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Abstract

Fault-tolerant quantum computation requires error-correcting codes that enable

reliable universal quantum operations. This study introduces a novel approach

that executes the logical Hadamard with low-space requirements while preserv-

ing the original definition of logical operators within the framework of the

rotated surface codes. Our method leverages a boundary deformation method to

rotate the logical qubit transformed by transversal Hadamard. Following this,

the original encoding of the logical qubit is reinstated through logical flip-

and-shift operations. The estimated space–time cost for a logical Hadamard

operation with a code distance d is 5d2 + 3d2. The efficiency enhancement of

the proposed method is approximately four times greater than those of previous

approaches, regardless of the code distance. Unlike the traditional method,

implementing a logical Hadamard requires only two patches instead of seven.

Furthermore, the proposed method ensures the parallelism of quantum circuits

by preventing interferences between adjacent logical data qubits.

KEYWORD S
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1 | INTRODUCTION

Quantum error correction (QEC) is a fault-tolerant quan-
tum computing technique [1–9] developed primarily to
protect quantum information from errors induced by
quantum noise and fast decoherence. QEC codes achieve
this by encoding multiple physical qubits into a single
logical qubit, thereby enabling the detection and correct-
ing of errors during the execution of quantum algo-
rithms. Among the various QEC codes, surface
codes [10–18] are regarded as the most promising due to
their high error thresholds. The surface code generates a
logical qubit using the interactions between neighboring
physical qubits in a two-dimensional array. The data

qubits encode the logical state, whereas the ancilla qubits
periodically track the error syndrome measurements of
neighboring data qubits. These syndromes can be catego-
rized as bit-flip errors (X syndromes) or phase-flip errors
(Z syndromes).

Surface codes offer a set of logical operations for uni-
versal fault-tolerant quantum computations, including
logical Clifford gates (X, Z, Hadamard, S, and Con-
trolled-NOT (CNOT)) and logical non-Clifford T-gates.
Our research focuses on finding effective methodologies
to support logical Hadamard operations (logical-H). Until
recently, various studies have reported logical operation
methods for logical-H, including transversal [19, 20],
code defects [14–18, 21], gate teleportation [22, 23], and
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code deformation [24–29]. Our study focuses on logical-H
techniques based on lattice surgery.

The transversal approach is a simple technique that
enables the implementation of logical-Hs in the context
of surface codes. The transversal method achieves logical-
H by applying a physical H-gate to each physical data
qubit. However, this changes the positions of the X- and
Z-stabilizers of the logical qubit, which can be considered
as if the original logical qubit had been rotated by 90�.
Consequently, performing joint measurement-based logi-
cal CNOT operations between adjacent logical qubits is
challenging [27, 30–32]. Gate teleportation is a technique
used to transmit the state of a logical qubit from one loca-
tion to another within a lattice while simultaneously per-
forming a Hadamard transformation. This method uses a
specialized ZX joint measurement [33, 34] that projects
the shared boundary stabilizers of two logical qubits onto
the ZX plane of the surface code lattice. However, this
method does not preserve the original shape of the logical
qubit as in the transversal approach. Herein, shape refers
to the geometry of the regular lattice used to visualize the
stabilizers. Another approach involves the use of code
deformation techniques to produce logical-H. This
method expands and shrinks the code space of a logical
qubit in the desired direction to generate logical-H while
preserving the original shape of the logical qubit. How-
ever, this approach requires extensive coding.

This study guides the implementation of logical-Hs
while preserving the integrity of logical qubits. First, the
transversal logical-H is applied to a logical qubit. How-
ever, this changes the original shape of the logical qubit
as determined by the configuration of the boundary stabi-
lizer. To address this problem, we propose a new method
called boundary deformation, which relies only on a few
boundary stabilizers and physical qubits to restore the
shape of a logical qubit. This approach is more space-
efficient than conventional methods and provides a
logical-H that preserves the desired shape.

The remainder of this paper is organized as follows:
Section 2 presents a literature review introducing the
concept of logical-Hs in rotated surface codes. The ratio-
nale, behavior, and advantages of these techniques are
also discussed. Section 3 elaborates on the proposed
method for generating logical-Hs via boundary deforma-
tion and provides a detailed cost analysis demonstrating
how much less code space is required. Finally, we con-
clude the paper in Section 4.

2 | RELATED WORKS

The rotated surface code is a variant of the surface code,
an extensively employed QEC code in quantum

computing [15, 23, 26–31, 35, 36]. This code builds X-
and Z-stabilizers on a two-dimensional lattice of qubits to
detect and correct quantum errors. In the rotated surface
code, the X- and Z-stabilizers are rotated by 45� along the
lattice, resulting in their alignment along the edges of the
diagonals rather than the lattice edges. This rotation facil-
itates a more compact arrangement of qubits, thereby
reducing the overall code overhead. The level of fault tol-
erance that can be achieved using the rotated surface
code depends on the code distance. The code distance
refers to the minimum number of Pauli operations that
can be executed consecutively between facing boundaries
without errors. For example, a rotated logical qubit with
code distance d is a d � d lattice consisting of d2 data
qubits and d2�1 ancilla qubits. The total number of
physical qubits required was ≈2d2.

