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Abstract: As the adoption of large-scale model-based AI grows, the field of robotics is undergoing
significant changes. The emergence of cloud robotics, where advanced tasks are offloaded to fog or
cloud servers, is gaining attention. However, the widely used Robot Operating System (ROS) does not
support communication between robot software across different networks. This paper introduces ROS
Gateway, a middleware designed to improve the usability and extend the communication range of
ROS in multi-network environments, which is important for processing sensor data in cloud robotics.
We detail its structure, protocols, and algorithms, highlighting improvements over traditional ROS
configurations. The ROS Gateway efficiently handles high-volume data from advanced sensors
such as depth cameras and LiDAR, ensuring reliable transmission. Based on the rosbridge protocol
and implemented in Python 3, ROS Gateway is compatible with rosbridge-based tools and runs
on both x86 and ARM-based Linux environments. Our experiments show that the ROS Gateway
significantly improves performance metrics such as topic rate and delay compared to standard
ROS setups. We also provide predictive formulas for topic receive rates to guide the design and
deployment of robotic applications using ROS Gateway, supporting performance estimation and
system optimization. These enhancements are essential for developing responsive and intelligent
robotic systems in dynamic environments.
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1. Introduction

The convergence of technological advancements in sensor and actuator technology,
the diversification of robotic components, and notable enhancements in computing power
have broadened the applicability and scope of robots across a diverse array of industries [1].
Sensors have become more accurate, affordable, and diverse, thereby enabling robots to
perform complex tasks with greater precision and adaptability in dynamic environments [2].
Similarly, actuators, which control movement and operation, have undergone significant
advancement, resulting in improved control, efficiency, and reliability. Furthermore, ad-
vancements in artificial intelligence (AI) are transforming robots by enabling autonomous
decision-making, environmental learning, and enhanced performance [3]. These techno-
logical developments have established robots as indispensable assets in a multitude of
sectors, including the Internet of Things (IoT) [4,5], manufacturing [6], agriculture [7,8],
logistics [9], healthcare [10,11], and smart cities [12,13].

As robotic systems evolve, the necessity for uninterrupted communication and connec-
tivity between these systems and broader infrastructures becomes increasingly apparent.
The rapid advancement of communications technology, in conjunction with cloud com-
puting, is exerting a considerable influence on the field of robotics [14–18]. In particular,
cloud computing provides enhanced processing power, scalability, and storage capacity,
thereby enabling robots to offload intensive tasks such as AI computations to the cloud.
This offloading of processing tasks reduces the burden on local hardware and enables
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the integration of robots into larger, interconnected systems that operate across multiple
locations. In domains such as the Internet of Things (IoT), manufacturing, and logistics, it
is imperative that robots are able to communicate with one another, share data in real-time,
and integrate seamlessly with external systems in order to optimize performance.

The Robot Operating System (ROS) [19] has gained considerable traction as a frame-
work for robotics research and development, largely due to its modularity, ease of use, and
community-driven evolution. Despite its extensive adoption, ROS encounters considerable
obstacles, particularly with regard to its capacity to connect to cloud-based infrastructure.
As a middleware solution for the transmission of sensor data, ROS typically assumes
distributed computing over local area networks (LANs). In ROS1 [20], peer-to-peer com-
munication is dependent on a centralized system that is only effective when the peers are
situated within the same network environment. This may include the sharing of public In-
ternet Protocol (IP) addresses or the existence of the same subnet. In contrast, ROS2 [21,22]
is operational only in networks that support multicast for peer discovery. These constraints
restrict the functionality of ROS in environments that necessitate remote communication
over expansive networks or networks with limited bandwidth, such as those employed in
cloud or fog robotics applications [23].

It is therefore imperative to develop a robot communication middleware that can facili-
tate seamless connections between robots and the cloud. A number of researchers have put
forth proposals aimed at enhancing communication, optimizing data transfer, and guaran-
teeing secure connectivity between robotic systems and cloud infrastructure. Nevertheless,
although these solutions are effective for particular tasks, they exhibit shortcomings in
terms of flexibility, which is essential for addressing the diverse needs of robotic and cloud
computing environments. For instance, it has been observed that rosbridge [24]-based
solutions [25–27], which are frequently employed within the ROS community, often ex-
hibit an elevated latency when transmitting large data volumes [28]. Moreover, these
solutions are designed exclusively for the server role, which restricts their applicability
to mobile devices with dynamically allocated IP addresses. In contrast, solutions based
on virtual private networks (VPNs) [29–31] present a more complex system setup, exhibit
high latency, and are ineffective at transmitting high data volumes due to inherent size
limitations. Moreover, the lossy video compression techniques employed for high-speed
image transmission in VPN-based solutions are unsuitable for transmitting large volumes
of non-video data, such as point clouds. In contrast, Message Queuing Telemetry Transport
(MQTT) [32] and ZeroMQ 4 [33]-based solutions [28,34–36] necessitate the development
of custom software for each application and support solely ROS’s topic communication
method, which impedes the integration of diverse ROS-based robotic components. This
issue will be explored in greater depth in Section 2.2.

In response to these challenges, we propose ROS Gateway, a novel ROS-based cloud
middleware designed to extend ROS functionality into the cloud in a seamless and non-
invasive manner. The objective of ROS Gateway is to provide a robust communication
infrastructure that facilitates the sharing of sensor data, enhances scalability, and enables
integration with cloud services during operation. In contrast to preceding middleware
solutions, ROS Gateway prioritizes flexibility, thereby enabling robots to capitalize on
cloud-based resources in a more efficacious manner while maintaining uninterrupted
communication with connected systems. By addressing the limitations of ROS connectivity,
ROS Gateway aims to facilitate the full potential of cloud computing in robotics, thereby
contributing to the continued advancement of the field.

This study makes the following contributions:

• This paper presents ROS Gateway, a middleware designed to accelerate ROS topic
communication for the collection and processing of sensor data from robotic systems.
It provides a detailed account of the Gateway’s architectural design, communication
protocols, and underlying algorithms. ROS Gateway facilitates the implementation
of ROS functionality across a range of networks through the use of a straightforward
JavaScript Object Notation (JSON) [37]-based configuration.



Sensors 2024, 24, 6297 3 of 28

• In an experimental setting where substantial quantities of sensor data, exceeding
hundreds of kilobytes and generated at rates above 10 Hz, were produced, experiments
were conducted to evaluate the transmission performance based on different robot
application configurations.

• Formulas for calculating the predicted ROS topic reception rates based on the config-
uration settings of the robot applications were developed. The formulas provide an
approximation of the predicted performance in both cases, that is, when using only
ROS and when using ROS Gateway.

The remainder of this paper is organized as follows. Section 2 discusses the motivation
behind this research and related work, highlighting the main differences between the
proposed middleware and state-of-the-art solutions. Section 3 describes the architecture,
protocols, specifications, and algorithms of the proposed middleware. Section 4 presents a
comparative study of the proposed middleware against alternative solutions under various
experimental performance configurations. Finally, the paper concludes with a discussion
of future work.

2. Background
2.1. Motivation

Figure 1 illustrates a typical example of a robotics application utilizing ROS in a cloud
or fog computing configuration. In this configuration, the robot’s sensor data is processed
by a control module integrated into the robot itself, and transmitted to a remote server
for further processing and utilization by AI services. The robot management and control
system, situated on a separate network, is capable of receiving and monitoring the robot’s
sensor and status data, as well as remotely controlling the robot in the event of anomalies.
In such a scenario, the robot is typically assigned a dynamic IP address, while the cloud
server or cluster and the control computer are assigned static IP addresses. From this
analysis, we have identified several additional middleware requirements that can improve
the usability of ROS, as summarized in Table 1.

Figure 1. Example of a ROS-Based robotic application in cloud or fog Configuration. Subnet α is a
subnet to which multiple hosts that constitute cloud or fog computing are connected. Subnet β is a
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subnet to which robots are connected, or a local host network within the robot. Subnet γ is a subnet
to which a control system consisting of multiple hosts in a remote location is connected, though not a
subnet in which robots are included.

Table 1. Challenges for cloud robotics middleware.

Challenges Description

No modification of ROS-based applications or
the ROS framework

Modifying the framework would require re-
compilation and redistribution of the entire
application, which can be time-consuming
and inefficient.

