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Abstract
To address the accuracy degradation as well as prolonged convergence time due to the inherent data heterogeneity among end-devices in

federated learning (FL), we introduce the joint batch size and weighted aggregation adjustment problem, which is non-convex problem. To
adjust optimal hyperparameters, we develop deep reinforcement learning (DRL) to empower a mechanism known as Batch size and Weighted
aggregation Adjustment (BWA). Experimental evaluation demonstrates that BWA not only outperforms methods optimized solely from either
a local training or server perspective but also achieves higher accuracy, with an increase of up to 5.53% compared to FedAvg, and additionally
accelerates convergence speeds.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the rapidly evolving world of various end-devices such
as mobile phones, wearables, and autonomous vehicles, which
produce large amounts of data, the combination with advanc-
ing artificial intelligence (AI) technologies holds great promise
for data analysis. Given the distributed nature of these devices
and the increasing emphasis on data privacy, an ideal sce-
nario emerges for adopting federated learning (FL). FL allows
individual end-devices to collectively build a global model
by exchanging locally trained machine learning (ML) model
parameters, rather than actual local data, ensuring privacy
and efficiency [1,2]. However, achieving comparable training
efficiency (e.g., convergence and accuracy) in FL compared
to traditional centralized learning is more challenging due to
the data heterogeneity of distributed end-devices. For example,
when these devices have non-identically and independently
distributed (non-IID) data, the training efficiency of typical
stochastic gradient descent (SGD) based algorithms tends to
decrease.
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Numerous studies have attempted to enhance FL perfor-
mance in non-IID environments by focusing on (i) local model
updates and (ii) aggregation methods. Regarding local model
updates, various strategies have been developed to address
‘client-drift’ due to data heterogeneity during these updates.
These include aligning the local model more closely with
the latest global model, introducing regularization to reduce
directional inconsistencies, and adjusting the batch size across
clients etc., [3–5]. From the aggregation perspective, differ-
ent weighted aggregation techniques, which vary the weights
assigned to contributions from end devices (e.g., FedAvg,
FedCLS) [1,6], and optimizing client selection [7,8] have been
explored.

Recently, due to unawareness of the explicit data distribu-
tion in each end-device, the application of deep reinforcement
learning (DRL) has been explored to enhance decision-making
in the complex and dynamic FL environment. Zhang et al. [5]
used DRL to adjust local device batch sizes, demonstrating its
impact on global model performance. Pang et al. [9] utilized
DRL for clustering IID devices in FL without accessing local
data. However, to the best of our knowledge, the integration
of DRL in both local model updates and aggregation for
training efficiency is still in its infancy. These two areas
have been investigated separately, often leading to suboptimal
performance. According to our motivation experiments, we
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ound that the global model accuracy is significantly affected
y batch size and aggregation weights in various FL settings
nd dataset. More specifically, the setting of fixed parameters
auses two following problems. First, an optimal batch size
xists that varies depending on the dataset or different FL
ettings. However, the local training process in most of the
xisting works fails to consider this by using a fixed batch size.
econd, from the server perspective, challenges arise when the
ggregation weights are biased towards certain local models.
his bias can reduce the overall generalization ability of the
lobal model. Therefore, there is a significant opportunity to
xplore the joint optimization of these two aspects using DRL
n the complex and dynamic FL process.

In this article, we design a novel DRL-empowered Batch
ize and Weighted aggregation Adjustment (BWA) mechanism
or FL on non-IID data environments. Our approach, distinct
rom existing methods, leverages a DRL algorithm to simulta-
eously determine two key aspects: (i) the optimal batch size
or local training, and (ii) the aggregation weights for each
evice to expedite the update of the aggregated model. Ad-
itionally, the BWA mechanism is designed to automatically
djust to various FL settings, dynamically tuning hyperpa-
ameters in response to the level of data heterogeneity. This
emoves the need for meticulous hyperparameter selection for
ifferent scenarios. Our contributions can be summarized as
ollows.

