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ABSTRACT An integrated access and backhaul (IAB)-enabled small-cell network commonly utilizes
frequency channels for access and backhaul links, and thus this network has a chance to utilize the
frequency channels efficiently and optimally. However, there are still several problems with applying the
IAB technology to practical small-cell networks, such as extremely high computational complexity caused
by shared resource utilization and additional co-tier and cross-tier interference management. Therefore,
we herein propose a multi-agent distributed Q-learning with pre-resource partitioning (MADQ-PRP)
algorithm to solve the problem of frequency channel allocation and energy consumption. In MADQ-PRP,
to reduce the computational complexity, each RL agent only considers its local state information to
determine its following action. Nevertheless, by sharing and redistributing the rewards among agents, the
overall reward can be maximized. Furthermore, we devise a pre-resource partitioning method depending
on the variations in the number of SBSs per MBS and the numbers of MBS and SBS channels to reduce
the computational complexity of the proposed MADQ-PRP algorithm. Through intensive simulations,
we show the convergence of the proposed MADQ-PRP algorithm to the optimal solution obtained by the
exhaustive search algorithm. Also, we demonstrate that the proposed MADQ-PRP algorithm outperforms
several benchmark algorithms such as ‘Random action,’ ‘SBS on-off,’ ‘SBS-only,’ and ‘MADQ-only’ in
IAB-enabled small-cell networks with non-uniform traffic distribution. Furthermore, it is confirmed that the
proposed MADQ-PRP algorithm can reduce the CPU execution time by 9.1% and 97.9% compared to the
distributed and centralized RL algorithms, respectively. The proposed algorithm based on the low-complexity
RL and PRP could be one of the solutions to optimize the heterogeneous network performance from the
perspective of the network operators when considering the coverage-capacity tradeoff.

INDEX TERMS Low complexity multi-agent Q-learning, pre-resource partitioning, network-wide energy
efficiency, user outage, integrated access and backhaul, IAB-enabled small-cell networks.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Mobile data traffic is expected to exponentially increase in
the forthcoming sixth generation (6G) cellular networks [1],
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[2], [3], [4], [5]. However, the limited frequency resources
are insufficient to support this traffic demand. Furthermore,
access and backhaul networks require a large amount of
spectrum bandwidth as well as consume a vast amount of
energy to support many kinds of real-time mobile application
services. In particular, access technology accounts for a
large portion of the total network energy consumption
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FIGURE 1. System model of IAB-enabled small-cell networks.

[6], [7], [8]. Also, to meet the technical requirements of the
maximum data rate, ultra-low latency, and high reliability
of 6G, cost-effective network operation and management are
very important. Thus, spectrum-efficient and energy-efficient
access and backhaul communications are one of the key
challenges in 6G to reduce network energy consumption and
carbon dioxide emissions [9], [10].

Also, the explosive installations of small cell base stations
(SBSs) to support the increasing network traffic are accel-
erating network densification, and thus it may result in the
need for more available frequency resources and an increase
in network power consumption [7], [8]. Hence, network
operators should efficiently utilize these limited frequency
resources to support massive users within the entire network
and optimally deploys many SBSs to reduce spectrum holes
and network power consumption.

As one of the ways to resolve these problems, the concept
of integrated access and backhaul (IAB) that commonly uti-
lizes access and backhaul frequency resources was proposed
for the forthcoming mobile communication networks [11],
[12]. The IAB technology is getting a lot of attention
as a promising solution to increase spectrum utilization
efficiency with limited frequency resources. However, since
the frequency bandwidth for user access links is shared by
wireless backhaul links in the IAB architecture, this makes
the resource allocation algorithmmore complicated, resulting
in increased network energy consumption [13], [14]. Thus,
developing an advanced resource allocation algorithm with
low complexity is of utmost importance to achieve an optimal
solution in IAB.