Operation of robots behind Network Address
Translation (NAT) or firewalls

Mobile robots often lack static IP addresses and
operate in environments where firewalls and
NAT are present.

Compatibility with web-based ROS tools
Many robotics projects depend on web-based
ROS tools such as Foxglove Studio [38],
roslibjs [39], and roslibpy [40].

Use of cloud-friendly protocols Web protocols are essential for optimizing scal-
ability and performance on cloud platforms.

2.2. Related Works

Rosbridge [24] was developed with the objective of addressing the challenge of inter-
operability by enabling communication between ROS and non-ROS systems. It is a widely
utilized tool within the robotics community that employs ROS due to its compatibility with
the communication characteristics of ROS and its capacity to integrate with web-based
ROS tools. In their respective studies, Galarza et al. [25] and Shamaine et al. [26] proposed
a system for remotely controlling robots through virtual reality. In their study, robots
based on the Robot Operating System (ROS) are connected to Unity via rosbridge, thereby
enabling manipulation of these robots in a virtual environment. Wang et al. [27] presented a
general-purpose ROS robot live interaction platform, designated TeleRobot, which provides
a range of functions, including multi-angle robot live streaming, remote interaction with
robots, and online discussions. In their paper, the authors indicated that they utilized ros-
bridge to transmit and receive remote control commands and feedback data from the robot,
thereby ensuring compatibility with a wider range of robots within the TeleRobot platform.
Despite its numerous applications, rosbridge has been observed to exhibit communication
performance issues in data-intensive contexts, particularly in the retrieval of video and
point cloud data [28]. Its functionality is largely limited to the retrieval of data from ROS
on remote systems and the transmission of basic control commands.

Chen et al. [29] presented FogROS, which extends ROS executable scripts to enable
the deployment of ROS1 nodes in a cloud environment. This allows robots to offload
heavy computations to cloud services such as Amazon Web Services (AWS). Subsequently,
Ichnowski et al. [30] presented FogROS2, an open-source platform that integrates cloud
and fog computing with ROS2. This allows robots to utilize cloud resources for computa-
tionally intensive operations without requiring modifications to existing code. Meanwhile,
Damigos et al. [31] proposed a novel architectural approach that integrates ROS and 5G for
the offloading of unmanned aerial vehicle (UAV) control to edge servers, thereby ensuring
low-latency and reliable communication. The researchers utilized a virtual private network
(VPN) to facilitate communication between the robot and the edge server, demonstrating
that this approach is secure but results in increased system latency due to transmission
overhead. These platforms provide scalable and flexible computing solutions that facilitate
the configuration of cloud-based resources based on a VPN and enhance the capabilities of
robotic systems. However, inherent limitations of VPN approaches include the inability to
forward ROS traffic generated from external computers on the same network without VPN
installation and difficulty in forwarding large data types, such as images and point clouds.
FogROS2 employed a distinctively configured streaming server for the transmission of
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video. However, due to its use of video-based lossy compression, its applicability to the
transmission of high-volume non-video data is limited.

Coronado et al. [28] identified deficiencies in the communication performance of
rosbridge, which facilitates communication between ROS and devices or programming
languages not supported by ROS, and is convenient for programming sensor information.
As an alternative, they proposed NEP+, an IoT framework based on ZeroMQ [33] and
ROS2, which enables seamless integration of human–machine systems across platforms.
The proposed framework is designed to enhance human–robot collaboration by providing
low latency and robust interoperability. Furthermore, it has the potential to be extended
to other platforms, such as Unreal Engine and Nvidia Omniverse. It is evident that the
authors’ findings present a viable alternative for the implementation of cloud robotics
middleware. Nevertheless, it proved difficult to utilize as a middleware solution that
would adequately address the aforementioned challenges.

Lertyosbordin et al. [34] presented a framework that integrates ROS and Message
Queuing Telemetry Transport (MQTT) [32] to enable remote robot command and oper-
ation from Internet-connected devices. Moreover, Lampe et al. [35] put forth the con-
cept of RobotKube, a system that orchestrates containerized microservices in large-scale
multi-robot systems using Kubernetes and ROS. The methodology is proposed for the
implementation of cooperative intelligent transportation systems (C-ITS), utilizing ROS
topic data for the exchange of information between vehicles and the cloud through MQTT.
Moon et al. [36] proposed the Edge-Driving Robotics Platform (EDRP) for autonomous
driving, which is based on a microservice architectural framework. Furthermore, they
proposed the Local Dynamic Map Platform (LDMP), which facilitates the real-time sharing
of dynamic object information. In their paper, the authors utilized an MQTT broker to
relay ROS topic messages from autonomous robots to EDRP within a 5G mobile edge
computing system. MQTT-based platforms offer a number of advantages, including a
minimal overhead, publish-subscribe protocols that align with the topic concept of ROS,
and low power characteristics. However, as previously suggested, these implementations
are designed for specific applications and do not support the communication characteristics
of ROS beyond the topic method.

The aforementioned studies are insufficient for addressing the presented challenges.
This is due to the fact that they exhibit shortcomings such as limited scalability, suboptimal
communication performance, and an inability to integrate a diverse range of robot com-
ponents utilized in ROS-based systems, thereby hindering the ability to accommodate the
heterogeneous robot and cloud computing environments. Table 2 provides a comparative
analysis between the proposed system and previous studies.

The following is a description of each of the features presented in Table 2.

• ROS Topic: Indicates whether the system supports ROS topic-based interaction be-
tween the robot and the cloud.

• ROS Service: Confirms whether the system supports ROS service-based interactions
between the robot and the cloud.

• ROS Action: Specifies whether the system allows ROS action-based interactions
between the robot and the cloud.

• Provisioning: Determines whether the system can provision ROS interaction from
inside the robot to the cloud.

• Cloud to Robot: Confirms whether the system can transfer ROS interaction from the
cloud to the robot.

• Non-invasive: Indicates if the system can integrate with existing systems without
requiring major modifications or disruptions.

• General Purpose: Evaluates whether further development is necessary, depending on
the specific application.

• NAT/Firewall: Confirms whether the system can operate within a NAT or firewall
environment.
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• Web Compatibility: Specifies whether the system is compatible with web-based
ROS tools.

• Cloud Protocol: Identifies whether the system uses cloud-friendly protocols, such
as HTTP.

• Multi-Host ROS: Determines whether the system is easy to use for multi-host ROS
interaction across different networks.

• Large Data: Confirms whether the system supports large-scale data interaction.

Table 2. Comparison of the proposed work with previous studies.

Feature
Rosbridge Based VPN Based ZeroMQ Based MQTT Based

Out Work
[25–27] [29–31] [28] [34–36]

ROS Topic Yes Yes No Yes Yes
ROS Service Yes Yes No No Yes
ROS Action Yes Yes No No Yes
Provisioning Yes Yes Yes Yes Yes
Cloud to Robot No No Yes Yes Yes
Non-invasive No * No † No No Yes
General Purpose No * Yes No No Yes
NAT/Firewall No Yes Yes Yes Yes
Web Compatibility Yes No No No Yes
Cloud Protocol Yes No No Yes Yes
Multi-Host ROS Yes No No No Yes
Large Data No No Yes Yes Yes

* These systems do not function as standalone entities; rather, they require the presence of application-specific
clients for their operation. † For the systems to function, they must be installed on every host with which
they interact.

3. Proposed Scheme

This section provides a description of the ROS Gateway’s architecture, protocols, and
algorithms. Additionally, the Appendix A presents a logic model of how each task operates
in conjunction with each algorithm, illustrated through a sequence diagram.

3.1. Architecture

The proposed system comprises a number of key components, designed with the
objective of facilitating communication between ROS nodes across different hosts. Figure 2
provides an overview of the system architecture at a high level of abstraction. As illustrated
in the figure, the Server Workers are responsible for managing incoming connection requests
from clients, while the Client Workers establish connections with Gateways on other hosts.
The Client Monitor is responsible for monitoring the operational status of the client role
Gateway, while the Client Log Database records runtime configuration settings. This
enables the Gateway to reinstate previous configurations upon restart. The Config Processor
is responsible for processing the configuration JSON transmitted to the Gateway, while the
ROS Node Manager facilitates communication with ROS nodes. The Server Workers and
Client Workers interact with ROS nodes via the ROS Node Manager, processing received
Gateway messages or executing operations defined by the Configuration JSON using the
Gateway Core. In order to optimize system performance, the Gateway proactively creates
and manages a pool of Server Worker processes, with the pool size (M) defined by the user.
This pool is responsible for the management of Server Workers corresponding to client
Gateways that are connected at runtime. The Connection Manager, which is embedded
within each Server Worker, logs pertinent client connection information, while the Persistent
Connection Manager, which is situated within the Client Worker, maintains communication
with the Gateway on other computers in order to perform the operations that have been
configured, provided that the transmitted Configuration JSON is not revoked. Section 3.2
provides a comprehensive analysis of the Gateway protocol messages. Section 3.3 presents
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a detailed examination of the format of the Gateway configuration specification. Section 3.4
outlines the operations performed by the Gateway based on the configuration specification
and protocol messages.

