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Abstract: In recent research addressing energy arbitrage with energy storage systems (ESSs), dis-
crete reinforcement learning (RL) has often been employed, while the underlying reasons for this
preference have not been explicitly clarified. This paper aims to elucidate why discrete RL tends to be
more suitable than continuous RL for energy arbitrage problems. When using continuous RL, the
charging and discharging actions determined by the agent often exceed the physical limits of the
ESS, necessitating clipping to the boundary values. This introduces a critical issue where the learned
actions become stuck at the state of charge (SoC) boundaries, hindering effective learning. Although
recent advancements in constrained RL offer potential solutions, their application often results in
overly conservative policies, preventing the full utilization of ESS capabilities. In contrast, discrete
RL, while lacking in granular control, successfully avoids these two key challenges, as demonstrated
by simulation results showing superior performance. Additionally, it was found that, due to its
characteristics, discrete RL more easily drives the ESS towards fully charged or fully discharged states,
thereby increasing the utilization of the storage system. Our findings provide a solid justification
for the prevalent use of discrete RL in recent studies involving energy arbitrage with ESSs, offering
new insights into the strategic selection of RL methods in this domain. Looking ahead, improving
performance will require further advancements in continuous RL methods. This study provides
valuable direction for future research in continuous RL, highlighting the challenges and potential
strategies to overcome them to fully exploit ESS capabilities.

Keywords: energy arbitrage; energy storage system; discrete reinforcement learning; continuous
reinforcement learning; constrained reinforcement learning

1. Introduction

Energy arbitrage is a key approach for optimizing energy storage system (ESS) usage,
especially with the rise of renewable energy sources [1]. By buying electricity when prices
are low and selling it when prices are high, energy arbitrage balances supply and demand,
stabilizes the grid, and maximizes profits. Various storage technologies, such as battery
storage, hydrogen storage, and thermal storage, can be used for energy arbitrage [2,3].
Battery storage is particularly effective due to its rapid response to real-time price changes,
making it well-suited for dynamic energy markets [4,5]. This paper focuses on battery
storage for its suitability in real-time energy arbitrage and its significant potential for profit
maximization.

Real-time energy markets are increasingly characterized by high variability and dy-
namic pricing, largely due to the penetration of renewable energy sources, whose supply
fluctuates based on environmental conditions. This variability demands that ESSs be able
to respond quickly and efficiently to market signals in order to maximize the economic
benefits of energy arbitrage. As a result, batteries are well-suited for energy arbitrage in
environments with high real-time price volatility, because they can ramp up or down power
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output within seconds [6]. Traditional optimization-based methods, such as linear program-
ming and rule-based control, have been used to solve the energy arbitrage problem [7].
However, these methods struggle with the stochastic and dynamic nature of renewable
energy and real-time pricing. They require detailed models that can be challenging to
develop and often fail to adapt to unexpected changes. Reinforcement learning (RL), by
contrast, can learn optimal control strategies through interaction with the environment,
making it well-suited for complex, unpredictable conditions [4,5]. RL’s adaptability to
changing market conditions is essential for effective management of ESSs.

Within the RL framework, there are two main approaches for action selection: discrete
RL and continuous RL [8]. Discrete RL involves selecting from a finite set of predefined
actions, such as charging or discharging at specific rates. This approach simplifies the
learning process by reducing the complexity of the action space, making it easier to learn
effective policies, especially in environments with high variability. This simplicity makes
discrete RL more efficient in adhering to system constraints while still optimizing perfor-
mance. Discrete actions can lead to faster convergence because the agent has fewer options
to evaluate, which helps in stabilizing the learning process. Conversely, continuous RL
allows for actions that can take any value within a specified range, providing theoretically
finer control over the charging and discharging processes. This allows the agent to optimize
the systems with greater precision, which could potentially result in higher profits. In
energy arbitrage, actions often involve determining the amount of charging or discharging,
which is inherently a continuous value. Thus, continuous RL is considered the common
choice, and several studies have addressed the energy arbitrage problem using continu-
ous RL [9,10]. However, discrete RL, which selects from predefined actions such as fixed
charging or discharging rates, is often preferred due to its simplicity and stability [4,11–13].

Our study aims to clarify why discrete RL often outperforms continuous RL in energy
arbitrage scenarios. The primary objective of this research is to experimentally demonstrate
that discrete RL is a better choice for energy arbitrage involving ESSs, not only in terms of
simplicity and stability but also in terms of performance. Previous research has suggested
that discrete RL is preferred mainly because it is simple and stable, but does not clearly
mention the problems that could occur when using continuous RL [4,11–13]. This paper
goes further by demonstrating that, even when considering performance, discrete RL
remains a superior choice for energy arbitrage. We aim to provide clear evidence that
discrete RL’s advantages are not just about ease of implementation but also about achieving
better practical results in real-world energy markets. While it has been suggested that
continuous RL might yield better performance due to its finer control capabilities, our
findings demonstrate otherwise. One major issue with continuous RL is action clipping,
which keeps the State of Charge (SoC) within acceptable bounds. This often leads to the
SoC becoming stuck in fully charged or discharged states, hindering exploration across the
full range of SoC values.

