
K-RAF: A Kubernetes-based Resource Augmentation Framework
for Edge Devices

Youngwoo Jang
§∗
, Jiseob Byeon

§∗
, Soonbeom Kwon

§∗

Illyoung Choi
★
, Dukyun Nam

§
, Byungchul Tak

§
, Gap-Joo Na

⋄
, Young-Kyoon Suh

§†

§
Kyungpook National University, Daegu, Republic of Korea

★
University of Arizona, Tucson, AZ, USA

⋄
Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea

ABSTRACT
Internet of Things (IoT) (or edge) devices are typically

resource-constrained in terms of CPU, memory, and storage. Thus,

it is viable for the devices to request resource provisioning to an

edge server in the presence of growing data and heavy computa-

tion, as the edge server provides better accessibility than cloud

servers. Consequently, the edge devices often perform computation

and storage provisioning to the edge servers in large-scale data

operations. However, the conventional methods for provisioning

edge devices take into little consideration the characteristics of

resources that jobs executed at the devices rely on. In particular,

fully migrating computation jobs from the device to the server

may waste valuable resources of the server without considering the

computation and I/O characteristics of the jobs, thereby making

the devices’ resources idle. To overcome these limitations, we pro-

pose a novel Kubernetes-based resource augmentation framework,

termed K-RAF, for provisioning edge devices with limited capabili-

ties and accelerating the devices’ job processing. Our experiment

demonstrates that utilizing GPU acceleration, on average, K-RAF

can run tasks 306 times faster than local computation on an edge

device. Also, we show that utilizing the task distribution between

an edge device and K-RAF can offer an average speedup of about

40% compared to K-RAF alone.

KEYWORDS
Edge devices, Private cloud, Resource augmentation, Kubernetes

ACM Reference Format:
Youngwoo Jang, Jiseob Byeon, Soonbeom Kwon, Illyoung Choi, Dukyun

Nam, Byungchul Tak, Gap-Joo Na, and Young-Kyoon Suh. 2024. K-RAF: A

Kubernetes-based Resource Augmentation Framework for Edge Devices.

In The 33rd International Symposium on High-Performance Parallel and Dis-
tributed Computing (HPDC ’24), June 3–7, 2024, Pisa, Italy. ACM, New York,

NY, USA, 3 pages. https://doi.org/10.1145/3625549.3658826

∗
Student author

†
Corresponding author

HPDC ’24, June 3–7, 2024, Pisa, Italy
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0413-0/24/06

https://doi.org/10.1145/3625549.3658826

1 INTRODUCTION
In the recent IoT environments, there is a growing need to perform

both I/O-intensive tasks (e.g., sensor data collection and retrieval

and multimedia data annotation) and compute-intensive operations

(e.g., model training and inference, object recognition, video sum-

marizing) at the edge. However, it is tough to process such large

jobs promptly due to the limited computation and storage capacity

of edge devices. Consequently, edge devices frequently depend on

edge servers for resource provisioning, which offer greater accessi-

bility compared to cloud servers. As a result, whenever extensive

data operations are required, the edge devices often delegate the

computation and I/O tasks to the edge servers.

However, the conventional works to provision such edge de-

vices expose several limitations. First, existing provisioning ap-

proaches [1, 12, 14] based on edge servers seldom reflect the charac-

teristics of resources that applications heavily rely on, particularly

for compute-intensive tasks that demand significant computational

resources from edge devices. Thus, provisioning compute resources

at the same performance level becomes less effective than explicitly

tailoring compute resources for high-level computational purposes.

In addition, the advent of high-performance IoT devices [11] has

rendered the traditional complete computation at edge servers

no longer optimal. The conventional approach, which does not

consider diverse environments, has not been quite effective in effi-

ciently utilizing the computational and I/O resources of both edge

servers and edge devices.