Figure 2. The Gateway architecture. * The Client Worker is activated when a configuration that
enables connectivity to a gateway in a different network is applied. ** Server Workers are initially
created with a single process for receiving commands from external sources. Subsequently, a new
process is assigned based on the client that establishes a connection.

3.2. Gateway Protocol Messages

The Gateway employs the WebSocket [41] communication methodology and adheres
to the specifications set forth in rosbridge protocol version 2.0 [42], thereby ensuring
compatibility with existing ROS web-based tools [38–40]. To enhance the efficiency of
message transmission, the Gateway now offers the option of compression for both outgoing
and incoming messages. Furthermore, the Gateway introduces the ability to transmit
compressed binary data in the zip and rawzip options, providing an alternative to the
existing Portable Network Graphics (PNG) compression method. The PNG option of
rosbridge resulted in reduced performance due to the necessity of Base64 [43] encoding for
the transmission of compressed binary data.

Table 3 provides a brief description of the Gateway protocol messages, which have
been designed to extend the rosbridge protocol [42]. The structure of each message is based
on a JSON format and is transformed into either a binary array encoded with Concise
Binary Object Representation (CBOR) [44] or a JSON message in text format, depending
on the values specified in the compression field prior to transmission. The op field is a
mandatory component that is utilized to specify the message’s purpose, whereas the id
field is employed to uniquely identify the message and prevent duplication. Furthermore,
the id field enables the matching of response messages to their corresponding request
messages, which is particularly advantageous when transmitting ROS service and ROS
action [45] data.

The rows designated as (a), (b), and (c) in Table 3 pertain to ROS topic-related messages.
The topic field denotes the name of the ROS Topic, while the type field indicates the data
type associated with the topic. The field designated as msg contains data pertaining to the
ROS topic, which is presented in either a JSON string or a binary array, contingent upon
the selected compression settings. Messages belonging to categories (d) through (f) pertain
to ROS services. The service field specifies the name of the ROS service, whereas the type
field defines the type of the ROS service in question. The field designated as args contains
the input arguments, which are encoded as either a JSON string or a binary array.

Table 3 also includes entries (g) to (j), which pertain to ROS action-related messages.
In these messages, the action field denotes the designation of the ROS action, whereas
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the type and action_type fields specify the type of the ROS action. In (h), the args field is
utilized to delineate the argument value for the ROS action goal, which is encoded in either
a JSON string or a binary array. The feedback field in (h) indicates whether the recipient
should receive feedback regarding the action. The intermediate result values for ongoing
ROS actions are indicated in (i), while the final result values upon goal completion are
presented in (j). The result field in (j) indicates the outcome of the action, with a value of
true signifying success.

With regard to the available compression options, the zip option employs CBOR to
serialize ROS data prior to applying a compression algorithm, whereas the rawzip option
directly compresses raw ROS data using the same algorithm. These compression options are
designed to target actual ROS data values. They can be applied to the msg field in protocol
message (b), the args fields in protocol messages (e) and (h), and the values fields in protocol
messages (f), (i), and (j). In order to apply the cor, cbor-raw, zip, or rawzip compression
options to a protocol message, it is necessary to first convert the entire JSON-formatted
message into a binary array through CBOR encoding prior to transmission.

Table 3. Gateway protocol message specification.

Message Name Specification Description

(a) AdvertiseTopicMsg
{“op”:“advertise”, (optional)“id”:<string>,
“topic”:<string>, “type”:<string>,
(optional *)“compression”:<string>}

Notifies the recipient about a topic that will
be forwarded.

(b) PublishTopicMsg {“op”:“publish”, (optional)“id”:<string>,
“topic”:<string>, “msg”:<json> or <bytes *> }

Sends ROS topic data for forwarding or
reverse forwarding.

(c) SubscribeTopicMsg
{“op”:“subscribe”, (optional)“id”:<string>,
“topic”:<string>, (optional)“type”:<string>,
(optional †)“compression”:<string>}

Requests the Gateway to subscribe to a ROS topic
for reverse forwarding.

(d) AdvertiseServiceMsg
{“op”:“advertise_service”, “type”:<string>,
“service”:<string>,
(optional ‡)“compression”:<string>}

Informs Gateways about the availability of a
ROS service.

(e) CallServiceMsg
{“op”:“call_service”, (optional)“id”:<string>,
“service”:<string>, (optional)“args”:list<json» or
<bytes *>, (optional ‡)“compression”:<string>}

Sends service requests to Gateways
in different networks.

(f) ServiceResponseMsg
{“op”:“service_response”, (optional)“id”:<string>,
“service”:<string>, (optional)“values”:<json> or
<bytes *>, “result”:<boolean>}

Sends service results to the requesting Gateway.

(g) AdvertiseActionMsg
{“op”:“advertise_action”, “type”:<string>,
“action”:<string>,
(optional *)“compression”:<string>}

Announces the availability of a ROS action.

(h) SendActionGoalMsg

{“op”:“send_action_goal”,
(optional)“id”:<string>, “action”:<string>,
“action_type”:<string>, (optional)“args”:<json>,
(optional)“feedback”:<boolean>,
(optional ‡)“compression”:<string>}

Sends the action goal to the advertising Gateway.

(i) ActionFeedbackMsg {“op”:“action_feedback”, “id”:<string>,
“action”:<string>, “values”:<json> or <bytes *>} Transmits feedback during action processing.

(j) ActionResultMsg
{“op”:“action_result”, “id”:<string>,
“action”:<string>, “values”:<json> or <bytes *>,
“result”:<boolean>}

Sends the result of a ROS action to the requester.

* Features added to the existing rosbridge protocol. † In the rosbridge protocol, the values can be none, png, cbor,
and cbor-raw, but in this study, zip and rawzip have been added instead of png. ‡ The rosbridge protocol permits
the use of the values none and png, whereas this study permits the use of the values cbor, cbor-raw, zip, and
rawzip instead of png.
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3.3. Gateway Configuration Specification

The Gateway configuration allows for the creation of virtual ROS networks that can
operate over a variety of network infrastructures, thereby facilitating seamless collaboration
between ROS programs in disparate environments. This configuration, expressed in JSON
format, can be applied dynamically in one of two ways: either via a startup file passed as an
argument to the Gateway at runtime, or through the Gateway’s web interface. Furthermore,
the configuration file can consolidate the connectivity and operational instructions for
Gateways running on disparate hosts across heterogeneous networks. This flexibility
permits the configuration of a ROS virtual network that is optimized for the requirements
of complex robotics applications that involve the integration of multiple cloud or fog servers
and robots.

In the Gateway configuration, the commands that a Gateway should execute are
defined as a collection of JSON data, with each segment corresponding to a specific target
Gateway. Each collection of operations is associated with a distinct target Gateway address.
These commands include the forwarding of ROS topics to a different network (referred to
in the protocol as a publish operation) and the reverse forwarding of ROS topics to retrieve
those distributed solely on other networks (referred to as a subscribe operation). Moreover,
the configuration includes commands to expose ROS services and actions that are only
available on the local subnet, as well as to prepare the Gateway to make ROS services and
actions available locally that were previously restricted to remote networks. The subnet is
connected to remote networks (referred to as expose-service and expose-action operations),
while additional commands prepare the Gateway to make remote ROS services and actions
available on the local subnet (referred to as reserve-service and reserve-action operations).
Each operation command is comprised of three distinct fields. The name field identifies
the target ROS topic, service, or action; the type field specifies the data type; and the
compression field describes the encoding and compression techniques to be applied to
the message.