To prevent the agent from becoming stuck, constrained RL is often used [14]. Con-
strained RL incorporates specific constraints that must be adhered to at every time step
while maximizing cumulative rewards. These constraints are typically reformulated using
a Lagrangian approach, where a Lagrangian multiplier is introduced to impose penalties
when constraints are violated [15]. In energy arbitrage, the constraint is set to ensure that
the SoC does not exceed specific bounds, with penalties applied proportionally to any
violations of these bounds. The key challenge here is appropriately setting the value of
the Lagrangian multiplier. If set too conservatively, the agent’s learning may focus solely
on satisfying constraints, thereby resulting in overly cautious behavior that restricts the
full utilization of ESS capabilities. In energy arbitrage problems, discrete RL can select the
best action among those that satisfy the constraints, without requiring action clipping or
Lagrangian multiplier tuning. This simplicity makes discrete RL more efficient in adhering
to system constraints while still optimizing performance. Most studies on ESS control based
on continuous control have successfully used constrained RL to ensure that the SoC remains
within a specified range, thereby enhancing the stability of the learning process [16–18].
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However, to the best of our knowledge, few studies in the energy arbitrage domain have
specifically evaluated the effectiveness of constrained RL. Thus, it is necessary to investigate
and validate the impact of constrained RL in the context of energy arbitrage as well.

In our research, we applied a continuous RL algorithm for energy arbitrage using
real energy price data and tuned the Lagrangian multiplier to find the optimal setting.
Despite this setting, continuous RL still underperformed compared with discrete RL. On the
other hand, discrete RL naturally guided the system to fully charged or discharged states,
thus maximizing ESS utilization. Continuous RL’s conservative approach in satisfying con-
straints led to less efficient outcomes, proving that discrete RL provides a more practical and
effective solution for energy arbitrage in its current state. Specifically, our results showed
that discrete RL outperformed continuous RL by 42% in terms of overall performance,
demonstrating its clear advantage in maximizing the efficiency of energy arbitrage.

Our findings highlight the need for a nuanced approach to energy arbitrage research.
The key contribution of this study is to demonstrate that, when considering continuous
control for improving energy arbitrage performance, simply replacing discrete RL with
continuous RL is not sufficient and can even degrade performance. Instead, it is crucial to
develop continuous RL algorithms that incorporate the strengths of discrete RL. By pro-
viding experimental evidence of the limitations of continuous RL in energy arbitrage, this
research paves the way for more informed decision-making in selecting RL methodologies
and underscores the importance of addressing specific limitations for future advancements.
Future research should focus on modifying continuous RL algorithms to mitigate overly
conservative behavior, such as adapting penalty functions dynamically or employing hy-
brid approaches that combine the flexibility of continuous actions with the robustness of
discrete action selection. These modifications could help in fully exploiting the potential of
ESSs while avoiding the pitfalls observed in purely continuous RL strategies.

The rest of this paper is organized as follows. In Section 2, we discuss related works,
focusing on traditional optimization-based energy arbitrage, discrete RL-based energy
arbitrage, and continuous RL-based energy arbitrage. In Section 3, we describe the method-
ologies for the discrete RL and continuous RL approaches for energy arbitrage. In Section 4,
energy arbitrage is conducted on real-world energy price data for performance evaluations,
followed by the conclusion in Section 5.

2. Related Works

In this section, we provide an overview of the existing research related to energy
arbitrage. We categorize related works into three primary approaches.

2.1. Traditional Optimization-Based Energy Arbitrage

Traditional optimization techniques, such as linear programming [7], mixed-integer
linear programming [19], and dynamic programming [20], have been widely used to
solve energy arbitrage problems by optimizing the charging and discharging schedules of
ESSs. These methods provide optimal solutions in well-defined environments, but struggle
to adapt to the high variability and uncertainty of real-time energy markets. Although
effective under deterministic conditions, they require detailed system models, which can be
computationally expensive and may not respond well to sudden market changes. Despite
these limitations, traditional optimization approaches have laid a solid foundation for
energy arbitrage and are still used as benchmark methods in the field. Furthermore, using
stochastic dynamic programming, a form of stochastic optimization, can partially address
the uncertainty challenges when solving the energy arbitrage problem [21]. However, with
the growing complexity and uncertainty in energy systems due to increased distributed
energy resources, traditional optimization methods face significant challenges.

2.2. Discrete RL-Based Energy Arbitrage

Recent research has increasingly focused on reinforcement learning (RL) to address
the dynamic nature of energy arbitrage, with discrete RL approaches gaining significant
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attention. Discrete RL involves selecting from a predefined set of charging or discharging
actions, making it particularly effective for environments with high variability. The reduced
complexity of the action space simplifies the learning process, often leading to faster
convergence and more stable policies compared with continuous approaches. This also
allows for better adherence to system constraints without the need for action clipping or
Lagrangian multiplier tuning. Studies such as those by [4,11–13] have demonstrated the
robustness and efficiency of discrete RL in energy arbitrage applications. These studies have
shown that discrete RL can effectively balance computational simplicity with operational
performance, making it an attractive solution for ESS management under uncertain and
fluctuating market conditions. However, many discrete RL-based energy arbitrage studies
have not explicitly explained why discrete RL was chosen over continuous RL. The work
in [11] suggested that continuous RL could improve future performance, but a deeper
examination of the specific challenges that arise when using continuous RL instead of
discrete RL is still needed. The work in [12] argued that discrete RL could achieve a
performance comparable to continuous RL due to the emergence of bang-bang behavior
in continuous RL [22], but the comparison and analysis between the two algorithms were
not provided. Additionally, [13] argued that discrete RL outperformed continuous RL,
attributing this to instability and the difficulty of hyperparameter tuning. However, no
comparison was made after addressing the instability using constrained RL.