To address these concerns, in this paper, we propose a novel

resource augmentation framework, termed K-RAF, which assists

edge devices to overcome their limited capabilities by provisioning

virtualized computation and storage resources in a Kubernetes

environment. In particular, our framework and the edge devices can

collaborate to quickly finish given tasks by fully exploiting available

computation resources on both sides. In addition, this collaboration

can reduce the load on edge servers and save computation resources,

enabling computation provisioning for more edge devices.

2 THE PROPOSED FRAMEWORK: K-RAF
Figure 1 illustrates the overall architecture of the K-RAF framework

that we have implemented. In the architecture, we deploy data ac-

cess and application pods sharing a single PVC (Persistent Volume

Claim) in the Kubernetes environment [7]. Within this structure,

the application pod is responsible for managing the resources in

the virtual environment where the application operates. The pod

ensures consistency by running the same application as the one

already operational on the device when provisioning resources.

7

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3625549.3658826
https://doi.org/10.1145/3625549.3658826
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625549.3658826&domain=pdf&date_stamp=2024-08-30


HPDC ’24, June 3–7, 2024, Pisa, Italy Jang et al.

Figure 1: Overall architecture of our proposed framework

Concurrently, the data access pod is mounted on the PVC to store

data generated by both the device and application pods. An internal

davfs2 server within the pod facilitates the transmission of these

data to various endpoints. To accelerate I/O intensive tasks, we

apply a cache tiering technique [2] using rook-ceph [9], in which

we define a cache tier, a storage resource mapped to a solid-state

drive, and a backing storage tier, a storage resource mapped to a

hard disk drive. We decide the promotion or demotion of the used

tier through I/O traces during the execution of the application using

the storage resource. This design reflects our storage provisioning

approach reflecting an application’s I/O characteristics to improve

an application’s IOPS. Moreover, to optimize the execution of tasks

that require substantial computational resources, we employ GPUs

utilized as virtual acceleration resources within the Kubernetes

ecosystem. The GPUs are made available to the application pods

that need computation acceleration. The allocation of the GPUs is

quantified in terms of VRAM units and is determined at the time of

pod initialization. In this architecture, computationally intensive

applications, especially those associated with AI models, are poised

to benefit significantly from this enhanced processing capability

acceleration.

Also, we have implemented a bidirectional connection structure,

as illustrated in Figure 1, for task migration and data sharing be-

tween an edge device and its application pod. To ensure accessibility

in various environments, we utilize theWebDAV [13] protocol to

establish the connection between the endpoints as it meets our

concurrency and data integrity requirements. Upon running the

WebDAV server in the data access pod, edge devices and application

pods connect by mounting via davfs2 [4]. This enables efficient task

allocation and data sharing between devices and application pods

using the secureWebDAV protocol, which supports concurrency

and data integrity.

3 PRELIMINARY EVALUATION
To test the validity of the proposed K-RAF framework, we evaluate

its performance on compute-bound and I/O-bound tasks as follows.

3.1 Compute-bound Tasks
We investigated the performance of image inference tasks using

Yolo [6], which is a compute-bound application, in various execu-

tion contexts. We aimed to establish a baseline for efficient resource

distribution between an edge device and the corresponding edge

server. For our measurement, we considered four types of execution

environments: 1) a pod with the RTX 3080 GPU [10] (denoted as

‘K-RAF GPU’) at the server, 2) environments with jobs distributed

across Raspberry Pi and pod (denoted as ‘K-RAF device’) at the

server, 3) a pod without the GPU (denoted as ‘K-RAF’) at the server,

and 4) a Raspberry Pi model 4 (denoted as ‘Edge device’). We ex-

ecuted image inference tasks across expanding datasets, varying

from 1 GB to 4 GB in each environment.