The JSON configuration presented in Listing 1 illustrates the operational command
settings for the tasks to be performed by the Gateway on Host Bob in order to configure the
scenario depicted in Figure 1. The file delineates the operational parameters of the Gateway,
which facilitate the extension of ROS-based interaction by establishing connections with
Gateways on two additional networks. The initial directives, delineated in lines 2 through
7, facilitate the exposure of the ROS service (pause_robot) and ROS action (navigate_to_ros)
provided by the robot to the Gateway on a subnet operating on Host Carol1. Additionally,
the ROS service (controller_start) is scheduled to signal the startup of robot control. Conse-
quently, the Robot Management System, which is running on Host Carol2 within the same
subnet, is now able to position the robot and transmit commands to it. Furthermore, the
Robot Remote Control node on Host Carol3 is able to invoke the emergency stop service
(pause_robot) by utilizing the ROS service (controller_start) that was previously called on
Host Bob during robot operation.

Subsequently, directives located in lines 8 through 14 utilize the cbor-raw compression
option to encapsulate the image topics (image_raw) distributed by Host Bob’s Sensor node
and forward them to the subnet α via Host Alice1’s Gateway. Furthermore, the directives
include the reverse-forwarding of topics such as face_recog_result, object_detect_result,
and human_act_recog_result, which are generated by AI services running on a cloud (or
fog) server. This enables the robot’s internal environment to access these topics, allowing
the robot to perform intelligent tasks, including obstacle avoidance, human tracking, and
remote control. This is achieved by leveraging high-level AI services hosted on high-
performance servers.
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Listing 1. An example JSON configuration for the Gateway.

1 [{
2 ‘‘address’’:‘‘ws://<address of Host Carol1>’’,
3 ‘‘expose-service’’:[{‘‘name’’:‘‘/pause_robot’’,‘‘type’’:‘‘std_srvs/srv/Empty’’}],
4 ‘‘expose-action’’:[{‘‘name’’:‘‘/navigate_to_pose’’,
5 ‘‘type’’:‘‘nav2_msgs/action/NavigateToPose’’}],
6 ‘‘reserve-service’’:[{‘‘name’’:‘‘/controller_start’’,‘‘type’’:‘‘std_srvs/srv/SetBool’’

}]
7 },
8 {
9 ‘‘address’’:‘‘ws://<address of Host Alice1>’’,

10 ‘‘publish’’:[{‘‘name’’:‘‘/image_raw’’,‘‘type’’:‘‘sensor_msgs/msg/Image’’,
11 ‘‘compression’’:‘‘cbor-raw’’}}],
12 ‘‘subscribe’’:[
13 {‘‘name’’:‘‘/face_recog_result’’,‘‘type’’:‘‘std_msgs/msg/String’’},
14 {‘‘name’’:‘‘/object_detect_result’’,‘‘type’’:‘‘std_msgs/msg/String’’},
15 {‘‘name’’:‘‘/human_act_recog_result’’,‘‘type’’:‘‘std_msgs/msg/String’’}]
16 }]

3.4. Gateway Algorithms to Enhance Availability of the ROS

This section outlines the algorithms and processes utilized by the Gateway to facilitate
the interconnection of ROS topics, services, and action nodes that are distributed across
multiple separate networks. These algorithms encompass a description of the Bring Up
procedure for initiating the Gateway operation and procedures for making ROS topics,
services, and actions available through the Gateway between nodes on separate networks.
With these algorithms, the Gateway establishes a virtual wide-area ROS network, thereby
ensuring seamless and efficient interaction between ROS modules.

3.4.1. BringUp Task: Gateway Task Startup Procedure

The Algorithm 1 presented here outlines the BringUp procedure, which initiates a
worker process responsible for executing the Gateway operations associated with ROS top-
ics, services, and actions. This process is predicated upon the configuration values supplied
to the Gateway. Each task is characterized by a configuration c, which encompasses four
constituent elements:

• o: The operation directive (e.g., publish, subscribe, expose-service, reserve-service,
expose-action, reserve-action, and see Section 3.3 for detailed descriptions).

• u: The endpoint address of the target Gateway that the Gateway will contact in order
to perform the task.

• n: The identifier of the ROS topic, service, or action, as determined by ROS nam-
ing conventions.

• t: The data type associated with the topic, service, or action, as applicable.

The OpClassOf function categorizes the operation type of each task into one of three
classifications: topic, service, or action. The Hash function is employed to generate a
unique key for each task configuration, which is subsequently utilized to mitigate bridging
loops wherein the client-role Gateway and the server-role Gateway perpetually exchange
identical topics. The CreateClientTaskProcess function generates a client task process
customized to the operational directive, contingent upon the operation type of the task.
The following task types may be instantiated:

• TopicTask: Responsible for managing ROS topics (refer to Algorithm 2);
• ServiceTask: Responsible for managing ROS services (refer to Algorithm 3);
• ActionTask: Responsible for managing ROS actions (refer to Algorithm 4).

The CreateMessageEndpointProcess function is responsible for coordinating connec-
tions originating from other Gateways and, in turn, initiating the creation of MessageEnd-
point functions in response to the operation directives solicited from other Gateways. These
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tasks are carried out in accordance with Algorithms 2–4. This algorithm effectively oversees
and synchronizes ROS topics, services, and actions across the Gateways, thereby establish-
ing a virtual wide-area ROS network interconnected through the Gateways. This facilitates
seamless communication and collaboration among ROS modules.

Algorithm 1. Gateway Task BringUp
Input: C (list of configurations)
Data: T (dictionary of running tasks)

1 begin
2 foreach c ∈ C do // c = (o,u,n,t)
3 oc← OpClassOf(c.o)) // oc ∈ {topic, service, action}
4 k← Hash(oc, c.u, c.n, c.t) // get unique key
5 if k /∈ T then // suppress bridging loop
6 T[k]← CreateClientTaskProcess(oc, c)

7 s← Listen()
8 while true do
9 conn← Accept()

10 CreateMessageEndpointProcess(conn)

Algorithm 2. Gateway Topic Task Process
Input: c (a configuration)
Data: W (dictionary of ROS Topic publisher)
Data: R (dictionary of ROS Topic subscriber)

1 Function TopicTask(c): // c = (o,u,n,t)
2 conn← Connect(c.u)
3 if c.o = ’publish’ then // Topic forwarding task
4 conn.send(AdvertiseTopicMsg(type: c.t, topic: c.n))
5 R[c.n]← CreateROSSubscriber(c.t, c.n, SubCallBack, conn)
6 else if c.o = ’subscribe’ then // Topic reverse forwarding task
7 W[c.n]← CreateROSPublisher(c.t, c.n)
8 conn.send(SubscribeTopicMsg(type: c.t, topic: c.n))

9 while true do
10 m← conn.recv() // wait for Gateway Topic Message
11 if m ∈ PublishTopicMsg then
12 data← UncompressAndDecode(m.msg)
13 P[m.topic].publish(data)

14 Function TopicMessageEndpoint(conn):
15 while true do
16 m← conn.recv() // wait for Gateway Topic Message
17 if m ∈ AdvertiseTopicMsg then
18 W[m.topic]← CreateROSPublisher(m.type,m.topic)
19 else if m ∈ PublishTopicMsg then
20 data← UncompressAndDecode(m.msg)
21 W[m.topic].publish(data)
22 else if m ∈ SubscribeTopicMsg then
23 R[c.n]← CreateROSSubscriber(m.type,m.topic,

SubCallBack,conn)

24 Function SubCallBack(data,name,conn): // called from ROS
25 conn.send(PublishTopicMsg(topic: name,

msg: EncodeAndCompress(data)))
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Algorithm 3. Gateway Service Task Process
Input: c (a configuration)
Data: S (dictionary of ROS Service server proxies)

1 Function ServiceTask(c): // c = (o,u,n,t)
2 conn← Connect(c.u)
3 if c.o = ’expose-service’ then
4 conn.send(AdvertiseServiceMsg(type: c.t, service: c.n))
5 else if c.o = ’reserve-service’ then
6 S[c.n]← CreateROSServiceServer(c.t, c.n, SrvCallBack, conn)

7 while true do
8 m← conn.recv() // wait for Gateway Service Message
9 if m ∈ CallServiceMsg then

10 cli← CreateROSServiceClient(m.type, m.service)
11 res← cli.call(UncompressAndDecode(m.args))
12 conn.send(ServiceResponseMsg(service: m.service,

values: EncodeAndCompress(res)))