In the rotated surface code, the X- and Z-stabilizers
encode the quantum state of a logical qubit in a
unique bit string format called a codeword. The logical
quantum state jΨLi is obtained by projecting it onto code-
words of the (+) eigenspace of all stabilizers, as shown
in (1),

jψLi¼
1
N

Y
Si � Sh i,0hihn I

N
nþSi

� �
jψ

N
ni, ð1Þ

where S is the stabilizer group comprising Si (X- or Z-sta-
bilizer), n is the number of data qubits, i is the index of
the ancilla qubit, and N is the normalization factor [37].
The elements in Group S included weight-2 or weight-4
stabilizers. The former, called a boundary stabilizer,
detects errors between two neighboring data qubits on a
lattice boundary, whereas the latter detects errors in four
adjacent data qubits within the lattice.

In the study of Fu [30], a rotated surface code was
used to identify four logical qubit flavors based on
boundary stabilizers placed at the bottom of the lattice:
X_Right, X_Left, Z_Right, and Z_Left, as illustrated in
Figure 1A. Lattice surgery [15, 23, 27, 30–32], which
entails joint measurements between adjacent logical
qubits, relies on flavor. Figure 1B,C illustrates the lattice
operations of the two logical qubits using the boundary
stabilizers. In Figure 1B, two logical qubits with adjacent
X-stabilizers are merged into a logical qubit flavor, as
shown on the right side. The logical X operator on the
merged logical qubit extends along the neighboring
X stabilizers, indicating that lattice surgery can be per-
formed by modifying the boundary stabilizers connecting
the two logical qubits. In contrast, Figure 1C,D illustrates
a case in which it is impossible to perform lattice surgery
for a logical CNOT operation between neighboring logi-
cal qubits. The Z + X boundary stabilizers link two
logical qubits. Therefore, to facilitate lattice surgery
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between these qubits, the qubits should be modified to
guarantee an X + X or Z + Z boundary stabilizer
configuration.

The following sections discuss the methodologies for
implementing logical-Hs in rotated surface code.

2.1 | Transversal logical-H

Transversal logical-H in the surface code involves
the application of a sequence of physical H-gates to each
data qubit within a two-dimensional lattice. This
transformation modifies the encoded state while preserv-
ing the surface code error correction capabilities.

Figure 2A illustrates that the quantum state of the logical
qubit is transformed from jΨLi to the Hadamard-
transformed HLjΨLi, giving the impression that the flavor
of the logical qubit is rotated to the right by 90�. How-
ever, this method has a major disadvantage in that it
exchanges stabilizer generators for the logical X and
Z operators. Thus, when the transversal logical-H is com-
plete, the positions of the logical X(Z) operators (XL, ZL)
and X(Z) stabilizers are interchanged. From the perspec-
tive of logical qubit flavor, this transition corresponds to
a transformation from X_Left to Z_Left.

Figure 2B illustrates the lattice surgery-based logical
CNOT circuit. In this circuit, three logical qubits are con-
sidered: C (control), T (target), and A (ancilla). The objec-
tive was to implement a logical CNOT operation by
merging the boundary stabilizers. To achieve this, C can

F I GURE 2 (A) Demonstration of logical-H applied using the

transversal method. (B) Layout of logical qubits for a logical

Controlled-NOT (CNOT) based on the lattice surgery. “C” stands
for control qubit, “A” denotes the ancilla qubit, and “T” is the
target qubit. MZZ (MXX) denotes the joint measurement of the two

logical Z(X) operators. (C)–(D) Examples in which lattice surgery

operations are impossible due to the type mismatch of boundary

stabilizers after logical-H. MXZ denotes the joint measurement of

the logical X and Z operators, transferring the current state to the

Hadamard-transformed state.

F I GURE 1 Four flavors for rotated surface code by a distance

d-7. The figure shows data qubits as open circles and ancilla qubits

as filled circles, with the blue and pink faces representing the X-

and Z-stabilizers, respectively. (A) The flavor of a logical qubit is

defined by a specific combination of the position and type of the

boundary stabilizers. The boundary stabilizer at the bottom of the

lattice identifies the flavor type. It is labeled X_* if the X stabilizer is

on the bottom and Z_* otherwise. It is also labeled *_Left if the

stabilizer starts as the leftmost corner of the lattice and *_Right

otherwise. The bold blue and green lines represent the logical X

and Z operators (XL, ZL), respectively, which are flavor-dependent.

(B) Example of merging two logical qubits using facing boundary

stabilizers. For an optimal merge operation, boundary stabilizers of

the same type (X or Z) must face each other. (C) Example showing

the inability to merge two logical qubits due to a boundary

stabilizer type mismatch.
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transfer logical quantum bits to T via lattice surgery using
an intermediate logical qubit A, and T can transfer logical
quantum phases to C. The order in which the
logical qubits undergo lattice surgery is irrelevant; both
C-A-T and T-A-C are valid.

It is crucial to connect adjacent boundary stabilizers
of the same type. As illustrated in Figure 2B, C and A
should be connected to the X-stabilizers to enable the
MZZ operation (ZC

LZ
A
L ), which merges two logical qubits,

that is, the logical X operators of C and A are extended to
the merged logical qubit. Only the MXX operation (XA

LX
T
L )

is required for A and T connected to the Z-stabilizers;
however, the underlying principle remains the same.
Thus, it is evident that logical qubits coupled with the
same boundary stabilizers can perform logical CNOT via
joint measurement-based lattice surgery.