2.3. Continuous RL-Based Energy Arbitrage

Continuous RL has also been explored as an alternative approach to provide finer
control over charging and discharging actions. By allowing continuous-valued actions,
these methods theoretically offer greater precision in optimizing ESS schedules. This
advantage has made continuous RL widely used for optimizing ESS schedules in general.
In most cases, continuous RL employs constrained RL to ensure that the SoC remains within
specified bounds. Many ESS control studies have combined continuous RL with constrained
RL to solve problems such as home energy management [16], dispatch planning [17], and
fast charging [18]. However, in the energy arbitrage problem, the difference between using
discrete RL and continuous RL has not been thoroughly compared and analyzed. In [5],
continuous RL has shown potential for improving energy arbitrage indirectly, but direct
effects have been limited. The works in [9,10] addressed energy arbitrage directly using
continuous RL, but no comparison was made with discrete RL. Therefore, there is a need to
analyze the effectiveness of continuous RL in energy arbitrage specifically and compare its
performance directly with discrete RL.

3. Methods

In this section, we present the methodologies used to approach the energy arbitrage
problem using both discrete and continuous RL strategies. We first describe the energy arbi-
trage problem and the battery model employed, followed by the specific implementations
of the discrete RL and continuous RL methods. Although this paper focuses on batteries,
other types of ESS, such as thermal storage systems, can be effectively modeled as well [23].

3.1. Energy Arbitrage and Battery Model

The overall system model shown in Figure 1a mainly consists of the battery and the
real-time energy market. The model to calculate the profit at time t can be expressed as

rt = ct · Pt · ∆t, (1)

where rt represents the revenue at time t, ct is the energy price at time t, Pt is the charge or
discharge volume at time t (negative for charging, positive for discharging), and ∆t denotes
the duration of the time slot. Since ct is not known in advance, it must be predicted, which
introduces a forecasting component into the model. In this model, rt is later used as the
reward signal in a reinforcement learning framework, where the goal is to optimize ESS



Energies 2024, 17, 5876 5 of 17

operations to maximize profit by strategically charging and discharging based on price
fluctuations.

Arbitrage

Gain $2Energy

Storage

Real-time

Energy 

Market

Buy at a

low price

Sell at a

high price

Charge (−𝑃𝑡) Discharge (𝑃𝑡)
$3

$1

(a)

𝑣𝑡
oc 𝑃𝑡

𝑁cell

𝑅𝑡
s

𝑖𝑡
cell

𝑅𝑡
ts 𝑅𝑡

tl

Resistor Resistor Resistor

Dependent
Voltage 
Source

+

_

(b)
Figure 1. System models.(a) Energy storage arbitrage process. (b) Steady-state battery cell equivalent
circuit.

Since there are the charging and discharging efficiencies, denoted by ηc
t and ηd

t , re-
spectively, all charging power cannot be stored in the battery, and all discharging power
cannot be sold to the real-time market. To calculate the ηc

t and ηd
t , a steady-state equivalent

electrical circuit of the lithium ion battery cell shown in Figure 1b can be used [24]. The
circuit consists of an open circuit voltage, voc

t , and series resistors, Rs
t , Rts

t , and Rtl
t , which

represent ohmic losses, charge transfer, and membrane diffusion, respectively. Rts
t and Rtl

t
are each connected in parallel with a capacitor, but for simplicity SoC is treated as constant
within one time slot, which makes direct current during the time duration and enables
ignoring of the capacitors [25].

The open circuit voltage, voc
t , and the three resistors, Rs

t , Rts
t , and Rtl

t , are determined
by the battery SoC at time slot t, denoted by SoCt, where the relations are described as

voc
t = a0e−a1SoCt + a2 + a3SoCt − a4(SoCt)

2 + a5(SoCt)
3, (2a)

Rs
t = b0e−b1SoCt + b2 + b3SoCt − b4(SoCt)

2 + b5(SoCt)
3, (2b)

Rts
t = c0e−c1SoCt + c2, (2c)

Rtl
t = e0e−e1SoCt + e2, (2d)