13 Function ServiceMessageEndpoint(conn):
14 while true do
15 m← conn.recv() // wait for Gateway Service Message
16 if m ∈ AdvertiseServiceMsg then
17 S[m.service]← CreateROSServiceServer(m.type, m.service,

SrvCallBack, conn)
18 else if m ∈ CallServiceMsg then
19 cli← CreateROSServiceClient(m.type, m.Service)
20 res← cli.call(UncompressAndDecode(m.args))
21 conn.send(ServiceResponseMsg(service: m.service,

values: EncodeAndCompress(res)))

22 Function SrvCallBack(request, name, conn): // called from ROS
23 conn.send(CallServiceMsg(service: name,

args: EncodeAndCompress(request)))
24 r ← conn.recv() // wait for ServiceResponseMsg
25 return UncompressAndDecode(r.values)

3.4.2. Topic Task: ROS Topic Communication across Different Networks

The algorithm presented in Algorithm 2, entitled “Gateway Topic Task Process”, de-
scribes the process by which a Gateway connects ROS topic publishers and ROS topic
subscribers on different networks. This algorithm is required to facilitate ROS topic com-
munication between ROS nodes on networks with different address ranges (i.e., separate
networks). The algorithm accepts a configuration parameter, designated c, which represents
task details, including the operation (o), Uniform Resource Identifier (URI) (u), topic name
(n), and topic type (t). Additionally, dictionaries W and R are employed to store the ROS
topic publishers and ROS topic subscribers, respectively.
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Algorithm 4. Gateway Action Task Process
Input: c (a configuration)
Data: A (dictionary of ROS Action server proxies)

1 Function ActionTask(c): // c = (o,u,n,t)
2 conn← Connect(c.u)
3 if c.o = ’expose-action’ then
4 conn.send(AdvertiseActionMsg(type: c.t, action: c.n))
5 else if c.o = ’reserve-action’ then
6 A[c.n]← CreateROSActionServer(c.t, c.n,

ActionCallBack, conn)

7 while true do
8 m← conn.recv() // wait for Gateway Action Message
9 if m ∈ SendActionGoalMsg then

10 cli← CreateROSActionClient(m.action_type, m.action)
11 r ← cli.send_goal(UncompressAndDecode(m.args),

FeedbackCallBack, conn)
12 conn.send(ActionResultMsg(action: m.action,

values: EncodeAndCompress(r)))

13 Function ActionMessageEndpoint(conn):
14 while true do
15 m← conn.recv() // wait for Gateway Action Message
16 if m ∈ AdvertiseActionMsg then
17 A[c.n]← CreateROSActionServer(m.action_type, m.action,

ActionCallBack, conn)
18 else if m ∈ SendActionGoalMsg then
19 cli← CreateROSActionClient(m.action_type, m.action)
20 r ← cli.send_goal(UncompressAndDecode(m.args),

FeedbackCallBack, conn)
21 conn.send(ActionResultMsg(action: m.action,

values: EncodeAndCompress(r)))

22 Function ActionCallBack(goal_handle, name, type, conn):
23 conn.send(SendActionGoalMsg(action: name, action_type: type,

args: goal_handle.request))
24 while true do
25 r ← conn.recv() // wait for Gateway Action Message
26 if r ∈ ActionFeedbackMsg then
27 goal_handle.publish_feedback(r.values)
28 else if r ∈ ActionResultMsg then
29 return UncompressAndDecode(r.values)

30 Function FeedbackCallBack( f eedback_data, name, conn):
31 conn.send(ActionFeedbackMsg(action: name,

values: EncodeAndCompress(feedback_data.feedback)))

The TopicTask function is responsible for executing the topic operation in accordance
with the specifications set forth in the configuration. In the event that the operation
directive is publish, a connection is established and a topic forwarding message (i.e., Ad-
vertiseTopicMsg) is sent to the connected Gateway. Conversely, in the case of a subscribe
operation, the function creates a ROS topic publisher and sends a topic reverse forwarding
message (i.e., SubscribeTopicMsg) to the connected Gateway. In both cases, the function
continuously monitors incoming messages and forwards them in accordance with the
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specified operation. The TopicEndpoint function serves as the endpoint for the processing
of topic-related messages received from the Gateway. The function monitors incoming
messages and executes the requisite tasks based on their type. In the event that the received
message is a topic forwarding message (i.e., AdvertiseTopicMsg), the TopicEndpoint func-
tion initiates the creation of a publisher for the topic message to be forwarded. In the event
that the received message is a topic data message (i.e., PublishTopicMsg), the TopicEnd-
point function decodes the data contained in the msg of the message and subsequently
publishes it through the ROS topic publisher. Similarly, if the message is a topic reverse
forwarding message (i.e., SubscribeTopicMsg), the TopicEndpoint function establishes a
subscriber for the requested topic. Furthermore, the algorithm defines a callback function,
SubCallBack, for handling incoming messages from ROS subscribers. Upon receipt of ROS
data, this function compresses and encodes it, subsequently passing it to the target Gateway
for publication. In essence, this algorithm provides an organized approach to managing
ROS topics within the Gateway, thereby enabling seamless communication between nodes
on separate networks. A sequence diagram illustrating the operation of this algorithm,
triggered by the BringUp Task Algorithm 1, is provided in Figure A1 of Appendix A.

3.4.3. Service Task: Enhancing ROS Service Interoperability across Networks

The algorithm delineated in Algorithm 3 provides a comprehensive explanation of the
Gateway Service task process, which has been designed to facilitate enhanced interaction
between ROS service servers and clients operating across disparate networks. This process
encapsulates the service logic necessary for the dynamic handling of ROS service requests
and for extending ROS service accessibility across multiple networks with varying address
ranges through a standardized communication protocol. The fundamental elements of this
algorithm encompass the initialization of service task functions, message processing, and
service invocation. These elements are elucidated through a series of function definitions
and message processing logic.

The ServiceTask function establishes initial connections and determines whether to
expose or reserve ROS services based on the configuration parameter c. In response to the
expose-service directive, the Gateway establishes a connection with the message endpoint
of the target Gateway, which is operating within a different network. Subsequently, the
Gateway transmits a service advertisement message (i.e., AdvertiseServiceMsg) to the
target Gateway, thereby exposing the ROS service. In contrast, when the reserve-service
directive is employed, the Gateway establishes an ROS service server with specified service
types, service names, and callback functions, subsequently registering it in the service
server dictionary S. The iterative loops within the ServiceTask function are designed to
facilitate the effective handling of service call messages received from other Gateways
requesting exposed services. The ServiceEndpoint function is responsible for monitoring
and responding to incoming messages from external Gateways. Upon receipt of a service
advertisement message, the system instantiates and registers an ROS service server. Upon
receipt of a service call message (i.e., CallServiceMsg), the system creates an ROS service
client, decompresses and decodes the arguments from the message, and invokes the
corresponding ROS service. In response to an ROS service call, the data received from the
ROS node is encoded, compressed, and then transmitted back to the client in a Gateway
service response message (i.e., ServiceResponseMsg). The SrvCallBack function serves as a
service callback for the ROS service server and is designed to encapsulate the logic required
to enable the fulfillment of service requests from ROS nodes on a separate network via the
Gateway. Upon invocation of an ROS service by an ROS node, the request data is routed to
SrvCallBack. The ROS data is encoded, compressed, and included in a Gateway service
call message that is transmitted to the connected Gateway. Subsequently, it awaits the
service response message, decodes it, and returns the result. This function facilitates the
forwarding of ROS service calls from ROS nodes to other Gateways.

The goal of this algorithm is to extend the accessibility of ROS services to devices
without a fixed address. In addition, it facilitates interoperability between ROS service
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servers and clients within distributed networks connected through ROS Gateways in the
cloud. The sequence diagram in Figure A2 in Appendix A illustrates the behavior of
the Gateway service task, which supports provisioning ROS services to the cloud or late
binding to ROS services provided by the cloud according to the algorithm.

3.4.4. Action Task: Multi-Network Communication Methods for ROS Actions

The algorithm presented in Algorithm 4 establishes a connection between ROS action
servers and action clients on disparate networks. This enables the ROS action functionality,
as provided by ROS, to operate across multiple distinct networks. The algorithm comprises
a number of pivotal functions and a set of message processing logic, which have been
devised with the objective of facilitating the multi-network interaction of ROS actions.

