), (3)

where Bbkg =
{
tj
}Mbkg

j=1 denotes the set of pseudo-background
points extracted based on the score of qt . Mbkg denotes the
total number of background points extracted. β uses 2, which
is the same number as the focal loss [22], as the focusing
parameter.

However, when background point loss is employed, point
annotation of each added background instance cannot be
used. In addition, there is a possibility of adversely affect-
ing localization performance due to learning through a
set of pseudo-background points. Therefore, in this paper,
we propose a GT background point loss method based on
background point annotation. The GT background point loss
is defined as follows:

Lbkg_gtpoint = −
1

Mbkg_gt

∑
∀t∈Bbkg_gt

(
C∑
c=1

p̂t [c]β log
(
1 − p̂t [c]

)
+ (1 − qt)β log qt ), (4)

where Bbkg_gt =
{
tj
}Mbkg_gt

j=1 denotes the GT background point
set. Mbkg_gt represents the total number of GT background
points. β is the same as that in equation (3). The total
point-level loss is defined as the sum of equations (2) and (3),
as follows:

L̃point = Lactpoint + Lbkgpoint + Lbkg_gtpoint (5)

In summary, the learning in this study is based on the follow-
ing equation:

Ltotal = λ1Lvideo + λ2L̃point + λ3Lscore + λ4Lfeat (6)

The reasoning process is configured in the same way as in
LACP [8]. First, the class to be detected is selected based
on the video-level classification score threshold 2vid . Subse-
quently, the proposal is extracted based on the segment-level
threshold 2seg at P̂. We also use non-maximum suppression
(NMS) to remove overlapping proposals.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
1) DATASETS
In this paper, THUMOS14 [9], BEOID [10], GTEA [11],
and ActivityNet 1.2 [12] datasets were used to verify the
performance of the proposed method. THUMOS14 [9] con-
sists of validation and test sets of 200 and 213 unstructured
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TABLE 1. State-of-the-art comparison on THUMOS14.

TABLE 2. State-of-the-art comparison on GTEA and BEOID.

TABLE 3. State-of-the-art comparison on ActivityNet 1.2.

videos and has a total of 20 classes. In addition, the vali-
dation set is typically used for training and the test set is
used for testing [4], [35], [36]. In this study, 210 videos
were used for the test, excluding three videos from the test
set based on the LACP guidelines [8]. BEOID [10] com-
prises 30 action classes and 58 videos. GTEA [11] comprises
28 videos and seven action classes; we also used 21 and seven
videos for training and testing, respectively. GTEA [11] and
BEOID [10] follow the data segmentation method of [2].

TABLE 4. Comparison of point-level labels from different point
distributions on THUMOS14.

TABLE 5. Comparison of point-level labels from different point
distributions on GTEA.

ActivityNet 1.2 [12] has 100 action classes and consists of
4,819 training, 2,383 validation, and 2,480 test videos.

2) EVALUATION METRICS
We employed evaluation indicators that are mainly used
for TAL. After obtaining the average precision (AP) score
according to the IoU threshold, the mean average precision
(mAP) was calculated.
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FIGURE 4. Qualitative result (THUMOS14).

TABLE 6. Comparison of point-level labels from different point
distributions on BEOID.

TABLE 7. Ablation study on THUMOS14.

In this section, the existing SOTAmethod and the proposed
method are compared.

Table 1 shows the performances of the proposed method
based on different supervised methods on the THUMOS14
[9] dataset. The performance is shown to be higher when the
IoU threshold is 0.6 or less than LACP [8], which has been

TABLE 8. Comparison of performance by convolutional layer on
THUMOS14.

used as a baseline framework. In addition, there is a slight
performance gap compared to the fully-supervised method.
Table 2 compares the performance of the proposed point-level
supervision method and the state-of-the-art (SOTA) method
for the GTEA [11] and BEOID [10] datasets. Our method
demonstrates superior performance compared to existing
methods overall, except for specific IoU thresholds, for both
datasets. Table 3 presents the performance comparison of
our proposed method with previous SOTA approaches on the
ActivityNet 1.2 dataset [12]. The comparison results demon-
strate that our proposed method achieves higher performance
compared to the existing SOTA methods, it can be seen
that the proposed method is generally helpful in improving
performance.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
C. QUANTITATIVE COMPARISON
Tables 4, 5, and 6 compare the performance changes in vari-
ous datasets according to the label distribution (THUMOS14
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FIGURE 5. Qualitative result (GTEA and BEOID).

FIGURE 6. The failure cases of our proposed method (THUMOS14).

[9], BEOID [10], and GTEA [11]). ‘‘Center’’ represents the
label extracted from the midpoint of the action or background
instance; all other labels represent simulated labels from that
distribution. Tables 4, 5, and 6 demonstrate that the pro-
posed method outperforms LACP [8] for most distributions.

In particular, a significant performance improvement is
shown at an IoU threshold of 0.3, indicating that the pro-
posedmethod improves the ability to distinguish the temporal
context. Table 7 compares the performance changes in THU-
MOS14 according to the changes in the background point
loss. When Lbkgpoint or Lbkgpoint_gt is used, the performance
is similar to each other; when the two are used concur-
rently, a performance improvement of 1.3 (average mAP) is
achieved. Table 8 presents the experimental results conducted
to demonstrate the importance of the existing 1D convolution
layer. The experiment was carried out by replacing the 1D
convolution layer with a 2D convolution layer in the baseline
framework. As a result of the experiment, it can be confirmed
that the performance decreases when using a 2D convolu-
tional layer instead of a 1D convolutional layer.

D. QUALITATIVE COMPARISON
This section presents qualitative comparisons of the proposed
and LACP [8] methods performed in this study. Through
Figures 4 and 5, it was confirmed that the proposed method
had fewer false positives and false negatives. In the case of
LACP [8], it is often found that the final score is high in the
background segment or the final score is low in the action
segment. On the other hand, the proposed method produces
more accurate detection results by contrasting the difference
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between the action frame and the background frame. Through
this, it was confirmed that our point-level supervision helps
to learn the temporal context well.

E. FAILURE CASES, LIMITATIONS, AND FUTURE WORK
Figure 6 shows failure cases of our proposed approach. From
the figure, we can see that our scheme is still vulnerable to
false positives and over-completeness errors. Although these
limitations may be evident for certain videos. On the other
hand, as shown in Figures 4 and 5, the proposed approach
demonstrates superior qualitative results on various datasets
(i.e., TUMOS14 [9], BEOID [10], and GTEA [11] compared
to existing state-of-the-art methods. The reason for the afore-
mentioned inaccurate detection results is that the proposed
approach does not accurately learn the boundaries of the
working instances. This suggests a lack of precise boundary
learning, which may be attributed to the insufficient com-
pleteness guidance provided by theGT background points. To
address these limitations in the future, our goal is to conduct
further research to utilize GT background points for more
effective completeness guidance.

V. CONCLUSION
In this paper, we proposed an instance point supervi-
sion method that provides action and background instance
point annotations. In addition, a new background point loss
was designed to leverage the added annotation. The pro-
posed method demonstrated the best performance among
point-level supervisory methods on four benchmark datasets.
In addition, it exhibited a localization performance similar to
that of the fully-supervised method. Therefore, the improved
point-level supervisionmechanism demonstrated its potential
for development.
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