Applying transverse logical-H to the lattice illustrated
in Figure 2B violates the joint measurement rule
described earlier. This is due to the characteristics of the
logical qubit change. Figure 2C,D illustrates the applica-
tion of transversal logical-H to C or T. As illustrated in
Figure 2C, the type C boundary stabilizer transforms
from X to Z during the merging process. This results in a

mismatch of the stabilizer type, which makes the MZZ

operation difficult. Similarly, in Figure 2D, the boundary
stabilizer type T is modified from Z to X, thus preventing
the MXX operation between A and T.

In summary, although transversal logical-Hs can
transform logical quantum states, they can cause a delay
in logical CNOT operations through lattice surgery by
altering the geometry of the logical qubit. Consequently,
additional steps are required to restore the original flavor
of the logical qubit after applying transversal logical-Hs.

2.2 | Gate teleportation

Logical gates can be created using the principle of quan-
tum teleportation between two logical qubits [22, 23].
This technique allows the transmission of a logical quan-
tum state without explicitly transmitting the physical
state; that is, the state of one logical qubit is teleported to
another using a pair of Bell states. This process requires
the execution of a joint measurement and compensation
for the state of the receiving qubit, based on the measure-
ment outcomes of the sending qubit. Figure 3A illustrates

F I GURE 3 Logical-H by the teleportation protocols between two logical qubits, a sender and a receiver. (A) Lattice surgery

implementation. This approach consists of two steps: gate teleportation and state teleportation. Thick lines represent logical qubits. Double

lines are classical bits (mi = {0, 1}) indicating measurement outcomes. (B) Surface code implementation. The sender’s logical state, jΨLi, is
transmitted to the receiver as HLjΨLi by the MZX operation between heterogeneous boundary stabilizers. The flavor of the logical qubit is

transformed from X_Left to Z_Right, which is the same result as that of the transversal method. (C) The receiver’s logical state can be

returned to the origin (yellow circle) by the MXX operation; however, the original flavor of the logical qubit is not restored.
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the lattice surgery implementation for logical-H. It con-
sists of two steps: (i) teleportation of logical-H and (ii)
retransmission of the Hadamard-transformed logical
state back to its original position.

Figure 3B illustrates the gate teleportation method
using surface codes. The ZX joint measurements are
essential for gate teleportation and state transfer. This
unique joint measurement method projects the shared
boundary stabilizers of two logical qubits onto the ZX
plane of the surface code [33, 34]. If the sender’s flavor
for the ZX joint measurement was X_Left, then the
receiver’s flavor was Z_Right. The joint measurement
incorporated weight-2 X-stabilizers at the bottom of the
sender and weight-2 Z-stabilizers at the top of
the receiver into the weight-4 XZ-stabilizers. This process
temporarily created weight-4 ZX stabilizers adjacent to
the unified stabilizers. The product of these novel stabi-
lizer measurements determines the value of m1, and the
product of the X-basis measurements (MX) of all sender
data qubits determines the value of m2. The two values
compensate for the isolated receiver: The logical Z opera-
tor (ZR

L) is applied if m1= 1, and the logical X operator
(XR

L) is applied if m2= 1. Thus, the sender’s logical state
jΨLi is transmitted to the receiver as HLjΨLi. However,
gate teleportation does not guarantee the preservation of
the original flavor of the logical qubit. As illustrated in
Figure 3, the flavor was transformed from X_Left to
Z_Right, yielding the same result as the transversal
method described in Section 2.1.

In the second step, state teleportation (ST) is used to
return the Hadamard-transformed qubit to its original
position. Depending on the flavor of the qubit, this can
be accomplished through a series of lattice surgery opera-
tions using either MXX or MZZ measurements. The pro-
cess of merging, splitting, and compensating the
quantum states using the measurement outcomes (m3

and m4) is illustrated in Figure 3C and is similar to the
process illustrated in Figure 3B.

Following ST, the flavor changed from Z_Right to
Z_Left, which differed from the initial flavor X_Left, as
illustrated in Figure 3B. This method guarantees the
evolution of logical quantum states by using
logical-Hs. However, this does not preserve the flavor of
the initial qubit. Therefore, gate teleportation requires a
step to restore flavor, which increases space requirements.

2.3 | Code deformation

Code deformation is a powerful method used to control
the geometry of a surface code while maintaining its
error detection and correction capabilities [24–29]. The
flexible operation of logical qubits in a two-dimensional

lattice is made possible by expanding the lattice in one
direction and then contracting it back. Two methods exist
for implementing a logical-H; these preserve the intrinsic
properties of a logical qubit. The first method implements
a logical-H that fully preserves all properties; however, it
necessitates six additional ancillary patches [27]. The sec-
ond method implements logical-H by adding three ancil-
lary patches but requires additional steps, such as ST, to
return to the initial flavor [28, 29]. Although the second
method requires less additional space than the first, it
increases the space cost because most operations are
occupied and executed in all patches. Consequently, the
difference in the cost of a single logical-H between
the two methods was negligible. In addition, the cost of
running multiple logical-Hs on a checkerboard, as dis-
cussed in Section 3.2.2, is higher for the second method
because it requires more move operations than the first.
Therefore, we focused on the first method, which was
used in this study. Figure 4A illustrates the lattice surgery
implementation of the code deformation for logical-H,
which consists of three phases: (i) transversal logical-H,
(ii) logical-operator rotation via code deformation, and
(iii) the return of the logical qubit to its original position.
Finally, by measuring the 2d2 + d data qubits, the origi-
nal size of the logical qubit with the initial flavor was
restored.