• In our preliminary experiment, we investigate the impact
of hyperparameters including batch size and weighted
aggregation on the accuracy performance of the global
model. Our findings demonstrate that optimal hyper-
parameters depend upon the data distribution of end-
devices.
• We formulate the joint batch size and weighted ag-

gregation adjustment problem to maximize convergence
accuracy by considering both the server-side and local
training-side aspects. To solve the non-convex problem,
we design Markov decision process (MDP) using the
score (e.g., model accuracy, loss, and weights diver-
gence) of end-devices collected by local models and
solve it by a DRL-based adjustment mechanism.
• We design DRL-empowered Batch size and Weighted

aggregation Adjustment (BWA) mechanism, which is
based on the Proximal Policy Optimization (PPO) DRL
method, to select suitable batch size and allocate aggre-
gation weights. Specifically, this DRL method is
designed to enhance convergence accuracy while also
accelerating convergence speeds. To achieve this, the
improvement in accuracy per round is utilized as the
reward function in the DRL method.
• The performance of BWA results on various datasets

under different heterogeneity settings. The experiment
demonstrates that BWA not only outperforms methods
optimized solely from either a local training or server
perspective but also achieves higher accuracy, with an
increase of up to 5.53% compared to FedAvg, and addi-
tionally accelerates convergence speeds by up to 57.78%
compared to FedAvg.
864
2. Related work and motivating example

2.1. Related work

Expanding on distributed training, with the consideration of
privacy protection, McMahan et al. [1] introduced the concept
of FL. It has attracted interest as a privacy-preserving, decen-
tralized collaborative ML methodology. However, it has been
demonstrated that the data heterogeneity among edge devices
leads to a decline in performance [10,11]. To address this
issue, existing methods primarily approach two mainstreams:
optimizing local training on each devices and the aggregation
phase on the server. With a method that considers the training
direction of local models, in FedProx [3], a regularization is
introduced to the local loss function, allowing local parameters
to remain close to the global parameters. FedCos [4] mitigates
directional inconsistencies among local models by adding a
cosine normalization term. Zhang et al. [5] improve the per-
formance of local training by adjusting the batch size of local
devices, and verify that the batch size of local devices affects
the performance of the global model. However, from a server-
side perspective, given that the aggregation weight is biased,
the global model may suffer from slow convergence or poor
inference performance.

Another way to tackle the non-IID challenge is to adjust
global model during the process of aggregation. FedAvg [1],
a widely adopted aggregation algorithm, updates the global
model by allocating large weights to devices with larger
dataset. FedCLS [6] calculates a device’s aggregation weight
by considering both the number of classes in its labels and the
quantity of data samples. Automated tuning of hyperparame-
ters is feasible with grid and random search methods [12], yet
they often consume considerable time by frequently exploring
ineffective regions within the search space. For advanced
random search [13] and Bayesian optimization [14], assessing
the suitability of hyperparameter settings still requires multiple
training runs. In FL environments, especially with complex
training models (e.g., deep learning models) and when client
data information is inaccessible, conducting numerous train-
ing iterations without access to clients’ information is not
feasible due to the limited computational resources and lack
of information in real-world FL scenarios. Auto-FedAvg [15]
and FedLAW [16] try to learn the aggregation weights on
given dataset by gradient descent. Several approaches apply
DRL to adjust aggregation weights [9,17]. However, as the
aforementioned solutions not enhancing client-side training
efficiency but focus on optimizing server-side aggregation,
they typically achieve sub-optimal performance.

2.2. Motivating example

Although there are results showing that the performance
(e.g., accuracy and convergence) of deep neural networks in
the centralized ML varies depending on the batch size, as
in [18,19], limited empirical studies have been conducted in
FL, which is a different training paradigm from centralized
ML. Furthermore, as we discussed, adjusting the aggregation
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Fig. 1. Test accuracy versus communication rounds on CIFAR10 and MNIST with varying batch sizes (a), (b) and aggregation weights (c), (d). In (c) and
(d), where the ratio of IID to Non-IID devices is equal, the target accuracy for CIFAR10 and MNIST is set at 60% and 99%, respectively.
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weights for the global model update has a significant impact
on accuracy and convergence speed.