Rt = Rs
t + Rts

t + Rtl
t , (2e)

where all Fraktur typefaces in the equations are constant battery cell parameters. Then, icell
t

can be obtained by solving the following quadratic equations,

Pt =

Ncell ·
(

voc
t · icell

t +
(
icell
t

)2 · Rt

)
, if Pt < 0 (charging),

Ncell ·
(

voc
t · icell

t −
(
icell
t

)2 · Rt

)
, if Pt ≥ 0 (discharging),

(3)

where Ncell is the number of battery cells.
The charging efficiency, ηc

t , is determined by the ratio of the absorbing power of
the voltage source and the charging power. Likewise, the discharging efficiency, ηd

t , is
determined by the ratio of the discharging power and the supplying power of the voltage
source. Then, ηc

t and ηd
t are given by

ηc
t =

voc
t · icell

t · Ncell

Pt
, (4a)

ηd
t =

Pt

voc
t · icell

t · Ncell
. (4b)
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Accordingly, the SoC evolves in time as follows:

SoCt+1 =

SoCt − ηc
t

Pt
Emax

∆t, if Pt < 0 (charging),
SoCt − 1

ηd
t

Pt
Emax

∆t, if Pt ≥ 0 (discharging),
(5)

where Emax is a total battery capacity. In general, the efficiency of battery lies in [0.96, 0.995]
and becomes high for high SoC and low charging/discharging power. When determining
Pt, the charging and discharging power limitations, denoted by Pmin

t and Pmax
t , should

be examined first, and are determined by the SoCt. Battery degradation is known to
be severe at both ends of the SoC, which implies that SoCt should be constrained as
SoCmin ≤ SoCt ≤ SoCmax. Then, Pmin

t and Pmax
t are determined by the following equations:

SoCmax = SoCt − ηc
t

Pt

Emax
∆t, when Pt = Pmin

t (charging limitation), (6a)

SoCmin = SoCt −
1

ηd
t

Pt

Emax
∆t, when Pt = Pmax

t (discharging limitation). (6b)

The current SoC is naturally taken into account when determining the charging or
discharging values, Pt. However, as shown in Equation (5), the current decision also affects
the SoC of the subsequent time slot. Additionally, since real-time energy prices, ct, are
not known in advance, they must be predicted. As a result, determining the value of Pt
becomes a sequential decision-making problem under uncertainty, which justifies the use
of reinforcement learning (RL). Since the value of Pt depends on both ct and SoCt, these
two variables form the state in the RL framework for this problem. While the predicted
value of ct can be used directly [4], it is also possible to introduce the concept of a partially
observable state, referred to as an observation [5]. Thus, the observation, ot, and state, st,
are defined as follows.

ot =(ct−1, SoCt), (7a)

st =(o0, o1, · · · , ot−1, ot). (7b)

Given that st is composed of a sequential series of observations, long short-term mem-
ory (LSTM) can be utilized as the RL model to capture the temporal dependencies in the
decision-making process [5]. The action, at, can be defined as the charging or discharging
amount, Pt. However, as shown in Equation (6), Pt is bounded by a minimum and maxi-
mum value, and the action output by the RL model may exceed these limits. To prevent this,
clipping is applied to ensure that the action stays within the allowable range as follows:

Pt = clip(at, Pmin
t , Pmax

t ). (8)

The reward, rt, in the RL framework corresponds to the revenue or cost from energy
arbitrage in the real-time market, as defined in Equation (1).

3.2. Discrete RL Method: Deep Q-Network (DQN)

We first explore discrete RL. One of the most widely used algorithms in discrete RL
is the deep Q-network (DQN) [8]. DQN combines the traditional Q-learning algorithm
with deep neural networks, allowing it to efficiently learn in environments with large state
spaces. DQN uses a neural network to approximate Q-values, outputting the Q-values
for all possible actions given the current state. The action with the highest Q-value is then
selected. Additionally, DQN introduces two key techniques—experience replay and the
target network—to improve the stability of learning. Let Qω(st, at) be the action-value
function when taking action at in state st, where the parameter ω represents the weights of
the neural network used to approximate the Q-function. The loss function, LQ(ω), is then
defined as the mean squared error (MSE) between the predicted Q-value and the target
Q-value, which is computed as:
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LQ(ω) = E(st ,at ,rt ,st+1)∼D

[(
rt + γ max

a
Qω−(st+1, a)− Qω(st, at)

)2
]

(9)

where γ is the discount factor that determines the importance of future rewards, D is the
replay buffer, and ω− is the parameters of the target network.

To apply DQN to the energy arbitrage problem, it is necessary to discretize the action
space, as illustrated in Figure 2a. If the action space is discretized too finely, the complexity
of the problem increases, which can negatively impact performance. In this paper, we follow
the approach used in previous studies by discretizing the actions into three categories: fully
charged, idle, and fully discharged [11,12]. This simplification is motivated by the typical
strategy of charging as much as possible when energy prices are low and discharging
as much as possible when prices are high. In this case, the action, at, can take one of
three values: Pmin

t , 0, or Pmax
t , corresponding to fully charging, idling, or fully discharging,

respectively. As a result, there is no need for action clipping, as described in Equation (8),
since at is inherently constrained to these three discrete values. This naturally resolves the
issue of limiting the charge and discharge volumes, simplifying the implementation and
ensuring that the actions remain within the allowable operational limits.