B. RELATED WORKS
Reinforcement learning (RL)-assisted small cell networks
have been studied in various aspects. In [15], Cheng et al.
discussed how a double deep Q-network (DDQN) could be
used to maximize the data rate of an IAB network with fixed
user mobility.

Similarly, Lei et al. tried to maximize the data rate of
the IAB network based on the actor-critic method [16],
and E. Kim et al. proposed a multi-agent RL algorithm for
maximizing energy efficiency (EE) in ultra-dense small-cell

networks with non-uniform traffic distribution [17]. Since
centralized RL has a huge number of states and actions
when considering the large number of MBS or SBSs, the
computational complexity incredibly increases, and thus
finding optimal solution is nearly impossible.

In addition, the authors of [18] aimed at maximizing sys-
tem utility in highly-dense small-cell networks by efficiently
partitioning small cells into several clusters to reduce the
inter-cell interferences. In [19], Lee et al. tried to maximize
the network energy efficiency by using a deep neural network
(DNN)-based optimal resource allocation in ultra-dense
small cell networks. Furthermore, the authors of [20]
considered dual access of small cell BSs using licensed and
unlicensed bands to improve the energy efficiency in small
cell networks based on a non-cooperative game theory. Also,
[21] proposed a newRL framework considering unsupervised
learning to maximize the sum rate of small cell networks
using renewable resources. Even though these studies tried
to maximize network performance, they still have limitations
to optimally utilize multi-link common resources based on
low-complexity RL operations.

C. CONTRIBUTIONS
Therefore, in this paper, we try to solve the above mentioned
problem by using low-complexity multi-agent Q-learning
in an IAB-enabled small-cell network. That is, through the
reinforcement learning-based optimal channel allocation and
transmit power control, we aim at maximizing network-wide
energy efficiency in this network. Specifically, we propose
multi-agent distributed Q-learning with a pre-resource parti-
tioning technique (MADQ-PRP) to reduce the computational
complexity of each agent. The main contributions of the
proposed MADQ-PRP algorithm is summarized as follows.

• MADQ-PRP can achieve the EE optimal solution when
considering the practical uneven traffic distribution
and random user mobility in IAB-enabled small-cell
network environments.

• MADQ-PRP can reduce the computational complexity
of the reinforcement learning by effectively designing
a multi-agent reinforcement learning framework maxi-
mizing the network-wide energy efficiency as well as
minimizing the number of outage users. Specifically,
each agent determines its action based on its local
information so that it can significantly reduce the
computational overhead arising from the centralized RL
approaches.

• Despite the complex architecture of IAB-enabled net-
works, MADQ-PRP can converge to an optimal solution
due to the action space adjustment based on the proposed
pre-resource partitioning method. By comparing the
performance with an exhaustive search-based optimal
solution, we prove the optimal convergence of the
proposed MADQ-PRP algorithm.

• Through the simulation results, we show the exten-
sibility and flexibility of the proposed MADQ-PRP
algorithm and its performance excellency compared to

121530 VOLUME 11, 2023



J. Lee et al.: Low-Complexity Q-Learning for Energy-Aware Small-Cell Networks With IAB

TABLE 1. Notation Summary.

the various benchmark algorithms such as ‘Random
action’, ‘SBS on-off’, ‘SBS-only’, and ‘MADQ-only’
with respect to average energy efficiency and the
average number of outage users. Specifically, the
conventional on-off power control algorithm is too
simple, and thus it has great advantages when applied
to a practical system. However, because the action
set is simple, there are limitations in finding the
optimal solution. On the other hand, although the
centralized RL approach can find the optimal solution,
its computational complexity is very high, rendering it
challenging to apply it to the actual systems.

D. PAPER ORGANIZATION
The remainder of this paper is organized as follows:
Section II introduces the system model and channel model of
IAB-enabled small-cell networks, and Section III proposes
the low-complexity multi-agent Q-learning algorithm with
PRP for maximizing the network-wide energy efficiency.
In Section IV, we demonstrate various simulation results of
the benchmark and proposed algorithms. Also, in Section V,
wemake conclusions. Finally, the notations and symbols used
in this paper are listed in Table 1.