Figure 4B illustrates the implementation of the sur-
face code. This method requires six additional patches,
each occupied by a single lattice. The primary goal is to
implement a logical-H that preserves the flavor of a qubit
at its exact location. The initial state of the logical qubit is
presented in Step 1; in Steps 2 and 3, the transversal
logical-H transforms the flavor from X_Left to Z_Left.
Steps 4 and 5 expand the logical qubit in the desired
direction, restoring it to the X_Left flavor while maintain-
ing its state by measurement. Growing the logical qubit
while measuring on the Z- and X-bases returns it to its
original position in Steps 6–9. Most importantly, the fla-
vors in Steps 1 and 9 remained the same.

This technique facilitates logical-H while preserving
the unique properties of the qubit. However, this requires
considerable code space. As illustrated in Figure 4, the
logical-H technique requires six additional patches.

3 | METHODS

This study aims to reduce the storage space required for
logical-Hs in rotated surface codes. As discussed in
Section 2.1, applying transversal H-gates to data qubits
transforms the flavor of the logical qubit, thereby chang-
ing the definition of the logical operators. In general, lat-
tice surgery allows logical operations between qubits
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aligned with the same type of boundary stabilizer. How-
ever, as mentioned in Section 2.3, restoring the original
logical operator definitions and qubit flavors requires
considerable code space. We propose herein a novel
approach referred to as the “boundary deformation-based
logical-H operation.” This method does not require addi-
tional space and supports logical operations with fewer
than two patches.

3.1 | Boundary deformation-based
logical-H operation

The boundary deformation technique restores the logical
qubit flavor and operator definitions. Figure 5 illustrates
this method using the rotated surface code by the dis-
tance d-7.

Figure 5A depicts the initial logical qubit prepared for
the boundary deformation process, assuming that the
transversal logical-H was applied in advance. This qubit
represents the Z_Left flavor transformed by transversal
logical-H from the X_Left flavor, which is the state jΨLi,
as illustrated in Figure 2A. The Hadamard-transformed

logical qubit was assumed to be in the simultaneous
+1-eigenstate of all the stabilizers and was denoted as
jψH

L i. Let us define the stabilizer group that determines
the logical state as S= hSinternal, Sold-boundaryi, where Sinter-
nal consists of weight-4 stabilizers inside the qubit, and
the Sold-boundary comprises weight-2 stabilizers on the
boundary. These predeformation boundary stabilizers are
denoted by Sold-boundary= hZH

Si, X
H
Sji, where i, j � {1, 2, …,

d� 1}. The logical Z and X operators that perform nontri-
vial operations are defined as ZH

L and XH
L , respectively.

Figure 5B illustrates Z_Left (from Figure 5A) being
deformed into X_Right. The first step in the boundary
deformation is to replace the Sold-boundary of the stabilizer
group with a new boundary set, Snew-boundary = hXD

Si, Z
D
Sji.

Herein, we assume that there is no measurement error in
the stabilizer qubits throughout the d-round measure-
ment cycles, as discussed in [14, 35]. When a new stabi-
lizer anticommutes with an element in the stabilizer
group, it replaces the anticommuting element in two
ways, depending on the stabilizer measurement result: If
the measurement result is +1, it will replace the
anticommuting element directly; however, if the mea-
surement result is �1, the new stabilizer replaces the

F I GURE 4 Logical-H by code

deformation method. (A) Lattice

surgery implementation. Thick lines

indicate logical qubits. Thin lines

indicate individual physical qubits.

A⨂n represents the tensor product of

the A operator applied to each of the

n physical qubits, where the

operators include initialization (j0i,
j+i), Hadamard (H), and Z-basis and

X-basis measurements (MZ, MX).

E⨂n denotes the expansion of a

logical qubit up to n qubits by adding

physical qubits. (B) Surface code

implementation. This method

requires seven patches for the lattice.
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anticommuting element only after it has changed to the
+1 state by applying its conjugate partner operator
[2, 26]. The commutativity of operators is based on the
algebra of Pauli operators; X and Z operators always com-
mute (½bXa,bZb� ¼ 0) on different qubits but always antic-
ommute (½bXa,bZa�≠ 0) on the same qubit [14, 38]. In the
context of operator measurements and commutativity, it
was observed that each element of the Snew-boundary com-
mutes with all those in the Sinternal boundary but antic-
ommutes with some of those in the Sold-boundary. For
example, XD

S2 in the Snew-boundary commutes with ZH
S8 in

Sinternal but anticommutes with ZH
S1 in the Sold-boundary on

data qubit 3, as shown by the following notation,

XD
S2, Z

H
S8

� � ¼ bX3bX4, bZ3bZ4bZ10bZ11

h i

¼ bZ3bZ4bZ10bZ11bX3bX4, bX3bX4bZ3bZ4bZ10bZ11

h i
¼ 0,

XD
S2, Z

H
S1

� � ¼ bX3bX4, bZ2bZ3

h i

¼ bZ2bZ3bX3bX4, bX3bX4bZ2bZ3

h i
≠ 0:

If XD
S2 has a measurement outcome of +1, it replaces

ZH
S1 in the old group. If the outcome is �1, it is corrected

to +1 by applying the Pauli-Z operator followed by the

replacement of ZH
S1. In the same way, the remaining

elements of the Snew-boundary replace the anticommuting
elements of the Sold-boundary, and the old group is reorga-
nized as a new stabilizer group S0 = hSinternal, Snew-
boundaryi. In addition, it was observed that in data qubit
4, a new X-stabilizer XD

S2 and an old logical Z operator
(ZH

L ) anticommute. Similarly, in data qubit 28, a new Z-
stabilizer ZD

S5 and an old logical X-operator (XH
L ) anticom-

mute. Consequently, the operators can no longer act on a
deformed logical qubit. The postmeasurement state
(jψM

L i) was projected (ignoring normalization) to

jψM
�Li¼

Y
i
I�Mið Þ jψH

L i, ð2Þ

where Mi � Snew-boundary and the sign ± denote the mea-
surement outcomes of the Snew-boundary elements antic-
ommuting with the Sold-boundary. These stabilizers were
fixed to +1-eigenstates in the subsequent step.