State Q-value for each action

Agent

Fully-charged

Idle

Fully-discharged

Select the action
with the largest Q-value
within the constraints.

energy
price SoC

(a)

State

Agent

energy
price SoC

Charging/
Discharging

Level
Directly output the actions

Action

:

(b)
Figure 2. Illustration of the RL mechanisms for ESS control. (a) Discrete RL mechanism for ESS
control. (b) Continuous RL mechanism for ESS control.

3.3. Continuous RL Method: Advantage Actor–Critic (A2C)

Next, we explore continuous RL. In the energy arbitrage problem, using discrete RL
requires discretizing the action space, specifically the charge and discharge amounts. Since
these quantities are naturally continuous, it is worth investigating the use of continuous
RL. As shown in Figure 2b, continuous RL simplifies the action output by reducing it to a
single value, which directly represents the action itself. When using discrete RL, increasing
the granularity of action discretization results in an excessive number of discrete actions,
leading to a larger set of Q-values to compare, which can reduce efficiency. In contrast,
continuous RL processes the action as a single output value, making it more suitable for
fine-grained control and potentially more efficient in environments where continuous
action spaces are required.

A key consideration when applying continuous RL is that the actions output by the RL
model are not inherently constrained within a specific range. In theory, the action values
could range from negative infinity to positive infinity. However, in our model, the action
values are restricted to lie between Pmin

t and Pmax
t . One might assume that this issue is
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resolved by applying action clipping, as described in Equation (8), which automatically
clips the action values within the allowable range of Pmin

t and Pmax
t . However, simply

relying on clipping can introduce instability during training. This problem is illustrated
in Figure 3, where an example demonstrates the issue. If the maximum discharge rate is
limited to 75%, and the model outputs an action that suggests an 80% discharge, clipping
would reduce this to 75%. From the agent’s perspective, this creates a situation where
changing the action value from 80% results in no change in the reward, leading the agent
to perceive no benefit from adjusting the action in this range. This can ultimately halt
learning, as the agent fails to recognize the differences in rewards for actions near the
boundaries—a phenomenon that can be viewed as a form of vanishing gradient. While
increasing the exploration rate might help the agent detect changes in the reward for
different actions, this comes at the cost of reduced exploitation, hindering the agent’s ability
to fully optimize its policy.

SoC 75% SoC 0%

Action: 80%

Clipped to 75%

Vanishing 
Gradient 

when 
Training

Figure 3. Example of the continuous RL with clipped action.

Due to this issue, constrained RL is often employed when controlling ESSs with
continuous RL [16–18]. In constrained RL, an additional condition is imposed to ensure
that the action values remain within the range of Pmin

t and Pmax
t for every time step t [14].

This means that the agent must not only learn to maximize the cumulative reward but
also satisfy the imposed constraints. Given that the constraint in this study was limited
to maintaining the SoC within a defined range, we selected the Lagrangian multiplier
method due to its simplicity and effectiveness in handling this specific requirement [15].
The Lagrangian multiplier effectively penalizes the agent whenever the action exceeds
the allowable bounds, providing a penalty to the reward proportionate to the extent to
which the constraints are violated. When applying constrained RL to our model, the
reward function is modified accordingly. In addition to maximizing the original reward
from energy arbitrage, the agent receives a penalty when the action value exceeds the
Pmin

t or Pmax
t . This adjustment to the reward structure ensures that the agent learns to

operate within the allowable charge and discharge rates while optimizing its long-term
performance in terms of cumulative reward. The modified reward function in our model,
denoted by rc

t , is expressed as follows.

rc
t = ct · Pt · ∆t − λ|at − Pt|. (10)
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As can be seen in the equation, the agent is penalized by the difference between at and Pt.
This is because, when Pt remains within the allowable range of Pmin

t and Pmax
t , the values

of at and Pt are equal.
Figure 4 illustrates an example related to this mechanism. When the maximum

discharge rate is limited to 75%, and the agent selects an action corresponding to an 80%
discharge, a penalty proportional to the 5% excess is applied to the reward. This penalty
discourages the agent from choosing actions that exceed the operational limits. As a
result, the agent is able to recognize that adjusting its action beyond the 75% threshold
leads to a decrease in reward due to the penalty, thus avoiding the situation where no
difference in reward is perceived when changing the action around the boundary. Since
the penalty is proportional to the amount by which the action violates the constraint, the
agent can effectively learn to stay within the prescribed bounds while still optimizing
for long-term cumulative rewards. This proportional penalty approach ensures that the
agent not only seeks to maximize performance but also respects the operational constraints,
preventing the learning stagnation that can occur when constraints are ignored. A critical
point in this approach is the proper tuning of the Lagrangian multiplier, λ [26]. If λ is
too large, the agent may focus excessively on satisfying the constraints at the expense
of maximizing the cumulative reward. Conversely, if λ is too small, the constraints may
become insignificant, allowing the agent to frequently violate them. Therefore, it is essential
to find an appropriate balance for λ to ensure the agent optimizes its policy while adhering
to the system’s operational limits.

SoC 75% SoC 0%

Action: 80%

Clipped to 75%
with a negative reward of λ·(-5)%

Figure 4. Example of the continuous RL with clipped action with Lagrangian multiplier.