Hence, to emphasize the significance of our proposed work,
based on the preliminary simulation result as depicted in
Fig. 1, we will highlight the critical role of adjusting both
batch size and aggregation weights in enhancing the effi-
ciency of FL. This example utilizes the MNIST and CI-
FAR10 datasets, examining both IID and non-IID scenarios.
In Fig. 1(a) and (b), we observe a significant impact of batch
size on overall performance, varying with the ratio of non-IID
devices to the total number of devices. It also demonstrates
the existence of an optimal batch size, with distinct trend
shapes in different datasets. These findings emphasize the
complexity of identifying the optimal batch size in varied and
dynamic FL environments, such as those involving different
types of datasets and a proportion of non-IID devices. The
Fig. 1(c) and (d) illustrate the rounds needed to achieve the
target accuracy and the maximum accuracy under varying
aggregation weights for IID devices. It indicates that allocating
biased weights to IID devices results in a failure to attain
high maximum accuracy, despite achieving the target accuracy
rapidly. This is because if an IID device is assigned biased
weights, the information from local models of non-IID devices
may not effectively contribute to the global model, leading to a
hindrance in generalization ability and an overall degradation
in performance. In the following section, we investigate joint
batch size and aggregation weights adjustment for FL without
accessing local datasets by employing DRL.

3. System model and problem formulation

3.1. Deep reinforcement learning

The fundamental principle of reinforcement learning entails
the agent’s exploration of optimal actions to attain a long-term
optimum through iterative interactions with the environment
[20]. The process of interaction can be represented using a
Markov Decision Process (MDP). The MDP is defined by the
tuple {S, A, P, R}. In this representation, S denotes a set of
tates s, and A denotes a set of actions a. The state transition
unction, denoted as P : S × A × S → [0, 1], calculates
he probability of transitioning from the current state st to
he next state st+1 given the current action at . The reward at
lobal round t , denoted as r , is determined by the reward
t s

865
Fig. 2. The structure of BWA mechanism in FL. In the figure, each number
corresponds to a specific step: 1. distributing actions and the global model,
2. local training by batch size, 3. updating global model by aggregation
weights, 4. collecting state, and 5. DRL-based choosing actions, respectively.

function R : S × A → R. Additionally, future rewards
are discounted by a factor γ in the range [0, 1]. The ex-
pected discounted cumulative reward is commonly formalized
as the value function through the Bellman equation: V π (s) =
Ep

[
r1 + γ

∑
sτ∈S P(st |s1, a1)V π (sτ )

]
, where τ is a sequence

of transition. In the MDP, the objective is to identify an optimal
policy π∗(a|s) that dictates the chosen action a given state s,
aiming to maximize the expected cumulative reward for the
agent. Thus, the optimal state-value function can be derived
by

V ∗(s) = max
π

V π (s), ∀s ∈ S (1)

.2. System model

Fig. 2 depicts the overall architecture and workflow of our
roposed approach, which mainly consists of three parts: (1)
ocal training part with batch size; (2) global model updating
art with aggregation weights; and (3) reward-based policy
pdate part. Our BWA method involves following five steps.

Step 1 (Model and Actions Dispatching): At the beginning
f each training round, the FL server decides the training task,
uch as target application, and actions (i.e., batch size and
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ggregation weights). The FL server, then, dispatches global
odel and batch size to the devices.
Step 2 (Local Training by Batch Size): Consider the set
= {1, 2, . . . , K } representing a group of K end-devices

called as clients). Each client k in the set K has a private
ataset denoted as Dk with a size of |Dk | samples, where
ach data sample i in Dk can be expressed as ξi = {xi , yi },

with vector xi representing the features of the i th data sample
and yi being its corresponding label. In each communication
round t , the local model initializes wt

k , which is set to the
global model received. Client k samples a batch set B t

k from
its training data with a batch size bt . The client then updates
its own model using the mini-batch stochastic gradient descent
(SGD) method, expressed as

w
t,s+1
k = w

t,s
k − η∇gt,s

k , where gt,s
k =

1
bt

∑
i∈Bt,s

k

∇lk(wt,s
k , ξi ),

(2)

where s and η are the SGD step and the learning rate, respec-
tively. The batch size is equally used across all clients. The
loss function L t

k of client k is expressed by the equation:

L t
k(wt

k, bt ) =
1
|Dk |

∑
Bt

k⊆Dk

lk(wt
k, bt
; B t

k), (3)

fter training local model, each client k uploads local model
t+1
k and local score, which is used to update policy (details
rovided in Step 4), to the FL server.