II. SYSTEM MODEL
A. CHANNEL MODEL AND NETWORK-WIDE ENERGY
EFFICIENCY CALCULATION
As shown in Fig. 1, we consider two-tier downlink
IAB-enabled small-cell network environments consisting of
MBSs (IAB donor), SBSs (IAB-node), and users. Here,
in accordance with IAB concept, MBSs and SBSs utilize the
same frequency resources (CN = [1, . . . ,N ]), and SBSs are
randomly placed around MBSs. Also, assume that each MBS

can allocate one frequency channel to one user or one SBS,
and each SBS can assign one frequency channel to each user.
In addition, if the number of users to be served in each cell is
greater than the cell capacity, MBSs and SBSs preferentially
do users with higher signal to interference plus noise ratio
(SINR).

The received signal strength indicator (RSSI) of user i (or
SBS i, i ∈ I) from SBS k (or MBS k , k ∈ K) (Pri,k ) can be
obtained as

Pri,k = Ptkς (i, k). (1)

Here, Ptk is the transmit power of BS k , and ς (i, k) means
channel gain between node (user or SBS) i and BS (SBS or
MBS) k . From equation (1), the SINR of node i from BS k
(0ni,k ) can be represented as

0ni,k =
Pri,k

(
∑

k0∈K0
Pri,k0 ) + (

∑
kc∈Kc

Pri,kc ) + σ 2
i

, (2)

whereK0 represents a co-tier BS set using the same frequency
channel, and

∑
k0∈K0

Pri,k0 in the equation (2) denotes co-
tier interference. Also, Kc represents a cross-tier BS set
using the same frequency channel, the equation

∑
kc∈Kc

Pri,kc
represents cross-tier interference, and σ 2

i is the noise power
density of node i.
From equation (2), the achievable data rate of node i (ξi)

can be expressed as

ξi =

∑
n∈C

W n
i log2(1 + 0ni,k ), (3)

where n represents the index of currently utilizing frequency
channel, and C is the entire set of frequency channels. Also,
W n
i is the bandwidth size of frequency channel n allocated

to node i. With this, we can calculate the network-wide
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FIGURE 2. Proposed MADQ-PRP framework for IAB-enabled small-cell networks.

EE considering the number of outage users in IAB-enabled
small-cell networks. The network-wide EE can be calculated
as

EE =
ξm +

∑
s∈S ξs∑

s∈S P
t
s +

∑
m∈M Ptm

. (4)

Here, S and M denote the set of SBSs and the set of
MBSs, respectively. ξm and ξs represent the data rate
of MBS and the data rate of SBS, respectively. Also,
Ptm and Pts mean the transmit power of MBS and SBS,
respectively.

B. USER MOBILITY MODEL
In this paper, the user mobility was modeled based on the
random walk model [23]. The random walk model assumes
that users move on 2-dimensional x-y plane, and user’s
moving speed can be obtained within [Vmin,Vmax]. Here,
Vmax and Vmin are the maximum and minimummoving speed
of users. Moreover, the direction θu is randomly determined
in the range of [0 − 2π ]. In time-step t , the user’s moving
speed can be described as

Vu(t) = [Vucos(θu(t)),Vusin(θu(t))] (5)

In equation(5), the moving speed and direction of a certain
user are initialized in every episode and set to a random value
within the set range. In this paper, we assume that users can
move within the coverage area of the MBS. Since there are
multiple SBSs within one MBS, this means that users can
move in and out of the SBS coverage area. Accordingly, users
are associated with the MBS or SBSs providing the highest
SINR, and the associated BS may be changed according to
the user’s movement.