The second step in boundary deformation is identify-
ing and stabilizing new syndromes depending on the
measurement outcomes. If all the outcomes are +1,
the logical qubit is in the state jψM

þLi, which is the same
logical quantum state as in Figure 5A. However, if any
outcomes are �1, the logical qubit is in the state jψM

�Li,

F I GURE 5 Boundary deformation in rotated surface code by a distance d-7. It comprises 49 data qubits (numbered circles) and

48 ancilla qubits (inside each face). The superscripts “H” and “D” stand for Hadamard and deformation, respectively. The subscript “S*”
represents the index of the stabilizer. (A) Initial logical qubit. This qubit represents the Z_Left flavor transformed by transversal logical-H

from the X_Left flavor. (B) Boundary deformation to X_Right flavor. This process changes the flavor while preserving the quantum state of

the logical qubit. (C) The outcomes of stabilizer measurements during the deformation process. The internal stabilizer consistently measures

the same state, while the new boundary stabilizer measures a random ±1. (D) Z-syndrome stabilization detected during the deformation of

the upper and lower boundaries. (E) X-syndrome stabilization detected during the deformation of the left and right boundaries.
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and a decoding algorithm, such as minimum weight per-
fect matching (MWPM) [39–41], is used to deduce the
shortest correction path. As X2=Z2= I, all syndromes
are corrected by applying a Pauli-X or -Z operator to each
physical data qubit along the correction path. This cor-
rection process transitions the states of several physical
qubits to allow all stabilizers to return to their +1-eigen-
states. Odd physical state transitions across the logical
qubit induce a logical bit or phase flip. This state is com-
pensated by applying the newly defined logical X or
Z operators as postprocessing operators. Consequently,
the postdeformation state can preserve the initial
encoding state in the form of (2) based on the following
steps: (i) measurement into the deformed group (S0),
(ii) stabilization with Pauli correction, and
(iii) postprocessing with logical operators.

jψD
L i¼ ZD

L

� � 1�mzð Þ=2
XD

L

� � 1�mxð Þ=2 jψM
L i: ð3Þ

In (3), XD
L and ZD

L are the logical X and Z operators
newly defined in the deformed logical qubit. Two key fac-
tors determine the postprocessing correction: mz and mx,
where mz is the parity of the phase-flipped qubits by the
Pauli-Z operator, and mx is the parity of the bit-flipped
qubits by the Pauli-X operator. Each had a +1 (even) or
�1 (odd) value. Refer to Figure 5C–E for examples to
understand this concept.

Figure 5C illustrates the results of the stabilizer mea-
surements during the deformation process. In this exam-
ple, the internal stabilizer maintains a consistent state,
whereas the new boundary stabilizer randomly performs
+1 or �1 measurements. Figure 5D illustrates the
Z-syndrome stabilization process detected during the
deformation of the upper and lower boundaries. This
demonstrates the shortest correction path inferred for the
Z-syndromes detected by X-stabilizers XD

S2, X
D
S4, and XD

S5.
The syndrome in XD

S2 was stabilized by applying
the Pauli-Z operator to data qubits 3, 9, and 15, whereas
the syndromes in XD

S4 and XD
S5 were stabilized by applying

the Pauli-Z operator to data qubits 45 and 46. During the
correction, an odd number of phase flips in the data
qubits affected the logical phase (mz=�1). This was cor-
rected by applying a newly defined logical Z-operator.
Figure 5E illustrates how the X syndrome is stabilized
when the left and right boundaries are deformed. In this
example, the Z-stabilizers ZD

S1, Z
D
S3, and ZD

S5 detect the
X syndrome, and the shortest correction path involves
the application of the Pauli-X operator to data qubits 2, 5,
8, 13, 21, and 43 to stabilize them. These corrections
cause bit flips in the data qubits that construct the logical
qubit but do not affect the state of the logical qubit (mx=

+1). By substituting the mz and mx values generated in

Figure 5D,E into (3), the logical quantum state can be
summarized as jψD

L i¼ ZD
L

� �1
XD

L

� �0 jψM
L i. The initial logi-

cal state is preserved when a new logical Z-operator is
applied to the deformed logical qubit. The classical Pauli
frame method [42, 43] can handle all Pauli operations
involved in the proposed approach, meaning that the exe-
cution overhead is negligible.

Figure 6 illustrates all the steps of logical-H that pre-
serve the logical information and flavor of the logical
qubit. It involves three main steps: the transversal of
logical-H, rotation of logical operators via boundary
deformation, and logical flip-and-shift. Cost estimation
was performed using only two adjacent patches to
enhance the observations. In both lattice spaces, the ori-
entation of the ancillary region relative to the logical
qubit can be up-, down-, left-, or right-handed. This
example assumes the use of ancillary space to the right of
a logical qubit. Figure 6A illustrates the implementation
of the three aforementioned steps above using lattice
surgery. Figure 6B illustrates the first two steps with the
surface code implementation, and Figure 6C illustrates
the last step.