Step 3 (Aggregation Weights Averaging): The global model
s updated based on the assigned aggregation weights for each
ound, as indicated below:

t+1
0 =

∑
k∈K

λt
kw

t+1
k , (4)

here w0 and λk are the global model and aggregation weights
f each client, respectively.

Step 4 (Collecting Score): In each round, to evaluate the
ffectiveness of chosen batch size and aggregation weights,
he server leverages three scores, which include weights diver-
ence, loss, and accuracy, which are collected by local models.
hese are used for the operation of BWA mechanism as states
nd reward. We employ weights divergence as the magnitude
f model updates.

d j∥ = ∥w
t+1
j − wt

0∥, j ∈ 0, 1, . . . , K , (5)

here j indicates the server (when j = 0) and clients (exclud-
ng j = 0). The weights divergence is calculated by Euclidean
orm. Loss is computed in Step 2, and accuracy is formulated
s

t
=

{
φt

0(wt
0, λ

t
k), if global model

φt
k(wt

k, bt ), otherwise
,∀k ∈ K, (6)

where φt represents accuracy for global and clients’ models.
Step 5 (DRL-based Choosing Actions): The FL server acts

as an agent, which trains using DRL algorithm to find the
optimal batch size and aggregation weights (details provided
in Section 4).

BWA repeats the above five steps continuously until the
convergence of global model.
866
3.3. Problem formulation

Based on the five steps defined in the proposed BWA, it
finds suitable batch size and aggregation weights jointly to
maximize the global model accuracy. Then, the optimization
problem can be formulated as

P0 : max
bt ,λt

k

T∑
t

αφt
0 , (7)

subject to C1: T ≤ Γ ,

C2: k ∈ K,

C3: bt
∈ [1, 64],

C4: λt
k ∈ [0, 1],∀k ∈ K,

C5:
K∑
k

λt
k = 1,∀k ∈ K,

The objective is to maximize the global model accuracy,
where α is a positive constant greater than 1. As the rounds
progress, P0 is expected to exponentially increase with the
growing accuracy. (C1) represents the maximal rounds Γ . (C2)
indicates that k belongs to the set of clients. (C3) defines
the range of batch size. (C4) specifies that for each client
k in the set K , the λt

k should be within the range [0, 1],
and (C5) states that the sum of λt

k across all clients in the
set K must equal 1. P0 is non-convex because accurately
modeling the global model’s accuracy as a convex function
with respect to batch size and aggregation weights presents
significant challenges. Therefore, in order to address the non-
convex problem P0 and leverage the self-learning capability of
reinforcement learning, we employ DRL to adaptively adjust
both the batch size and aggregation weights. Specifically, DRL
has great potential for solving problems where the optimal
solution is unknown or very complex, especially within FL
faced with dynamic and diverse environments [5]. This ap-
proach overcomes the inefficiencies and limitations associated
with traditional HPO methods by leveraging the learning ca-
pabilities of DRL to adapt to changes in the environment or
data distribution effectively.

4. DRL-based joint batch size and aggregation weights
selection

We apply the MDP to solve P0. In the BWA mechanism,
the FL server, acting as the agent, utilizes the Proximal Policy
Optimization (PPO) approach [21] within DRL, which is one
of the policy optimization algorithms that use the actor–critic
method. PPO’s implementation of the actor–critic method al-
lows for the simultaneous updates of the policy (actor) based
on the rewards received, and the value (critic), assessing the
chosen actions’ effectiveness. PPO aims to strike an equilib-
rium among implementation simplicity, sampling efficiency,
and tuning convenience. Its objective is to compute updates
that maximize the expected returns (cumulative rewards) while
ensuring a subtle deviation from the previous policy. To pre-
vent the policy from updating too drastically, [21] introduced
clipped term. This innovative approach of using a clipped
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erm is what distinguishes PPO from other policy optimization
lgorithms. By utilizing PPO, BWA addresses the adaptive
ontrol problem of batch size and aggregation weights in FL,
aking into account various FL settings.