The ActionTask function establishes the initial connection for other target Gateways
and determines whether to expose or reserve the action based on the configuration parame-
ter c. In response to the expose-service directive, the function sends an action advertisement
message (i.e., AdvertiseActionMsg) to the connected Gateway. Subsequently, it awaits the
receipt of messages from the connected Gateway. In the event that the received message is a
request for a ROS action (i.e., SendActionGoalMsg), it creates a ROS action client to invoke
the ROS action. This is achieved by configuring the ROS action arguments from the received
message. Subsequently, upon receipt of the result from the ROS action server running
on another ROS node in the local subnet, the message is configured for transmission of
ROS action results (i.e., ActionResultMsg) in the Gateway protocol and forwarded to the
Gateway that previously sent the action execution request message.

Upon receipt of the action advertisement message, the ActionMessageEndpoint identi-
fies the action type and action name from the incoming message and initiates the creation
of an ROS action server with action callbacks configured to facilitate the actual action
service. In the event that the ROS action is invoked from another ROS node that is on the
same network as the Gateway in question, the request data is transmitted to the callback
function of the ROS action server that has been created here. The ActionCallBack function
generates a request message for a Gateway ROS action (i.e., SendActionGoalMsg) based on
the received ROS action data (i.e., goal_handle.request) and transmits it to the connected
Gateway. Subsequently, it remains in a state of continuous anticipation for an action result
message from the connected Gateway. Concurrently, upon receipt of action feedback mes-
sages, it persists in disseminating feedback (i.e., publish_feedback) to the ROS node that
initially requested the ROS action.

In the event that the subnet containing the Gateway running the ActionTask lacks
a corresponding ROS action server and the ROS action is being served from a separate
network, the reserve-action directive may be employed. To facilitate the configuration
of action reservations, the ActionTask function establishes a ROS action server with the
objective of receiving ROS action data from ROS nodes within the same address range as
the Gateway. The ROS action server is created with four arguments: an action type, an
action name, an action callback, and the target Gateway connection handle. Subsequently,
the logic for processing the action reservation is executed solely within the ActionCallBack
and FeedbackCallBack functions. The subsequent step is to transfer the action data from
the ROS node to the connected Gateway and relay the received Gateway action messages
(i.e., ActionFeedbackMsg, ActionResultMsg) to the ROS node. The aforementioned logic is
employed once more in the context of ROS action reservation, given that the ROS action
exposure task and message passing direction are in opposition, yet the processing process
remains identical.

This methodology has the potential to enhance system stability and performance when
configuring robot applications. It enables external control of ROS action functions within
the robot and facilitates the configuration of robot applications using the high-performance
action function provided by a cloud server with advanced computing capabilities. The
sequence diagram in Figure A3 in Appendix A illustrates how the Gateway extends ROS
actions across the network based on this algorithm.
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3.5. Gateway Features Overview

The principal characteristics of the Gateway, as implemented through the proposed
scheme, are as follows:

• Combines both client and server functionalities into a single agent.
• Supports the rosbridge protocol, enabling integration with rosbridge-based web tools.
• Includes protocol modifications to address performance issues without compromising

webtool compatibility.
• Allows interaction with ROS web tools without using rosbridge by embedding ros-

bridge application programming interface (API) services.
• Supports user-defined types in ROS interactions with a Python-based dynamic type

conversion function.
• Non-invasive design requires no system changes beyond installation of custom ROS

message packages.
• Utilizes multiprocessing to address performance degradation caused by Python’s

Global Interpreter Lock (GIL).
• Packaged as a Docker container, allowing operation without a direct ROS installation

on the host machine.

4. Experiments and Results
4.1. Experimental Setup

The experiments were conducted on a Robot Node and a Server Node, which were
connected via a 100 Mbps network. The experimental setup was configured in a slightly
different manner for each scenario, including those designated as localhost, local-subnet,
Gateway, and rosbridge. A detailed description of these configurations can be found in
Section 4.2. In these experiments, ROS topics were configured to publish only from ROS
programs on the robot node with a sensor device. Concurrently, performance metrics
(e.g., rate, delay, message size) were recorded for all target topics (e.g., RGB image, depth
image) on the server node in all scenarios except the localhost scenarios. A summary of the
experimental setup is provided in Table 4.

The calculation of each measurement metric was performed as follows:

• Rate (Hz): The rate was calculated as the number of messages received per second.
This was measured using the command “ros2 topic hz”. The formula for rate is:

R =
N(

∑N
x=1(Tx − Tx−1)

) , (1)

where R is the average rate of the observed topics; Tx denotes the observed time of
the x-th published topics; and N is the number of observed topics, which is set to a
constant value. The initial value, T0, was set to the same value as T1.

• Delay (seconds): The delay was calculated as the average time taken for a message to
be received after it had been sent. This was measured using the command “ros2 topic
delay”. The formula for delay is:

D =

(
∑N

x=1(Tx − Hx)
)

N
, (2)

where D is the average delay of the observed topics; Tx denotes the observed time of
the x-th published topics; Hx denotes the topic creation time contained in the header
of the published topic Tx; and N is the number of observed topics, which was set to a
constant value.

• Message size (megabytes): The message size was dependent on the data type of the
observed topic and was a constant value for each topic in this experiment.
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Table 4. System configuration.

Configuration Details

Hardware Configuration

Robot Node

Processor and memory
ARM Cortex-A78AE 2.2 GHz, 64 GB LPDDR5
RAM (NVIDIA Jetson AGX Orin [46]) (Santa
Clara, CA, USA)

Additional devices Intel RealSense Camera (Santa Clara, CA,
USA) [47]

Server Node (Emulate Cloud or Fog server)

Processor and memory AMD Ryzen 9 3900X (Santa Clara, CA, USA),
64 GB DDR4 RAM

Software Environment

Host operating system Ubuntu 20.04 LTS (server, robots)
Middleware platform ROS 2 Foxy with DDS(Fast RTPS) [48]
Docker version 20.10.7

Containers Separate containers for each ROS node, rosbridge
and Gateway

Container OS Ubuntu 20.04 LTS (docker Images)
Programming language Python 3.8

Measurement tools ros2cli [49] (“ros2 topic hz”, “ros2 topic delay”,
“ros2 topic bw”)

Measurement metrics rate (Hz), delay (sec), message size (megabytes)

Network Configuration

Network bandwidth 100 Mbps

Experiments Configuration

Publisher Realsense ROS node [50]

Topics published
424 × 240 × 3 RGB Image (message size: 0.31
Mbytes), 424 × 240 × 2 Depth Image (message
size: 0.2 Mbytes)

Publishing rates 15 Hz, 30 Hz, 60 Hz
Target tasks Topic tasks (forwarding, reverse forwarding)

Gateway options cbor-raw, json, cbor, zip, rawzip (for all
Topic tasks)

Rosbridge options cbor-raw (for only topic reverse forwarding), json
(for all topic tasks)

4.2. Experimental Scenarios
4.2.1. Localhost Scenarios

The localhost scenarios were designed to assess the baseline performance of ROS on
the Robot Node. The sensor ROS program published RGB image and Depth image topics
in the Robot Node, and performance metrics were measured using ROS performance
measurement tools on the same Robot Node.

4.2.2. Local-Subnet Scenarios

The local-subnet scenarios were designed to evaluate the performance of ROS commu-
nication between the Robot Node and the Server Node on the same network (i.e., the same
subnet). The sensor ROS program, which was executing on the Robot Node, published
RGB image and depth image topics. The performance metrics were evaluated using the
ROS performance measurement tools on the Server Node.

4.2.3. Gateway Scenarios

The Gateway scenario was employed to assess the performance of the Gateway under
varying configuration options, as detailed in Table 4. Both the Robot and Server nodes
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ran the Gateway in separate Docker containers, with each Docker container configured
to utilize a separate Docker network. The Gateway on the Robot Node utilized the same
Docker network as the Docker container running the sensor ROS program. In the Topic
forwarding experiments, the Gateway on the Robot Node was configured to connect to
the Gateway on the Server Node, while in the Topic reverse forwarding experiments, the
Gateway on the Server Node was configured to connect to the Gateway on the Robot Node.
Performance measurements were conducted using a measurement tool on separate ROS
containers that were running within the Server Node.