C. TRAFFIC MODEL
In this paper, we assume that data traffic of IAB-enabled
small-cell networks is generated based on the actual mea-
surements proposed by [22]. This traffic model has been
obtained through practical experiments and basically con-
siders a geographically disproportionate traffic distribution.
Specifically, half of cell sites take only 15% of the entire
data traffic, whereas 5% of cell sites carry 20% of the total
data traffic. Along with this, data traffic growth tends to
increase themost in places where traffic is already high, while
traffic growth is slower in areas where the load is already
low.

III. PROPOSED LOW-COMPLEXITY MULTI-AGENT
Q-LEARNING (MADQ-PRP) FOR MAXIMIZING
NETWORK-WIDE ENERGY EFFICIENCY
We herein propose a MADQ-PRP framework to maximize
network-wide energy efficiency while minimizing the num-
ber of outage users for IAB-enabled small-cell networks.
As shown in Fig. 2, each agent (MBS or SBS) has its
individual Q-table. The Q-table of MBS contains information
about the channel usage status that MBS allocates and
its transmit power. Also, in the proposed MADQ-PRP
framework, state, action, reward, policy, and Q-function are
defined as follows.

A. STATE
The goal of the proposed MADQ-PRP framework is to
maximize network-wide energy efficiency and minimize the
number of outage users in the entire IAB-enabled small-cell
networks. The MBS’s state consists of channel allocation
status and the amount of its current transmit power, and the
SBS’s state describes channel availability and the strength of
its current transmit power. The states ofMBS and SBS (SM (t)
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FIGURE 3. Detailed procedure of proposed PRP method in IAB-enabled small-cell networks.

and SS (t)) can be represented as follows.

SM (t) = [C1
M (t), · · · ,Cn

M , · · · ,C
|C|

M (t),Ptm(t)], (6)

SS (t) = [C1
S (t), · · · ,C

n
S (t), · · · ,C

|C|

S (t),Pts(t),CM ,S ]. (7)

Here, SM (t) in the equation (6) means the state of the MBS
at time step t , and Cn

M (t) represents the allocation status of
the nth channel at time step t . Also, |C| is the total number of
channels, and PtM (t) denotes MBS’s transmit power at time
step t . In equation (7), SM (t) means the state of SBS at time
step t , and Cn

S (t) indicates whether the nth channel is used or
not. PtS (t) represents the transmit power of SBS S at time step
t , and CM ,S is a frequency channel set assigned to MBS-to-
SBS link.

B. ACTION
MBS’s action is to allocate |C| channels to SBSs and users
and adjust the transmit power between the minimum to the
maximum. Also, SBS’s action is to decide whether or not
to use frequency channels and adjust the transmit power
between the minimum to the maximum. Actions of MBS i
and SBS j can be expressed as follows.

ai,M = [±1C1
Sn , · · · ,±1C

n
Sn , · · · ,±1C

|C|

Sn ,±1pt,M ] (8)

aj,S = [±1C1
u , · · · ,±1C

n
u · · · ,±1C |C|

u ,±1pt,S ] (9)

In equation (8), ±1Cn
Sn denotes the transition of SBS

assigned to nth channel of MBS. When it becomes 0,
the MBS allocates the corresponding frequency channel
to its associated user. In addition, ±1pt,M describes
the amount of transmit power adjustment of MBS.
In equation (9), ±1Cn

u determines the transition of SBS’s
nth channel availability, and Cn

u ∈ [0, 1]. Moreover,
±1pt,S is the amount of transmit power adjustment of
SBS.

C. REWARD AND Q-FUNCTION UPDATE
In this paper, the reward of MADQ-PRP is defined as the
combination of the network-wide energy efficiency and the
number of outage users. The reward is represented as

R = (
ξm +

∑
s∈S ξs∑

s∈S P
t
s +

∑
m∈M Ptm

) × e(−
Uout
|U|

)
, (10)

where Uout is the number of outage users and |U| denotes
the total number of users in the entire network. Also, from
equation (10), the Q-value of agent j is updated as follows.