.1. MDP design

• State S: At t th global round, the state consists of: loss
L(w), accuracy φt , and the weights divergence ∥d∥.
Examining the accuracy and loss values of each model
allows agent to gain insights into the distribution of
data across clients. Additionally, the distance from the
global model in the previous round provides information
on how much the models deviate from it [22]. This
comprehensive information takes into account both local
and global models. Therefore, the state observed by
the agent at global round t is represented by a s t

=

{{L(w j )}, {φ j }, ∥d j∥}, where j ∈ 0, 1, . . . , K .
• Action A: The action of the agent is determined batch

size bt , which is employed uniformly for training local
models, and the aggregation weights of each client λt

k for
updating the global model. Thus, the action space can be
defined as at

= {bt , {λt
k}k∈K }

• Reward R: Considering the goal of maximizing accuracy,
we define the agent’s reward function based on the
relative increase in accuracy as follows.

r t
=

φt+1
0 − φt

0

φt
0

. (8)

When the accuracy in the (t + 1)th round increases
compared to that of the t th round, the reward is positive;
otherwise, the reward is negative. Utilizing the rela-
tive accuracy increase compared to the previous round
ensures stability, as accuracy may vary significantly de-
pending on the initial performance of different models. If
φt

0 achieves maximum accuracy during training, multiply
r t by the current round t to expedite the achievement of
maximum accuracy.

4.2. BWA algorithm details

Algorithm 1 summarizes the BWA algorithm, which is
the process of training the PPO networks for batch size and
aggregation weights adjustment. We first initialize θa and
θv are parameters of the actor network πθa (at

|s t ) and critic
network Vθv (s t ), respectively. Vθv (s t ) expects the gain of model
accuracy in s t . In steps 4–5, in each global iteration, we
initialize the global model and the state. Step 7 indicates that,
in each round t , the PPO network generates the action based on
the current state s t using the current policy. The action implies
batch size bt and the aggregation weights assigned to each
client λk . In steps 8–15, each client trains local model with
batch size based on (2) and send the updated local models
and their scores to obtain next state s t+1. FL server aggregates
the local models based on (4), then, it calculates the reward

t t t+1 t
according to (8). The MDP pair < s , a , s , r > is stored w
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Algorithm 1: DRL-Based BWA Algorithm.
1: Initialize Actor network and Critic network with θa and θv
2: Initialize the experience buffer D
3: θold

a ← θa
4: for each global iteration do
5: Initialize the model weight w1

0 and s1

6: for each round t = 1,2,...,T do
7: Input st to the policy network πθold

a
(at
|st ) to derive

the action at

8: for k = 1,2,..., K do
9: Client k download parameter wt

0
10: Clients train the local models with batch size bt

and calculate score
11: FL server updates the global model with λk
12: Obtain next state

st+1
← {{L t+1(w)}, {φt+1

}, ||d t+1
||}

13: Calculate the reward according to Eq. (8).
14: Store the experience (st , at , st+1, r t ) in D
15: end for
16: for m = 1,2,...,M do
17: Update the actor network θa with the experience

data using PPO
18: Update the critic network θv with the experience

data by minimizing the loss function:
19: F(θv) =

∑B
i=1(ri + γ Vθv

(si+1)− Vθv
(si ))2

20: end for
21: end for
22: θold

a ← θa
23: Clear the experience buffer D
24: end for

in experience buffer D. In steps 16–23, the DRL agent utilizes
experiences from the current episode for training. Due to im-
portance sampling techniques, these experiences are employed
for training the DRL agent multiple times M . Initially, the
actor network is updated using the PPO algorithm (line 17).
Subsequently, the critic network is updated using SGD to
minimize the loss function with experiences from D (lines 18–

9). Following M iterations of learning from experiences in D,
he new parameters of the actor network θa are assigned to the
olicy πθold

a
for the subsequent sampling. Simultaneously, the

xperience buffer is cleared. Upon completion of the training
rocedure, the DRL agent converges, and the optimal policy
∗ becomes deployable in a real FL system.