As shown in Figure 2(a), on average, K-RAF outperformed the

edge device by about 36.8x, while K-RAF GPU achieved a remark-

able speedup of about 306x compared to the edge device. In par-

ticular, on average, K-RAF GPU outpaced K-RAF by a factor of

8.3, highlighting the critical role of GPU acceleration in execut-

ing compute-intensive tasks within virtualized environments. Fur-

thermore, compared to K-RAF, the K-RAF device yielded about

an average speedup of 4%. This outcome highlights the necessity

of exploring task partitioning with edge devices. By doing so, we

can effectively utilize edge server resources by tapping into the

idle capacities of edge devices, all while ensuring computational

performance is upheld.

3.2 I/O-bound Tasks
In this section, we explore a potential opportunity for mitigating I/O

overhead in the collaboration between an edge device and the edge

server for efficient task completion. More specifically, we measure

the performance of ElasticSearch [3], an I/O-bound application, un-

der various execution scenarios to identify potential opportunities

for decreasing I/O overhead and enhancing task efficiency. To this

end, we compare the performance of the K-RAF, K-RAF device, and

Edge device used in Section 3.1. (K-RAF GPU is not considered as

it is out of focus in this experiment.) To realize an I/O bound task,

we loaded data into Elasticsearch for image datasets ranging from

1 GB to 4 GB in each environment.

Figure 2(b) illustrates the loading results. The average latency

when loading data in K-RAF was 95.4 seconds, while the average

latency in edge devices was 692 seconds, resulting in approximately

a 7.25x performance improvement for the operation in K-RAF.

However, the average latency of the tasks in K-RAF device was

67.3 seconds, about 1.4x faster than in K-RAF. These results show

that offloading storage resources can improve the performance of

IO-bound applications. It also suggests that task partitioning using

edge devices can improve not only the efficient use of resources

but also the performance of applications in terms of I/O efficiency.

4 RELATEDWORK
Google Distributed Cloud Edge [5] uses Google’s high-performance

cloud infrastructure [8] to achieve flexible scalability of computing

8



K-RAF: A Kubernetes-based Resource Augmentation Framework for Edge Devices HPDC ’24, June 3–7, 2024, Pisa, Italy

(a) Average latency to execute a compute-bound task (b) Average latency to execute a IO-bound task

Figure 2: Performance comparison on compute-bound and IO-bound tasks

and storage resources. But since K-RAF edge computing collaborates

with local hardware, it is less susceptible to network delay than

Google Distributed Cloud Edge due to the shorter physical distance.

5 CONCLUSION AND FUTURE WORK
To overcome the limitations of conventional provisioning methods,

this paper presented the Kubernetes-based Resource Augmentation

Framework (K-RAF) that can efficiently allocate computation and

storage resources on the edge server for resource-constrained IoT

edge devices. Our experiments revealed that K-RAF successfully en-

hanced the performance of compute resource provisioning through

GPU virtualization and the WebDAV protocol and achieved effi-

cient task distribution and data sharing between edge devices and

their application pods. Also, K-RAF could improve the performance

of I/O-intensive tasks, such as sensor data collection, image pro-

cessing, and media streaming, as well as compute-intensive tasks,

such as model training and inference, object recognition and video

summarizing, by leveraging the characteristics of the resources

employed by the application. We see that this promising approach

can heighten the efficiency of task execution and save resources on

the edge server, optimizing the overall system sustainability.

Our preliminary evaluation results show the practicality of K-RAF

in improving system performance and resource utilization in IoT

environments by using IoT edge devices as computing resources

when offloading storage-intensive workloads. Our work is ongoing

in three directions. First, we are currently devising a differential of-

floading policy, meaning offloading different resources considering

edge devices’ computational capacity and storage capacity. Second,

we are adding a PVC-resizing feature readjusting excessive PVC

based on current usage. Lastly, we are implementing an adaptive

workload distribution algorithm based on the data from multiple

execution environments. That is, we’re developing a feature that

dynamically distributes the workloads between a device and its

application pod to maximize resource utilization and reduce latency

by adapting to the execution context in real time. Moreover, to fur-

ther attest to the validity of K-RAF, we are currently evaluating

the performance of the WebDAV protocol and conducting a quanti-

tative analysis of the framework with the influence of bare metal

excluded. Again, our ultimate goal is to efficiently provision edge

resources to maximize performance while reducing the latency in

completing a given task.