4.2.4. Rosbridge Scenarios

The rosbridge scenario was employed to assess the performance of rosbridge for rep-
resentative options (see Table 4) available in the current version of rosbridge (version
1.3.2 [24]). The Gateway and rosbridge were configured to operate within separate Docker
containers on both the Robot Node and the Server Node. Furthermore, each Docker con-
tainer was configured to utilize a distinct Docker network. The Gateway or rosbridge
running on the Robot Node utilized the same Docker network as the Docker container
in which the sensor ROS program was running. The topic forwarding experiment was
configured so that the Gateway on the Robot Node forwarded topics to rosbridge on the
server node. The topic reverse forwarding experiment was configured so that the Gate-
way on the server node received Topics from rosbridge on the Robot Node. Performance
measurements were performed using the measurement tool on a separate ROS container
running on the Server Node. In this experiment, the Gateway acted as a client program to
rosbridge, which only functions as a server.

4.3. Experimental Results

The experimental results were evaluated based on two primary metrics for the ob-
served topics: topic rate and topic delay. The “Comparative Experimental Results” section
(see Section 4.3.1) presents a comparison of the performance of the Gateway and rosbridge
under a variety of configuration scenarios. The section “Gateway Performance Experimen-
tal Results” (see Section 4.3.2) provides performance measurements for each configuration
option provided by the proposed Gateway. The message size metric was measured but not
plotted on a graph because it has a constant value for each topic and was therefore used in
the analysis of the results for each metric.

4.3.1. Comparative Experimental Results

In each scenario, the performance metrics were evaluated at varying sensor data
generation rates (15 Hz, 30 Hz, and 60 Hz), and the primary performance metrics of rate
and delay were compared. Figure 3 illustrates the comparative outcomes for the rate metric,
while Figure 4 depicts the comparative outcomes for the delay metric. In Figures 3 and 4,
the measurement results are displayed according to the sensor data generation rate and
classified according to the applied scenario. Figure 3 depicts the rate measurement out-
comes for each scenario, primarily illustrating the maximum rate when image and depth
topics are employed in conjunction. The lowest rate observed in each configuration is
indicated by the error bars. Figure 4 depicts the delay measurement results for each scenario,
primarily illustrating the minimum delay value when image and depth topics are employed
concurrently. The maximum delay value in each configuration is indicated by the error bars.
In Figures 3 and 4, the measurement results for the localhost scenario using ROS within a
single device are indicated as ros2-localhost. The results of the measurements conducted for
the scenario in which ROS is employed across multiple hosts within a local network are pre-
sented as ros2-subnet. In scenarios where JSON-encoded topics are forwarded to a remote
Gateway or remote rosbridge, the measurement results are designated as Gateway-pub-json
and rosbridge-pub-json, respectively. In scenarios where JSON-encoded topics are reversed
from a remote Gateway or remote rosbridge, the measurement results are designated as
Gateway-sub-json and rosbridge-sub-json, respectively. Similarly, in scenarios where raw-
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encoded topics are reversed from a remote Gateway or remote rosbridge, the measurement
results are designated as Gateway-sub-raw and rosbridge-sub-raw, respectively.
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Figure 3. Comparison of ROS topic transmission rates for different configurations: The configurations
include the use of ROS on a single device (ros2-localhost) and local subnet (ros2-subnet), the use of the
Gateway on separate networks (Gateway-pub-json, Gateway-sub-json, Gateway-sub-raw), and the use
of rosbridge on separate networks (rosbridge-pub-json, rosbridge-sub-json, rosbridge-sub-raw). The best
performance for each configuration is plotted, with error bars representing the worst performance.
Higher values indicate superior performance.
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Figure 4. Comparison of ROS topic transmission delay for different configurations: The configurations
include the use of ROS on a single device (ros2-localhost) and local subnet (ros2-subnet), the use of the
Gateway on separate networks (Gateway-pub-json, Gateway-sub-json, Gateway-sub-raw), and the use of
rosbridge on separate networks (rosbridge-pub-json, rosbridge-sub-json, rosbridge-sub-raw). A log scale is
used to illustrate the delay values. The minimum delay for each configuration is plotted, and the
error bars represent the maximum delay. Lower values indicate better performance. The horizontal
dashed lines on the graph represent the real-time limit delay at each occurrence rate.
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4.3.2. Gateway Performance Experimental Results

A series of experiments was conducted to compare the performance of the Gateway
options when the sensor data generation rate was altered to 15 Hz, 30 Hz, and 60 Hz.
All available Gateway options were employed in both topic forwarding and topic re-
verse forwarding operations. Figure 5 illustrates the outcomes of the rate metric for all
options within the Gateway scenario, whereas Figure 6 depicts the results of the delay
metric. In Figures 5 and 6, the measurements are displayed according to the sensor data
generation rate and sorted by the applied options. For purposes of comparison with pure
ROS, Figures 5 and 6 present the ros2-localhost and ros2-subnet measurements together. In
Figures 5 and 6, each result of the Gateway experiment is labeled in the format “Gateway-
task-option”. In regard to the task directive of label, the term “pub” is used to denote the
results of the topic forwarding operation, whereas the term “sub” is used to indicate the re-
sults of the topic reverse forwarding operation. The option directive reflects the designation
of the option provided by the Gateway (see Section 3.2), with the exception of the cbor-raw
option, which is labeled as raw.

ro
s2
-lo
ca
lh
os
t

ro
s2
-s
ub
ne
t

G
at
ew
ay
-p
ub
-js
on

G
at
ew
ay
-p
ub
-r
aw

G
at
ew
ay
-p
ub
-c
bo
r

G
at
ew
ay
-p
ub
-z
ip

G
at
ew
ay
-p
ub
-r
aw
zi
p

G
at
ew
ay
-s
ub
-js
on

G
at
ew
ay
-s
ub
-r
aw

G
at
ew
ay
-s
ub
-c
bo
r

G
at
ew
ay
-s
ub
-z
ip

G
at
ew
ay
-s
ub
-r
aw
zi
p

10

20

30

40

50

60

15

30

60

O
b
se
rv
ed

to
p
ic

ra
te
s(
H
z)

15Hz
30Hz
60Hz

Figure 5. Observed topic rates by Gateway configurations and sensor publishing rates: The configu-
rations include the use of ROS on a single device (ros2-localhost) and local subnet (ros2-subnet), as well
as the use of the Gateway on each option. The best performance for each configuration is plotted,
with error bars representing the worst performance. Higher values indicate superior performance.

4.4. Discussion

As anticipated, the localhost scenarios with no network transport exhibited the highest
rate and lowest delay. Figure 3 illustrates that the local-subnet scenarios exhibited the poorest
rate measurement results for all data generation rates. The results of these experiments
using ROS were found to be attributable to the network bandwidth required, in accordance
with the network connection characteristics of the ROS topic task. The following equations
represent the calculation of the network bandwidth required for a ROS application com-
prising host set H and topic set T, along with the expected subscribing topic rate when the
network bandwidth is specified.

B = ∑
i∈T

∑
j∈H
j′∈H
j ̸=j′

(
S(i) · Rp(i) · Np(i, j) · Ns(i, j′) · nbits

)
, (3)
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Rr(i) =
Rp(i) · L

B
, (4)

where S(i) is the message size of topic i, Rp(i) is the publishing rate of topic i, Np(i, j)
represents the number of publishers for topic i on host j, Ns(i, j′) represents the number
of subscribers for topic i on host j′, L represents the given inter-host network bandwidth,
Rr(i) is the predicted subscribing rate for topic i, and nbits represents the conversion factor
from bytes to bits.
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Figure 6. Observed topic delays by Gateway configurations and sensor publishing rates: The
configurations include the use of ROS on a single device (ros2-localhost) and local subnet (ros2-subnet),
as well as the use of the Gateway on each option. A log scale is used to illustrate the delay values.
The minimum delay for each configuration is plotted, and the error bars represent the maximum
delay. Lower values indicate better performance. The horizontal dashed lines on the graph represent
the real-time limit delay at each occurrence rate.