. Evaluation

.1. Experiment setup

The experiments are conducted on a PyTorch-based plat-
orm, where we initially train the DRL agent on diverse
atasets to derive optimal policies. The agent decides action
uring each communication round until it reaches the maxi-
um steps. Following this, DRL-based BWA is deployed on

he FL server to adjust batch size and aggregation weights
hroughout the entire training process. Additionally, we pro-
ose BWA with Bayesian Optimization (BO) [14], denoted as
O-based BWA, where BO is one of the HPO algorithms,
hich iteratively learns multiple hyperparameters to find the
ptimal value of the objective function (7). We conducted 100
raining iterations to adjust the batch size and aggregation

eights.
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est Accuracy (%) After Achieving Convergence.

MNIST FashionMNIST CIFAR10

Setting (σ ) 0.5 1 0.5 1 0.5 1

FedAvg 99.09 98.56 86.09 76.81 66.28 60.49
Adaptive-B 99.14 98.57 86.51 77.35 66.91 60.96
Adaptive-AW 99.16 98.56 86.67 77.69 66.69 60.90

BO-Based BWA 99.19 98.63 87.02 77.88 66.72 62.51
DRL-Based BWA 99.24 98.76 87.05 78.05 67.37 63.83

Dataset and Heterogeneity Setting. To evaluate the per-
formance of BWAs, we utilize three representative image
classification datasets in both color and grayscale: (1) MNIST,
a grayscale handwritten number dataset that consists of 60 K
28 × 28 training images across 10 classes; (2) FashionM-
NIST, a grayscale clothing dataset featuring a wide variety
of patterns and shapes, containing 60 K 28 × 28 training
images in 10 categories; and (3) CIFAR10, a colored dataset
with multi-object scenes and various backgrounds, comprising
50 K 32 × 32 images across 10 classes. These datasets are
chosen for their realistic scenarios and are commonly used
in other FL studies to validate findings [5,22]. The distinct
CNN models are employed to train these datasets according
to the settings in [22]. Each dataset is divided among 10
clients, each belonging to distinct categories (e.g., IID data
and non-IID data). Specifically, we use σ to denote how many

roportions of clients belonging to non-IID data to compare
he performance of BWA in various heterogeneous scenarios.

• Totally Non-IID setting (σ = 1) : All clients in the FL
possess non-IID data. Regarding the degree of hetero-
geneity, each client’s dataset comprises only 2 classes
according to the settings in [5].
• 50% Non-IID setting (σ = 0.5) : Within the FL clients,

50% have non-IID data, while the remainder have IID
data consisting of 10 classes. This setting represents the
scenario in the FL environment with the low degree of
heterogeneity.

Benchmarks. To evaluate the performance of BWA, the
ollowing three benchmarks are compared.

• FedAvg [1]: FedAvg, the most basic FL framework al-
gorithm, allocates aggregation weights based on the data
size of each client, where λt

k = (|Dk |/|D|). It uses a fixed
batch size of 10.
• Adaptive-B [5]: Adaptive-B is an adaptive algorithm

known for its ability to dynamically adjust the batch size
in each round. It optimizes local training with a focus on
the client-side and employs aggregation weights in the
same way as FedAvg.
• Adaptive-AW [17]: Adaptive-AW is a specialized al-

gorithm designed to adjust the aggregation weights of
individual clients in each round, aiming to optimize
global model updates. The batch size is fixed at 10.

he number of local epochs is set as 5 and learning rate is
.01.
 b
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Fig. 3. Performance evaluations : (a) loss convergence of DRL agent; (b)
test accuracy on CIFAR10; (c) required rounds for the given target accuracy
with σ = 1.0; (d) client selection based on a specified threshold with σ =
0.5.

5.2. Experiment results

Training the DRL Agent. We first train the DRL agent,
nd test the performance of DRL training, including the train-
ng loss. The DRL agent training is conducted with 10 clients
or 200 episodes. An episode starts with the initialization of
he FL process and concludes once the FL completes the
esired number of rounds. The PPO model in the DRL agent
onsists of 2 two-layer MLP networks, with 256 hidden states.
ig. 3(a) demonstrates the loss of the DRL agent on CIFAR10.
he DRL agent achieved convergence by utilizing (8), which
mploys relative accuracy gains and ensures stability across
arious models.

Comparison of BWA with different methods. Fig. 3(b)
ompares the performance of the proposed method in CI-
AR10 when σ is set to 1.0, which is the setting that represents
he highest degree of heterogeneity and complexity images.
WA consistently achieves high accuracy from the initial

ounds compared to other benchmarks. This indicates that
dditional rewards for attaining high accuracy are effective.