Figure 6B presents the results after the application of
logical-H to an initial logical qubit of the X_Left flavor
containing the right ancillary region. The logical opera-
tors on the qubit are defined as XL and ZL. We applied
the transversal logical-H described in Section 2.1 for the
initial qubit. However, this led to changes in the stabi-
lizer positions that resulted in changes to the definitions
of logical operators (XLZL !XH

L Z
H
L ) and flavor

(X_Left ! Z_Left). The traditional code deformation
technique described in Section 2.3 requires considerable
space to restore the original flavor. By contrast, the pro-
posed method can reduce the number of managed lattices
to less than two to modify the flavor with boundary
deformation. The logical phase or bit transition is identi-
fied and compensated in the correction operations for
syndrome stabilization to ensure the integrity of the logi-
cal qubit state.

The deformed logical qubit restores the original logi-
cal operators but does not return to the original flavor.
Therefore, we restored the original flavor of the logical
qubit using a logical flip-and-shift process, as illustrated
in Figure 6C. This operation flips the qubit horizontally,
restores its original flavor, and shifts it back to its original
position [26]. Two types of flip operations exist, namely,
X and Z. The boundary of the logical qubit determines
the type of flip operation used. The X-flip operation flips
the flavor along the X-boundary using the physical qubits
of the initial state j+i. A Z-flip operation was used to flip
the flavor along the Z-boundary. The process is illus-
trated in Figure 6C and involves the following steps:
(i) preparation of the physical data qubits in the first
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column of the ancillary region adjacent to the right Z-
boundary to state j0i. Subsequently, the stabilizers were
measured to expand it to the d � (d + 1) code.
(ii) Measurements of the physical data qubits in the first
column of the expanded logical qubit into a Z-basis and
contracts it to d � d code. The product of the eigenvalues
(green, MZ) measured using the logical Z operator (ZE

L )
determines the value of m1 in Figure 6A. If m1=�1, the
logical X operator (XC

L ) was applied to the contracted logi-
cal qubit to correct the logical bit. (iii) Shifting of the
logical qubit to its original position via swap operations.
The X-flip operation is handled similarly to the Z-flip
operation, except that the bases of the added physical
qubits were different.

3.2 | Comparison of space overhead

When performing a logical operation with a regular sur-
face code for a distance d, the overhead is estimated as O
(d2) (space cost) and O(d) (time cost) [44]. The space cost
is determined by the number of physical qubits, where a
single qubit includes both the data and ancilla qubits.
The number of rounds of stabilizer measurements deter-
mines the time cost. The overhead of any logical opera-
tion is expressed as the space–time cost in O(d3) units. If

a logical operation uses p patches for t time steps, the
space–time cost is pt�d3 and the space cost is p�d2, which
is the number of physical qubits [36].

Several assumptions are postulated to estimate the
space–time cost of logical-H. First, all the Pauli opera-
tions were excluded from the cost analysis because they
can be efficiently handled using classical computing
methods. Second, the time cost did not account for pro-
cesses that did not require stabilizer measurements.
Third, the time costs of fault-tolerant transversal opera-
tions, such as physical qubit initialization, measurement,
transversal H, and swapping, were not considered.
Finally, the space cost was estimated by converting the
number of patches to represent a logical qubit arrange-
ment. A patch represents a regular grid space in which
logical qubits can be placed on a two-dimensional physi-
cal qubit plane. It occupies only one logical qubit at a
time, even if it is only partially used. The estimation of
the space cost of a logical operation based solely on the
size of a logical qubit can differ from the actual amount
of physical space consumed. Therefore, we estimated the
space cost of a logical operation as the number of patches
used by a logical qubit. For example, if a logical qubit
occupies part of another patch or is contained in two
patches, the estimated space requirement is calculated
as 2d2.

F I GURE 6 Logical-H by the boundary deformation on a rotated code by distance d-7. (A) Lattice surgery implementation. Thick lines

indicate logical qubits. Thin lines indicate individual physical qubits. Double lines ending in black dots represent classical bits indicating

measurement outcomes mi = {0, 1}. Logical Pauli corrections need to be applied; these are conditioned on the measurement outcomes as

(PL)
mi. DEFORM involves the measurement of the deformed boundary stabilizers and stabilization of the resulting syndromes. A

N
nA

represents the tensor product of the A operator applied to each of the n physical qubits, where the operators include Hadamard (H) and Z-

basis measurements (MZ). E
N

n represents the expansion of a logical qubit to n qubits by adding physical qubits. (B) Surface code

implementation of boundary deformation. The initial state of the logical qubit with X_Left flavor. After transversal H, the flavor changes to

Z_Left. By deforming the boundary stabilizers, the flavor turns up X_Right. (C) Surface code implementation of logical flip-and-shift. A d� d

lattice transformed to an X_Left flavor by a logical Z-flip back to the origin (yellow circle) using swap operations.
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In addition, logical operations distort the width of
a logical qubit in a regular lattice, as observed in the
code deformation technique, which modifies the
physical scale of a logical qubit by adding qubits to
it. The space cost was determined by the number of
patches required to perform operations using these
unstructured codes. As shown in Figure 4B, when a
logical qubit extends across seven patches, the space
cost is approximately seven times that of conventional
code.