Now, we explore continuous RL, where the most fundamental algorithm is advantage
actor–critic (A2C) [8]. A2C is a policy gradient-based method that separates the decision-
making process into two components: the actor and the critic. The actor is responsible for
selecting actions based on the current policy, while the critic evaluates the performance
of the actor’s actions by estimating the value function. A2C introduces the concept of
advantage, which measures how much better an action is compared with the average action
taken from a given state. The objective of A2C is to maximize the advantage of the actions
chosen by the actor. The critic helps stabilize the training by providing feedback to the actor,
ensuring that the agent learns more efficiently in environments with continuous action
spaces. This separation of roles allows A2C to handle more complex environments and
policies compared with traditional value-based methods. Let πθ(at|st) be the probability
density of taking action at in state st with parameter θ, which is learned by the actor. Also,
let Vθ(st) be the state-value function in state st approximated by parameter θ, which is
learned by the critic. Note that parameter θ is shared between the actor and the critic since
the inputs include only the state. The actor loss function, Jπ(θ), and the critic loss function,
LV(θ), are then defined as follows:

∇θ Jπ(θ) ≜ Êt

[
∇θπθ(at|st)

πθ(at|st)
(rc

t + γVθ(st+1)− Vθ(st))

]
, (11)

LV(θ) = Êt

[
(rc

t + γVθ(st+1)− Vθ(st))
2
]
, (12)

where the expectation Êt[·] indicates the empirical average over a finite batch of samples.
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A2C cannot utilize replay buffer because it is an on-policy algorithm, meaning that
it can only use the most recent experiences generated by the current policy for learning.
This limitation requires alternative methods to ensure the stability of training. One of the
simplest approaches to enhance learning stability in A2C is to use generalized advantage
estimation instead of the standard advantage estimation formula. It smooths out the vari-
ance in the advantage function, leading to more stable and reliable updates. Additionally,
to further stabilize the learning process, the policy update can be clipped within a range
of 1 ± ϵ, preventing excessively large policy changes during training. This clipping mech-
anism ensures that the updates are constrained, reducing the likelihood of destabilizing
the learning process. The algorithm that incorporates these methods into A2C is known
as proximal policy optimization (PPO), which has become widely used for its ability to
maintain stable performance while optimizing policies in continuous action spaces [27].
We confirmed that the clipping mechanism improves training stability in our environment.
Consequently, PPO was selected for its enhanced stability over standard A2C. However,
in cases where clipping offers no added benefit, the lower computational complexity of
standard A2C can make it a more efficient alternative.

Unlike DQN, which is applicable only to discrete RL, both A2C and PPO can be
applied to both discrete RL and continuous RL problems. This flexibility makes them more
versatile in handling a wider range of RL tasks. However, when the problem is limited
to discrete action spaces, DQN is often preferred for its simplicity and efficiency. DQN’s
value-based approach can offer faster convergence and lower computational complexity
compared with policy-gradient methods like A2C or PPO, making it a suitable choice
for problems where speed and simplicity are priorities [28]. For instance, when applying
RL to tiny machine learning (TinyML) environments, DQN is often a better choice than
A2C or PPO. TinyML involves deploying models on resource-constrained devices with
limited computational power and memory. Since DQN is a simpler and more lightweight
algorithm compared with the more computationally intensive A2C or PPO, it is better
suited for such environments. DQN’s lower computational requirements make it more
suitable for TinyML environments, such as real-time applications, compared with the
higher complexity of A2C or PPO. Studies in various fields show that models with lower
complexity, like the approach used in our study, can achieve fast and accurate results. For
example, Ref. [29] demonstrates that traditional optimization techniques can yield results
comparable to neural networks while maintaining faster computation times. Similarly,
Ref. [30] shows how traditional machine learning methods can enhance deep learning
performance when integrated, emphasizing the importance of model simplicity in real-
world applications.

4. Performance Evaluation
4.1. Experimental Setup

In this section, we evaluate the performance of both discrete RL and continuous RL
methods. For the continuous RL approach, we experimented with three different values of
the Lagrangian multiplier, λ: a very small value (λ = 0), a very large value (λ = 1), and the
most appropriate value (λ = 0.1). The value of λ = 0.1 was selected based on empirical
results showing the best performance during testing. We demonstrated the effectiveness
of the proposed methods through energy arbitrage experiments, using real energy price
data from the 2017 U.K. wholesale market [31]. Specifically, we used the first 2000 data
points, sampled every 30 min, and divided the dataset into a training set (1000 data points),
a validation set (500 data points), and a test set (500 data points) in chronological order.
The validation set was used for early stopping during training. To ensure comparability,
the energy price data were normalized between 0 and 1, using the maximum price of USD
190.81/MWh as the reference for normalization. Once the model has been trained, it can
be applied as long as real-time energy price data are available. In cases where the dataset
contains missing values, these can be handled using linear interpolation or more advanced
methods such as autoencoders to reconstruct the missing data [32]. The simulation was
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conducted using a 100 MWh battery, with the SoC at time slot t = 0 initialized to 0.5,
representing 50% of the battery’s capacity. To prevent battery degradation, the SoCmin and
SoCmax values were set to 0.1 and 0.9, respectively. These settings allowed us to evaluate the
performance of the reinforcement learning methods under realistic operational constraints
while balancing long-term battery health and energy arbitrage profits. The constant battery
cell parameters were referenced from [5]. Following the existing ESS energy arbitrage
research, cumulative revenue was selected as the primary evaluation metric to effectively
assess the performance gap between discrete and continuous RL approaches [4,5].