From Table 1, BWA achieves the highest accuracy across
ll σ settings. In CIFAR10, compared to FedAvg, as the

value increases, the accuracy improvement with BWA is
espectively 1.64%, and 5.53%. Moreover, as σ increases, a
rend of decreasing accuracy is observed across all benchmark
lgorithms; however, it is notable that the performance degra-
ation of BWA is relatively less pronounced. This reveals that
WA is robust under the high heterogeneity scenarios. Further-
ore, as the FL environments become more heterogeneous,

he two BWA methods achieve higher accuracy compared to
pproaches optimized solely from either a local training or
erver perspective. This suggests that jointly optimizing from
oth local training and server perspectives is more effective.
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he accuracy of DRL-based BWA is slightly higher than that
f BO-based BWA. This indicates that DRL-based approaches
re more suitable in FL environments where information about
he client’s data distribution is inaccessible.

As the communication rounds accumulate, the commu-
ication overhead between the server and clients inevitably
xpands. Thus, it is crucial to achieve the target accuracy
uickly. Fig. 3(c) shows the number of rounds needed to
each a target accuracy of 98% for MNIST and 55% for
IFAR10. DRL-based BWA reduced the number of rounds

equired to reach the target accuracy in CIFAR10 by approx-
mately 57.78%, 39.68%, and 60.0% compared to FedAvg,
daptive-B, and Adaptive-AW, respectively. DRL-based BWA
rovides efficiency and potential for practical application in FL
cenarios.

Impact of Client Selection. Since the communication ef-
ciency in FL is directly influenced by both the number of
ounds and clients involved, we also conducted experiments on
lient selection as one of the important hyperparameters. Thus,
e excluded clients whose aggregation weights fell below a

ertain threshold. As depicted in Fig. 3(d), the graph shows
hat at a threshold of 0, all 10 clients are selected, achieving
n accuracy of 87.0%, while at a threshold of 0.06, the selected
lient count drops to 3 with an accuracy of 84.8%. Higher
elected client counts lead to increased accuracy but also
equire more communication resources (e.g., radio bandwidth)
or FL process. The experimental results suggest that with a
hreshold of 0.04, we can significantly increase the efficiency
f communication while ensuring accuracy.

. Discussion

Generalizability. Although training the DRL-based BWA
lgorithm is time-intensive, its compatibility with vanilla FL
lgorithms can be achieved with just a few simple modifica-
ions. This process involves merely transferring key metrics
uch as batch size, model accuracy, and loss as minor adjust-
ents. Such streamlined modification underscores the ability

f DRL-based BWA to be seamlessly integrated into existing
L frameworks, thereby enhancing their performance without

he need for extensive modifications.
Considering Other Hyperparameters. In our study, we

ocused on the significant impact of batch size on local training
nd aggregation weights on global model updates. However,
L encompasses a wide range of hyperparameters, such as

earning rate, local updates, and epochs, that also critically im-
act the FL process. Notably, the learning rate has a complex
elationship with batch size [19], suggesting that a compre-
ensive examination of these hyperparameters together could
urther optimize FL strategies.

Lightweight Design and Cold start Problem. Training
the DRL agent requires considerable time, which presents a
significant challenge when used in real-time applications. The
usability in real-time scenarios can be enhanced by making
the DRL model more lightweight [23] or by innovatively
combining it with other algorithms [24] to optimize the DRL
model. Additionally, addressing the cold start problem that
occurs during the initial stages of DRL model training [25]
can also be considered a future research challenge.
869
7. Conclusion

This paper investigates the impact of hyperparameters, such
as batch size and aggregation weights, on the accuracy of the
global model. The findings highlight the importance of ad-
justing optimal hyperparameters based on the data distribution
of end-devices. Our comprehensive experimental evaluation
not only showcases BWA’s enhanced robustness in non-IID
environments but also its superiority in improving model accu-
racy and convergence rates. BWA outperformed methods that
were optimized solely from either a local training or server
perspective, achieving higher accuracy up to 5.53% compared
to FedAvg. Furthermore, we have thoroughly discussed BWA’s
limitations and identified areas for future research.
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