In this study, we analyze the cost of single and multi-
ple logical-H using the code deformation-based method
in Section 2.3 and the boundary deformation-based
method in Section 3. The gate teleportation method

described in Section 2.2 was excluded from our analysis
because it yielded the same results as those yielded by the
transversal logical-H.

3.2.1 | Single logical-H operation

The cost of a single logical-H was evaluated as the sum of
all the operations performed by the circuits shown in Fig-
ures 4 and 6. The implementation costs of both tech-
niques are shown in Figure 7 and summarized in
Table 1.

Figure 7A presents a comprehensive cost estimate
for the code formation-based technique shown in

F I GURE 7 The space–time cost associated with the execution of a single logical-H. The green lattice represents operations that prepare

a logical qubit in an arbitrary state. The blue and yellow lattices represent operations with an estimated space–time cost. The gray lattice

represents operations with only a space cost, including initialization, measurement, transversal H, and swap operations. The space cost is

estimated as the number of patches a logical qubit occupies. The dashed lines in a lattice represent the Z-boundary, and the straight lines

represent the X-boundary. MP denotes the P-basis measurement of data qubits. (A) Code deformation-based logical-H. The total space–time

cost is 23d3 + 12d2. (B) Boundary deformation-based logical-H. The total space–time cost is 5d3 + 3d2.

TAB L E 1 Comparison of logical operation costs in two methods. CD denotes code deformation (Figures 4 and 7A) and BD denotes

boundary deformation (Figures 6 and 7B).

Step

Operation (maximum patches) Space–time cost Space cost

CD BD CD BD CD BD

1 Transveral H Transversal H - - d 2 d 2

2 Swap BD - d 3 2d 2 -

3 Expand (7) Expand (2) 7d 3 2d 3 - -

4 MZ and shrink MZ and shrink 4d 3 2d 3 3d 2 -

5 Expand (6) Swap 6d 3 - - 2d 2

6 MZ and shrink - 2d 3 - 4d 2 -

7 Expand (3) - 3d 3 - - -

8 MX and shrink - d 3 - 2d 2 -

Total 23d 3 5d 3 12d 2 3d 2
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Figure 4. The space cost (excluding the time cost) for
Steps 1 and 2 is estimated by considering the sequential
execution of transversal H and swap operations. In Step
2, one lattice is present in both patches; hence, the total
space required is 2d2. The expansion cost estimates for
Steps 3, 5, and 7 consider the initialization of additional
physical qubits. The predicted space–time costs were
7d3, 6d3, and 3d3, respectively, considering the number
of patches occupied by a single lattice and stabilizer
measurements. The measurement operations (MX, MZ)
contributed to the space costs of Steps 4, 6, and 8 with
estimated space requirements of 3d2, 4d2, and 2d2,
respectively. The space–time costs of the shrink opera-
tions, including four, two, and one patches, and stabi-
lizer measurements in each step, were estimated to be
4d3 + 3d2, 2d3 + 4d2, and d3 + 2d2, respectively. The
total estimated cost was 23d3 + 12d2. Figure 7B pro-
vides a comprehensive estimate of the costs associated
with the boundary deformation technique, as shown in
Figure 6. In this process, Steps 1 and 5 involve the
transversal H and swap operations that determine the
space cost based on the number of patches, excluding
the time cost. Because all the operations occur in one
patch, d2 defines the space requirements. In Step 2, the
cost of the boundary deformation is determined by the
cost of the stabilizer measurements in the same patch.
A single patch required d3 to measure the lattice. In
Step 3, the expansion operation required the initializa-
tion of additional physical qubits at a cost of 2d3

because the expanded lattice comprised two patches and
required stabilizer measurements. In the shrink opera-
tion in Step 4, the measurement operation (MZ) and
associated space cost are included in the ultimate cost,
which is computed as 2d3. This technique approximates
the total space–time cost to 5d3 + 3d2. The two methods
resulted in cost savings of approximately four times,
regardless of the distance.

3.2.2 | Multiple logical-H operations

The cost of multiple logical-Hs was determined by exe-
cuting the circuit shown in Figures 4 and 6 parallel to
several logical qubits.

The logical qubit layout assumed a checkerboard
structure [31]. This structure is advantageous because it
provides an optimal space for implementing lattice
surgery-based logical operations by creating an ancillary
space between two data qubits and placing them adjacent
to each other at the same X- or Z-boundary.

The experimental quantum circuit and logical qubit
layout for the cost analyses are shown in Figure 8A,B.
Eight logical data qubits and the same number of

ancillary spaces are arranged in a 4 � 4 grid. First, we
examined the execution of the circuit shown in
Figure 8A using a code formation technique. Logical-H
requires six additional contiguous ancillary spaces in the
circuit, as shown in Figure 7A. However, only one adja-
cent continuous ancillary space was allowed. To create
sufficient space, it was necessary to relocate the collid-
ing logical qubits temporarily. This was achieved using
the ST protocol, as shown in Figure 3C. Figure 8C
shows the entire circuit implementation in Figure 8A,
including the move operations based on STs. This is an
example of a configurable circuit in which LQ1 is the
starting point of execution. ST represents two moves:
evacuation of a logical qubit to an ancillary space
(dashed box) and transformation to its original location
(solid box). A layer represents a set of logical-Hs that
operate simultaneously. If a certain logical-H required
move operations, it was grouped into the same layer.
The first layer in Figure 8C consists of a logical-H after
moving LQ3 through LQ6. Figure 8E shows an extended
LQ1 occupying the space vacated by the movement of
the three logical qubits in the first layer during the exe-
cution of logical-H. The seven lattice cells were extended
by the data spaces LQ1, LQ3, LQ5, and LQ6, and the
ancillary spaces connecting them. LQ3 and LQ4 were
relocated to the upper ancillary region, whereas LQ5
and LQ6 were relocated to the lower ancillary region.
After relocation, logical-H was executed. Similarly, in
Figure 8C, the logical-Hs from LQ2 to LQ8 are executed
sequentially in Layers 2–8. Finally, the four logical
qubits that move to the ancillary regions are returned to
their original locations.