Table 1 summarizes the hyperparameters used in this experiment. Given the large
number of hyperparameters that need to be predetermined for reinforcement learning
models, it is nearly impossible to optimize all of them. Instead, we made small adjustments
based on hyperparameters used in established benchmarks. The parameters for the LSTM
network (number of layers and nodes) were based on those used in [4,5], the discrete rein-
forcement learning parameters were derived from [4], and the continuous RL parameters
referenced the configurations used in [5]. When selecting the hyperparameters, we consid-
ered not only the performance of the models but also the learning speed to ensure efficient
training. All networks were trained using the Adam optimizer [33], which is well-suited
for handling the complexity of deep reinforcement learning. The entire framework was
implemented in PyTorch 2.5 [34], utilizing Google Colab’s GPU resources.

Table 1. Hyperparameters.

Hyperparameters Value

The number of hidden layers in LSTM 2
The size of hidden neurons in LSTM 16

Learning rate 0.001
Discount factor (γ) 0.99

Minibatch size (discrete RL) 32
Size of experience replay buffer D (discrete RL) 50,000

Exploration rate (discrete RL) 0.1
The number of timesteps in episode (continuous RL) 128

Exploration standard deviation (continuous RL) 0.1

4.2. Results

Table 2 compares the average profit per 30 min interval across the four models, as the
dataset was sampled at 30 min intervals. This allowed for a consistent comparison of the
results. The findings show that selecting an appropriate value for the Lagrangian multiplier
(λ = 0.1) in continuous RL maximizes profits, as opposed to using values that are either
too small (λ = 0) or too large (λ = 1). However, regardless of the λ value chosen, discrete
RL outperformed continuous RL in terms of profitability. Although it might be expected
that continuous RL would perform better, given that the charge and discharge amounts
are naturally continuous variables, the experimental results show otherwise. Specifically,
discrete RL demonstrated a 42% improvement over the best-performing continuous RL
model, delivering significantly superior results. This surprising outcome suggests the need
for a deeper analysis of the control strategies employed by the models. Understanding
what led to these differences requires further investigation into how the models make
decisions under various real-time energy price scenarios and how these decisions impact
the SoC over time.

Table 2. Experiment results.

30 min Averaged Profit (USD)

Continuous RL (λ = 0) 5.369
Continuous RL (λ = 1) 14.569

Continuous RL (λ = 0.1) 22.823
Discrete RL 32.392
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Figure 5 illustrates the charge/discharge decisions and the corresponding changes in
SoC based on real-time energy prices. The charging (−) and discharging (+) actions are
represented by the red curve, the SoCs are depicted with the violet curve and filling, and
the electricity prices are shown with the green bars. The black line marks the boundaries for
the minimum and maximum stored energy, set at 0.1 and 0.9, respectively. The minimum
and maximum stored energy limits influence the availability of the ESS, where a wider
range can increase arbitrage profits, though these limits should be set carefully to minimize
battery degradation. In the case of continuous RL with λ = 0, the model quickly discharges
all the initially stored energy and takes no further actions, effectively missing out on
future arbitrage opportunities. In contrast, the other models demonstrate more appropriate
actions, charging when prices are low and discharging when prices are high. For continuous
RL with λ = 1, the agent’s actions are overly conservative, avoiding states where the
SoC approaches its minimum or maximum limits. This results in suboptimal utilization
of the energy storage system (ESS), as the model fails to engage in aggressive energy
arbitrage. Setting λ to 0.1 was found to provide an optimal balance between energy
arbitrage opportunities and SoC boundary constraints. This value allows the model to
occasionally exceed SoC limits slightly, maximizing profit while effectively managing
SoC boundaries through action clipping. The discrete RL model, however, stands out by
primarily maintaining states of either fully charged or fully discharged SoC. This is because
discrete RL restricts the agent’s actions to either reaching the SoC limits or remaining idle.
Paradoxically, this limitation appears to lead to more efficient utilization of the ESS for
energy arbitrage. The optimal λ = 0.1 in continuous RL still struggles with fully leveraging
the ESS due to the constraint imposed by the penalty mechanism, while discrete RL,
unencumbered by such constraints, maximizes its use of the storage capacity. This further
explains why discrete RL achieved superior performance in terms of profit compared with
continuous RL across different configurations.