Q(sj(t), aj(t)) = (1 − α) · Q(sj(t), aj(t))

+ α[Rj(sj(t + 1), aj(t))

+ η · maxaj′∈AQ(sj(t + 1), a′
j)], (11)

where, α is the learning rate, and β is the discount factor.

D. POLICY
To choose the action, we utilize a decayed ϵ-greedy policy.
This policy helps finding the optimal solution by taking a
random action with probability ϵ that gradually decreases as
the episode progresses. The decayed ϵ-greedy policy can be
represented as

at =

Random action with Probability ϵ,
arg max

at∈A
Q(st , at ) with Probability 1 − ϵ.

(12)

E. PRE-RESOURCE PARTITIONING (PRP) METHOD
To reduce the computational complexity of the multi-agent
distributed Q-learning, we propose a pre-resource partition-
ing (PRP) method which limits the number of frequency
channels assignable to users. If MBS uses all available
frequency channels, the number of states can be calculated
as (|S| + |M|)|C|

× Ptx,M . Here, |S|, |M|, and |C| denote the
number of SBSs, the number of MBSs, and the number of
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TABLE 2. Computational complexity of benchmark and proposed algorithms.

Algorithm 1 Proposed MADQ-PRP Algorithm for Maxi-
mizing Network-Wide Energy Efficiency While Minimize
the Number of Outage Users in IAB-Enabled Small-Cell
Networks

Place MBSM and SBSs S in network
Place the user U non-uniform in the cell range of SBS.
Partition the bandwidth to form a channel ChN .
Apply PRP method to MBS and SBS.
for Every episodes (t) do

Calculate ϵinit × (1 − ϵinit )
t

tmax

Vu,t and θu,t are determined by random walk model
for each user. ▷ u ∈ U
for Every iterations (i) do

MBS action is determined according
to the ϵ-greedy policy.

aM =

{
Random action

arg maxaM ,i∈AM ,i Q(sM ,i, aM ,i)
for s = 1 : SN do ▷ SN is Number of SBSs

SBS action is determined according
to the ϵ-greedy policy.

aS =

{
Random action

arg maxaS,i∈AS,i Q(sS,i, aS,i)
end for
Calculates SINR between all SBSs and all users.
SBS allocates channels to users with higher
SINR
MBS assigns channels to users with higher
SINR.
Calculate network-wide energy efficiency.
Update SBS’s and MBS’s Q-tables.

end for
end for

frequency channels, respectively. Also, Ptx,M is the number
of possible transmit power candidates of MBS. It can be
seen that the total number of states of MBS is significantly
related to the increase in the number of frequency channels.
According to the PRP method, since the number of SBSs
which can be assigned to each channel is obtained by
the maximum common divisor of |S| and |C| (MPT ).
Accordingly, the number of channels that can be assigned to
each SBS is partitioned, resulting in a reduction of |S|.
In addition, channel allocation coefficient of SBS (SPT ) is

obtained by the least common divisor of |C| and |S| except 1.
SBS can use the channel with the same remainder of division
when its unique number and channel unique number are
divided by SPT . As a result, the number of states of SBS
applying the PRPmethod can be expressed as ( |C|

SPT )×Ptx,S×
|C|

MPT . Here, Ptx,S is the number of possible transmit power

TABLE 3. Simulation parameters.

candidates of SBS. The detailed operation of the PRPmethod
is described in Fig. 3, and Algorithm 1 describes the overall
procedure of the proposed MADQ-PRP algorithm.