Based on the execution steps shown in Figure 3C, the
space–time cost of the state teleportation protocol was
estimated to be 4d3 + d2. This includes the costs
of receiver initialization (d3), merging (2d3), and
split-and-sender measurements (d3 + d2). To estimate
the cost of a single logical-H, refer to the estimates in
Section 3.2.1. There were eight moves and eight logical-
Hs in the circuit. Thus, the total space–time cost was
calculated as (23d3 + 12d2) � 8 + (4d3 + d2) � 8 = 216d3

+ 104d2.
The circuit shown in Figure 8A was executed using

the proposed technique. This method allows logical oper-
ations to be executed simultaneously on different logical
qubits, as long as they do not share physical data qubits
that store computational information. Figure 8F shows
that logical-Hs are simultaneously conducted on eight
logical qubits (LQ1–LQ8) without any shared physical
data qubits. Consequently, each process was completed
simultaneously, as shown in Figure 8D. The estimated
total space–time cost was (5d3 + 3d2) � 8 = 40d3 + 24d2

based on Section 3.2.1.
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3.2.3 | Functional validation

These two methods were validated using QPlayer [45]
and PyMatching [41]. QPlayer is a classical quantum sim-
ulator that supports a reduced Hilbert space, whereas
PyMatching decodes QEC codes using the MWPM algo-
rithm. The experiments were conducted on a Dell Power-
Edge R740 server equipped with two Intel Xeon Gold
6132 central processing units (56 cores in total) and
memory equal to 512 GB.

The validation process consisted of (i) initializing to a
logical state, (ii) running logical-H, and (iii) measuring

the final state on the distance-3 surface code. The
syndrome measurement outcomes were decoded
using PyMatching. The measurement results and oper-
ation times for the four initial logical states are sum-
marized in Table 2. The final state validated the
functionality of the proposed method, and the opera-
tion time confirmed the efficiency estimated from the
cost analysis.

4 | CONCLUSIONS

This study presented a novel technique for implementing
logical-H on rotated surface codes while maintaining the
original logical operators. The flavor rotation of logical
qubits in the logical-H process is a challenging problem
that requires excessive overhead. Although transversal
and gate teleportation methods minimize space usage, X-
and Z-stabilizer exchanges do not retain the original
characteristics of the logical qubit. The code deformation
method preserves the flavor of the logical qubit but
requires six times the extra space compared with the
transversal approach.

F I GURE 8 (A) Example of a quantum circuit with multi-parallel logical-Hs. (B) Checkerboard-style logical qubit layout. (C) The

procedure of the code deformation method. ST represents two moves: evacuation of a logical qubit to an ancillary space (dashed box), and

transformation to its original location (solid box). A layer represents a set of logical-Hs that operate simultaneously. If any certain logical-H

requires move operations, it is grouped into the same layer. (D) The procedure of the boundary deformation method. The lattice with the

bold lines in the yellow patch is in process. (E) Extended LQ1 to perform logical-H in code deformation method. The {} indicates parallelism.

(F) Parallel logical-Hs performed on eight logical qubits (LQ1–LQ8) without shared physical data qubits.

TAB L E 2 Summary of simulation outcomes.

Initial
state

Final
state

Operation time

Code
deformation

Boundary
deformation

j 0Li jþLi 141 ms 31 912 ms

j 1Li j�Li 152 ms 32 017 ms

j þLi j 0Li 159 ms 15 622 ms

j �Li j 1Li 177 ms 15 493 ms
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This study addressed two challenges. First, the tech-
nique of boundary deformation was proposed to rotate
logical operators affected by the transversal Hadamard.
This rotation was achieved without additional spaces.
The boundary stabilizers surrounding the logical qubit
were selectively modulated to simplify the implementa-
tion of logical-Hs. Furthermore, the logical phases or bits
that underwent syndrome stabilization during boundary
deformation were preserved as postprocessing correc-
tions. Correction operations performed to restore
syndromes caused by boundary deformation and postpro-
cessing operations to compensate for the logical quantum
state were treated as classical processes with no addi-
tional overhead. The flavor of a logical qubit was restored
using logical flip-and-shift operations that require only
one adjacent patch.

As explained by the cost estimation, the proposed
technique was superior to conventional techniques in
terms of space usage. The code deformation method
required substantial code space to restore the original fla-
vor of the logical qubit. In addition to the target patch,
six other patches were required to execute logical-H. The
estimated space–time cost of the proposed technique for
a single logical-H is 5d3 + 3d2, whereas that of the code
deformation method is 23d3 + 12d2. Regardless of the
distance, the cost difference between the two approaches
was approximately fourfold. The proposed method is ben-
eficial when each logical qubit has limited free space,
such as in a checkerboard-style arrangement. This
prevents space sharing between logical qubits during
logical-Hs and enables simultaneous operations on multi-
ple logical qubits.
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