The cumulative profits of all methods over the entire test set are shown in Figure 6.
In the case of continuous RL with λ = 0, the model initially achieves high profits by
discharging and selling the all stored energy, but it fails to recharge and take further
buying actions. As a result, although the initial profit is relatively high, the model is
unable to generate additional revenue through energy arbitrage over time. In contrast, the
remaining three models continue to generate profits steadily throughout the test period.
When λ = 0.1, the model effectively balances immediate profit opportunities with SoC
constraints, unlike λ = 0, which overly emphasizes short-term gains, or λ = 1, which
limits arbitrage potential by overly restricting charge and discharge actions. Once again,
discrete RL stands out with significantly higher profit generation, and the gap between
discrete RL and the other models widens as time progresses. This suggests that discrete
RL is consistently more effective at exploiting energy arbitrage opportunities. Figure 7
presents the cumulative distribution function of the 30 min revenue for all models. While
the continuous RL methods, due to their finer control capabilities, were able to generate
smaller incremental profits, the largest revenue gains were achieved by the discrete RL
model. This again demonstrates the superior utilization of the ESS by discrete RL, as it
capitalizes on larger arbitrage opportunities. The results suggest that, while continuous RL
may offer more granular control over charge and discharge actions, discrete RL is better
suited for maximizing profits through more aggressive and efficient ESS management.
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(a) Continuous RL (λ = 0).
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(b) Continuous RL (λ = 1).
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(c) Continuous RL (λ = 0.1).
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(d) Discrete RL.

Figure 5. The charging/discharging results for four cases (green bar represents electricity prices; the
red curve with the right axis represents the charging(−)/discharging(+) actions; the violet curve and
filling represent the SoC; and the black line represents the minimum/maximum stored energy).



Energies 2024, 17, 5876 14 of 17

0 100 200 300 400 500
Time Horizon (30 minutes)

0

5

10

15

20

Cu
m

ul
at

iv
e 

Re
ve

nu
e 

[k
$]

Continuous RL ( =0)
Continuous RL ( =1)
Continuous RL ( =0.1)
Discrete RL

Figure 6. Comparison results of cumulative profits.
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Figure 7. CDF of the 30 min profits.

While reaching fully charged or discharged states may not always be ideal, our results
suggest that this approach is generally beneficial. Reflecting these benefits, other studies
using discrete RL have also included fully charged or discharged states within the action
space [4,11–13]. However, concerns may arise about its tendency to perform full charge
and discharge cycles, potentially overusing the ESS and accelerating its degradation. Since
frequent charge/discharge cycles shorten the ESS lifespan, it is essential to examine the
cumulative charge and discharge volumes over the entire dataset. Figure 8 presents these
findings. Contrary to expectations, continuous RL with λ = 0.1 had the highest cumulative
ESS usage, followed by discrete RL, with continuous RL using λ = 1 closely behind.
When λ = 1, the charge/discharge volume was only 18% lower than when λ = 0.1,
yet the profit was reduced by 36%, indicating that the policy with λ = 1 was overly
conservative. The reason discrete RL did not have the highest usage is that it often opted
for idle actions instead of smaller charge or discharge operations. In real-world energy
arbitrage applications, it would be necessary to impose constraints on ESS charge/discharge
volumes to avoid excessive wear. As shown in Figure 8, the lifespan impact of discrete
RL is comparable to that of continuous RL, indicating that the performance advantage of
discrete RL does not come at the cost of increased ESS degradation.
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5. Conclusions

In conclusion, this study has demonstrated that discrete RL outperforms continuous
RL in energy arbitrage with ESS, offering clearer insights into why discrete RL is commonly
preferred in recent research. Continuous RL, while theoretically offering finer control over
charging and discharging actions, faces significant challenges due to the need for action
clipping at the boundaries of the SoC. This clipping often results in actions becoming stuck
at the SoC limits, impairing the learning process and leading to suboptimal performance.
Even with the implementation of constrained RL techniques, which are designed to man-
age such boundaries, the resulting policies tend to be overly conservative, limiting the
full utilization of the ESS. On the other hand, discrete RL, despite its coarser control of
actions, avoids these pitfalls by naturally guiding the ESS towards fully charged or fully
discharged states. This leads to more effective utilization of the storage system and better
overall performance in energy arbitrage tasks. Our simulations confirmed that discrete
RL consistently achieves higher profits while maintaining manageable levels of ESS usage,
highlighting its practicality and effectiveness.

With current techniques, discrete RL has proven to be simpler and more effective than
continuous RL for the energy arbitrage problem. However, this does not imply that discrete
RL should remain the default choice for energy arbitrage in the future. Rather than simply
substituting discrete RL with continuous RL, future research should focus on developing
methods that address the limitations of continuous RL. The goal should be to create RL
techniques that retain the strengths of discrete RL while incorporating the fine-grained
control capabilities of continuous RL. In future studies, the development of such hybrid
approaches could lead to even greater performance improvements, combining the best of
both methods to enhance the efficiency and effectiveness of energy arbitrage. Additionally,
we expect that this approach could be scaled to more complex systems, such as those with
multiple ESS units or hybrid configurations incorporating hydrogen or thermal storage,
making this a promising area for future research. Furthermore, we suggest exploring the
adaptability of RL to more complex and unpredictable systems, such as energy price spikes
or rapid changes in renewable output, as a promising direction for future research. With
well-designed neural network architectures, such as transformers, RL has the potential to
effectively manage even more unpredictable and complex scenarios.
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