Table 2 shows the computational complexity of the bench-
mark and proposed algorithms. Based on Big-O notation, the
computational complexity of the centralized QL algorithm
can be given as O(|SM||SS|N |AM||AS|N ). Here, the size of
MBS’s state set (SM ) can be obtained as CM × PM where
CM is the number of available frequency channels of the
MBS and PM is the number of transmit power adjustment
levels of the MBS. Similarly, the size of SBS’s state set (SS )
can be represented as CS ×PS where CS is the number of
available frequency channels of the SBS andPS is the number
of transmit power adjustment levels of the SBS. Also, |AM|

and |AS| represent the sizes of the action sets of the MBS
and the SBS, respectively. Since the centralized Q-learning
considers a set of states for all agents, the computational
complexity exponentially increases as the number of agents
increases. However, in the distributed Q-learning, since
agents only consider their own state information, the com-
putational complexity becomes O(|SM||AM| + N |SS||AS|).
Furthermore, the proposed MADQ-PRP algorithm consid-
ering the pre-resource partitioning, can additionally reduce
the computational complexity compared to the distributed
Q-learning algorithm. The computational complexity of the
proposed MADQ-PRP can be obtained as O( |SM||AM|

ψm
+

N |SS||AS|

ψs
) where ψM and ψS are PRP factors of MBS and

SBS, respectively.

IV. SIMULATION RESULTS
A. SIMULATION ENVIRONMENTS
In this section, we consider a two-tier IAB-enabled small-
cell network with non-uniform traffic distribution, and the
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FIGURE 4. Accumulated average reward vs. episode when |M| = 1,
|S| = 2, |C| = 6, and |U| = 6.

maximum speed of user is 0.1 m per episode. The simulation
is conducted on a computer equipped with i5-12600 CPU
3.30 GHz and 32.0 GB RAM memory. Other simulation
parameters used in this paper are summarized in Table 3.
Also, we consider four benchmark algorithms such as
‘Optimal’, ‘Random action’, ‘SBS-only’, ‘SBS on-off’ and
‘MADQ-only’. The detailed description for these benchmark
algorithms is as follows.

• (B1) Optimal: In this paper, we obtain an optimal
solution by using the exhaustive search algorithm
considering all possible cases of both MBSs and SBSs.
By comparing to this benchmark algorithm, we can
confirm that the proposed MADQ-PRP algorithm can
achieve the optimal solution.

• (B2) Random action: In the random action algorithm,
each agent always acts randomly without learning about
channel allocation and transmit power control of MBSs
and SBSs.

• (B3) SBS on-off: This algorithm performs transmit
power control, but the agent has only two options such
as 0 W (off) and 1 W (on). This algorithm does not
consider the detailed power control of SBSs.

• (B4) SBS-only: In this algorithm, SBSs only supports
users. That is, MBS only provides backhaul communi-
cation links to SBSs.

• (B5) MADQ-only: This algorithm simply means
MADQ without PRP. As mentioned before, MADQ-
only has vey high computational complexity compared
to MADQ-PRP.

B. RESULTS AND DISCUSSION
First, we consider a simple network environment consisting
of |M| = 1, |S| = 2, |C| = 6, and |U| = 6 to compare the
performance of the proposedMADQ-PRP algorithmwith the
optimal solution obtained by the exhaustive search algorithm,
as shown in Fig. 4. Furthermore, small-scale fading and user
movement are not considered in this simple network model.
As a result, because the proposed MADQ-PRP allocates the
channel with the highest SINR to users, it can minimize the
interference between MBS and SBSs as well as the transmit

FIGURE 5. Accumulated average reward vs. episode when |M| = 1,
|S| = 6, |C| = 6, and |U| = 14.

FIGURE 6. Accumulated average reward vs. episode when |M| = 1,
|S| = 12, |C| = 12, and |U| = 39.

power consumption. Also, we can show that MADQ-PRP
can converge to the optimal solution. In contrast, due to the
number of outage users, it can be seen that the SBS-only
algorithm has severe performance degradation.