NOTES
This work was supported by the National Research Foundation of

Korea (NRF) grants (4199990214394, NRF-2021R1I1A3056669, and

NRF-2018R1A6A1A03025109) funded by the Korean government

(MSIT and MoE) and by partial support from an Institute of

Information & communications Technology Planning & Evaluation

(IITP) grant funded by the Korean government (MSIT) (No.

2021-0-00546, Building a Digital Open Lab as open innovation

platform). All the materials used in this paper are publicly available

at https://github.com/lab-paper-code/K-RAF.

REFERENCES
[1] Ale, L., et al. Delay-aware and Energy-efficient Computation Offloading in

Mobile-Edge Computing using Deep Reinforcement Learning. IEEE Transactions
on Cognitive Communications and Networking 7, 3 (2021), 881–892.

[2] Ceph Authors and Contributors. Cache Tiering. https://docs.ceph.com/en/

latest/rados/operations/cache-tiering/, viewed on April 17, 2024.

[3] elastic. Elasticsearch. https://github.com/elastic/elasticsearch/, viewed on April

17, 2024.

[4] Free Software Foundation, Inc. davfs2 - Summary. https://savannah.nongnu.

org/projects/davfs2, viewed on April 17, 2024.

[5] Google. Google Distributed Cloud Edge. https://cloud.google.com/distributed-

cloud/edge/latest/docs/overview, viewed on April 17, 2024.

[6] Jocher, G., et al. ultralytics/yolov5: v7. 0-yolov5 SOTA Realtime Instance

Segmentation. Zenodo (2022).
[7] Kubernetes. Kubernetes. https://kubernetes.io/docs/, viewed on April 17, 2024.

[8] Mauch, V., Kunze, M., and Hillenbrand, M. High Performance Cloud Comput-

ing. Future Generation Computer Systems 29, 6 (2013), 1408–1416.
[9] Rook-Ceph. Rook-ceph. https://rook.io/, viewed on April 17, 2024.

[10] The Kubernetes Authors. Schedule GPUs. https://kubernetes.io/docs/tasks/

manage-gpus/scheduling-gpus/, viewed on April 17, 2024.

[11] Valladares, S., et al. Performance Evaluation of the NVIDIA Jetson Nano

through a Real-time Machine Learning Application. In Proceedings of the 4th Int’l
Conf. on Intelligent Human Systems Integration (2021), Springer, pp. 343–349.

[12] Wang, T., Zhou, J., Liu, A., Bhuiyan, M. Z. A., Wang, G., and Jia, W. Fog-based

computing and storage offloading for data synchronization in iot. IEEE Internet
of Things Journal 6, 3 (2018), 4272–4282.

[13] WebDAV. Webdav resources. http://www.webdav.org/, viewed on April 17, 2024.

[14] Zhang, Y., Chen, X., Chen, Y., Li, Z., and Huang, J. Cost efficient scheduling

for delay-sensitive tasks in edge computing system. In 2018 IEEE International
Conference on Services Computing (SCC) (2018), IEEE, pp. 73–80.

9

https://github.com/lab-paper-code/K-RAF
https://docs.ceph.com/en/latest/rados/operations/cache-tiering/
https://docs.ceph.com/en/latest/rados/operations/cache-tiering/
https://savannah.nongnu.org/projects/davfs2
https://savannah.nongnu.org/projects/davfs2
https://cloud.google.com/distributed-cloud/edge/latest/docs/overview
https://cloud.google.com/distributed-cloud/edge/latest/docs/overview
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/

	Abstract
	1 introduction
	2 The Proposed Framework: K-RAF
	3 Preliminary Evaluation
	3.1 Compute-bound Tasks 
	3.2 I/O-bound Tasks 

	4 Related Work
	5 Conclusion and Future Work
	Notes
	References