The Gateway and rosbridge scenarios demonstrated disparate performance measure-
ments contingent on the configuration options. In particular, Figure 3 indicates that the raw
results for the Gateway and rosbridge scenarios exhibited the most favorable performance
when compared to the json results. Furthermore, the difference between the raw results for
the two scenarios was relatively minimal. The Gateway scenarios exhibited an average rate
that was approximately 1.5 times higher than the rosbridge scenarios in the topic forwarding
task with the json option. The low delay measurement result for the local-subnet scenarios
in Figure 4 can be attributed to the low rate. At a low sensor data generation rate of
15 Hz, the topic forwarding task with the json option in the rosbridge scenarios exhibited
superior rate measurement results compared to the local-subnet scenarios. However, the
delay measurement results were the most unfavorable compared to all other scenarios. The
Gateway scenarios exhibited delay measurement results that were, on average, more than
seven times superior to those of the rosbridge scenarios at both high sensor data generation
rates (30 Hz and 60 Hz).

The following equation calculates the expected network bandwidth when the Gateway
Bg is applied to a ROS application consisting of a set of hosts H and a set of topics T:
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Bg =
1

Co ∑
i∈T

∑
j∈H
j′∈H
j ̸=j′

(
S(i) · Rp(i) · Ep(i, j) · Es(i, j′) · nbits

)
, (5)

where S(i) denotes the message size of topic i, Rp(i) represents the publishing rate of
topic i, Ep(i, j) is a Boolean indicating whether host j publishes topic i and Es(i, j′) is a
Boolean indicating whether host j′ subscribes to topic i, nbits represents the conversion
factor from bytes to bit (typically 8), and Co represents the compression ratio specific to the
Gateway’s options. For the zip and rawzip options, the default compression ratio [51] of
“lz4” is applied.

Figures 5 and 6 illustrate that the results for the Gateway scenarios at sensor data
rates of 15 Hz and 30 Hz are in close alignment with the ideal rates observed in the
localhost scenarios. The delay metric results for the Gateway scenarios at a sensor data rate
of 15 Hz, particularly when the zip and rawzip options were applied to topic forwarding
tasks, exhibited a deviation of less than 5% from the ideal delay values observed in the
localhost scenarios, which were deemed acceptable. However, in the 30 Hz experiment, the
delays exceeded the ideal values by more than 20%, indicating a deviation from the desired
outcome. Figures 5 and 6 also illustrate that tasks utilizing the zip and rawzip options
in the Gateway scenarios, with the exception of the 60 Hz experiment, exhibited superior
performance in both the rate and delay metrics in comparison to the local-subnet scenarios.
In the 60 Hz experiments, the Gateway scenario with zip and rawzip options achieved
notable rate results, reaching 75% of the ideal rate in the localhost scenarios, despite the total
amount of topics to be transferred exceeding the 100 Mbps network bandwidth. The delay
metrics in these experiments exceeded the 60 Hz sensor data generation period of 0.016 s,
which may be a cause for concern. However, it is noteworthy that more than 40 sensor
data points were still collected per second. In summary, these experiments demonstrate
the significant impact of configuration choices on system performance in cloud robotics
environments. Specifically, Gateway configurations that leverage compression options
show great potential for improving both data transfer efficiency and delay management
under a variety of operating conditions.

Further inquiries pertaining to the experiments revealed the following factors that
contributed to each outcome:

• The inferior performance of rosbridge: Experimental logs confirmed that rosbridge
was unable to receive binary data, limiting its ability to handle large data. Its asyn-
chronous implementation also caused CPU performance issues due to Python’s GIL,
which blocked multi-topic data reception.

• Decline in performance of applications on local subnets relying solely on ROS: In the
performance experiment, executing commands for three subscribers per topic resulted
in a threefold increase in transmission due to ROS’s peer-to-peer connection. This
issue can also arise when different applications on the same host utilize the same topic
from a different host.

Furthermore, we considered potential limitations or edge cases where the Gateway
may not significantly enhance ROS availability. These include:

• Gateway topic forwarding when ROS peers are unavailable: ROS only transmits data
when a peer is present. However, since the Gateway acts as a peer, it consumes
bandwidth even in the absence of an actual ROS peer, which could negatively affect
the transmission performance of other key topics.

• Applications on the same machine using distinct topics within a single subnet: If mul-
tiple applications on the same machine are not repetitively listening to the same topics,
using a Gateway may introduce more overhead compared to using ROS alone.

• Time-sensitive application environments: The Gateway is not designed to address
time-critical problems, so it does not improve ROS availability in environments where
strict timing constraints are crucial.
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5. Conclusions

In this paper, we introduce the ROS Gateway, a middleware solution designed to
facilitate seamless collaboration between a robot’s onboard sensors and cloud-based AI sys-
tems. We provide a comprehensive account of the architectural, protocol, and algorithmic
aspects of the ROS Gateway, along with an illustration of how it facilitates more efficient
communication between distributed systems. The experimental results demonstrate that
the ROS Gateway enhances performance across a range of configurations, particularly in
cloud and fog robotics environments.

The study yielded several key findings, which are outlined below:

• The ROS Gateway has the potential to outperform a standard ROS-only configuration,
even when the robot and server are on the same local subnet, depending on the
distribution of ROS applications.

• The transmission of sensor data from advanced devices, such as depth cameras, was
more efficient and reliable with the ROS Gateway, thereby reducing delays in processing
critical environmental information and improving the robot’s overall responsiveness.

• The formulas provided for predicting topic reception rates in both ROS and the ROS
Gateway offer valuable guidance for the design of optimal deployment strategies for
sensor-rich robotic systems, particularly in complex and data-intensive environments.

These findings highlight the potential of the ROS Gateway to significantly enhance
the performance of robotic systems in distributed computing environments, making it a
valuable tool for developers seeking to optimize robotic applications.

In future work, we intend to investigate the influence of security measures on system
performance, examine the potential of techniques such as NAT Traversal, and optimize
the system for resource-constrained devices through the use of low-level programming
languages. By addressing these factors, our objective is to enhance the robustness and
efficiency of sensor data processing in the cloud and fog robotics, and ensure reliable
operation even in resource-constrained scenarios.
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IP Internet Protocol
JSON JavaScript Object Notation
PC Personal Computer
NAT Network Address Translation
AWS Amazon Web Services
UAV Unmanned Aerial Vehicle
VPN Virtual Private Network
MQTT Message Queuing Telemetry Transport
C-ITS Cooperative-Intelligent Transport Systems
EDRP Edge-Driving Robotics Platform
LDMP Local Dynamic Map Platform
5G 5th Generation mobile communications
PNG Portable Network Graphics
CBOR Concise Binary Object Representation
URI Uniform Resource Identifier
API Application Programming Interface
GIL Global Interpreter Lock
Mbps megabits per second
DDS Data Distribution Service
RTPS Real Time Publish/Subscribe
RGB Red, Green, Blue
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GatewayThe ROS Gateway

Appendix A. Gateway Task Sequence Diagram

The Gateway initiates with the BringUp Task Algorithm 1 and subsequently diverges
into the Topic Task Algorithm 2, Service Task Algorithm 3, and Action Task Algorithm 4,
based on the configuration parameters. Each task operates as a discrete process for its
respective configuration item, and these processes collaborate by exchanging messages
between Gateways, thereby enhancing ROS’s availability. In the figures, “Subnet L” is used
to refer to the robot’s internal network, or the local network to which the robot is connected.
In contrast, “Subnet R” represents the network that is connected to external servers, such
as remote clouds and fog nodes. In the majority of cases, Subnet L is assigned a private IP
address, whereas Subnet R is allocated a public IP address.

Figure A1 depicts the process of forwarding topics published by the robot to the
cloud (topic forwarding) and retrieving topics from the cloud by the robot (topic reverse
forwarding). The ROS protocol serves to facilitate communication between the ROS node
and the Gateway.

Figure A2 illustrates the process of exposing the robot’s ROS services to the cloud
(Expose Service) and reserving ROS services hosted in the cloud for the robot’s use when
needed (Reserve Service). The Gateway provides a proxy server function, thereby enabling
it to virtually implement a ROS service and receive service calls from ROS nodes. An
alternative option is for it to act as a proxy client, processing ROS service requests from
other Gateways.

Figure A3 illustrates the process of exposing the robot’s ROS actions for use in the
cloud (Expose Action) and reserving ROS actions running in the cloud for the robot’s use
when needed (Reserve Action). This process is similar to the Service Task, but involves
a more complex algorithm to manage the delivery of action feedback messages from the
ROS node.
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Figure A1. Topic task sequence diagram.
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Figure A3. Action task sequence diagram.
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