Fig. 5 shows the accumulated average reward vs. episode
when |M| = 1, |S| = 6, |C| = 6, and |U| = 14.
Due to the computational complexity, we cannot obtain the
optimal solution. Also, because of the coarse power control,
we can show that the SBS on-off algorithm has a relatively
lower reward compared to other algorithms. In the case of
SBS-only algorithm, because the MBS does not provide
access links to users, this algorithm might have more outage
users compared to the proposed MADQ-PRP. It results in
reward degradation of the SBS-only algorithm. Even though
the MADQ-only algorithm considers all states and actions,
because of their huge sizes, MADQ-only fails to converge
and undergoes oscillation, as shown in Fig. 5. In contrast
to the MADQ-only algorithm, the proposed MADQ-PRP
algorithm converges and has the highest average reward
compared to the benchmark algorithms. In addition, the
CPU execution time of the MADQ-PRP, distributed RL, and
centralized RL algorithms required for RL to converge was
2367.66s, 2605.05s, and 114334.89s, respectively. That is,
it is confirmed that the proposed MADQ-PRP algorithm
can reduce the CPU execution time by 9.1% and 97.9%
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FIGURE 7. Accumulated average energy efficiency and number of outage
users vs. episode under |M| = 1, |S| = 12, |C| = 12, and |U| = 39.

compared to the distributed and centralized reinforcement
learning algorithms, respectively.

Moreover, to consider more dense and complicated
network environments, 12 SBSs, 12 channels, and 39 users
were considered in Fig. 6. As shown in this figure, the
proposed MADQ-PRP has the greatest reward compared to
all benchmark algorithms. From equation (10), the reward
of the proposed MADQ-PRP algorithm is defined as the
combination of the network-wide energy efficiency and the
number of outage users. Figs 7a and 7b show the original
results of the accumulated average energy efficiency and the
number of outage users vs. episode under |M| = 1, |S| = 12,
|C| = 12, and |U| = 39, respectively. As shown in these
figures, it is shown that the proposed MADQ-PRP algorithm
outperforms the benchmark algorithms with respect to energy
efficiency and the number of outage users because of the
low-complexitymulti-agent RL-based transmit power control
and resource allocation. Furthermore, Fig. 8 shows average
reward vs. algorithm through test experiments. Through this,
we can demonstrate that the proposed method can find the
highest reward compared to other benchmark algorithms, and
the proposed MADQ-PRP algorithm may be flexibly applied
to various IAB-enabled networks. Consequently, as shown
in Figs. 4–8, even though an SBS has a relatively small
network coverage compared to an MBS, it has an advantage
with respect to capacity. On the other hand, although an
MBS has strength in terms of coverage, it can be seen that

FIGURE 8. Test results for average reward of benchmark and proposed
algorithms when |M| = 1, |S| = 12, |C| = 12, and |U| = 39.

it has a lower capacity than the SBS due to propagation
loss proportional to the increase in distance. From this point
of view, in practical heterogeneous networks, where SBSs
andMBSs coexist, optimizing the network deployment, radio
resource allocation, and transmit power control of MBSs and
SBSs by considering topological dynamics and user mobility
is very challenging. Therefore, the proposed algorithm
based on the low-complexity RL and PRP could be one
of the solutions to optimize the network performance from
the perspective of the network operators in consideration of
the coverage-capacity tradeoff.

V. CONCLUSION
In this paper, we proposed theMADQ-PRP algorithm tomax-
imize network-wide energy efficiency as well asminimize the
number of outage users in IAB-enabled small-cell networks.
Through the simulation results, we demonstrated extensibil-
ity and flexibility of the proposed algorithm and performance
excellency compared to the various benchmark algorithms
such as ‘Random action’, ‘SBS on-off’, ‘SBS-only’, and
‘MADQ-only’. In addition, we showed the convergence of
the proposed MADQ-PRP algorithm to the optimal solution
obtained by the exhaustive search algorithm. Furthermore,
by proposing the PRP method, our proposed algorithm could
reduce the computational complexity of the reinforcement
learning algorithm significantly. Through the reward-sharing
approach, our proposed algorithm consistently outperforms
the benchmark algorithms in terms of both energy efficiency
and the number of users experiencing outages. we hope that
the proposed MADQ-PRP algorithm may be applied to many
kinds of actual IAB-enabled networks in the forthcoming 6G
mobile networks.
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