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Deep reinforcement learning extracts the
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treatment records
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Abstract

Background Sepsis is one of themost life-threateningmedical conditions. Therefore, many
clinical trials have been conducted to identify optimal treatment strategies for sepsis.
However, finding reliable strategies remains challenging due to limited-scale clinical tests.
Here we tried to extract the optimal sepsis treatment policy from accumulated treatment
records.
Methods In this study, with our modified deep reinforcement learning algorithm, we stably
generated a patient treatment artificial intelligence model. As training data, 16,744 distinct
admissions in tertiary hospitals were used and tested with separate datasets. Model
performance was tested by t test and visualization of estimated survival rates. We also
analyze model behavior using the confusion matrix, important feature extraction by a
random forest decision tree, and treatment behavior comparison to understand how our
treatment model achieves high performance.
Results Here we show that our treatment model’s policy achieves a significantly higher
estimated survival rate (up to 10.03%). We also show that our models’ vasopressor
treatment was quite different from that of physicians. Here, we identify that blood urea
nitrogen, age, sequential organ failure assessment score, and shock index are the most
different factors in dealing with sepsis patients between our model and physicians.
ConclusionsOur results demonstrate that the patient treatmentmodel can extract potential
optimal sepsis treatment policy.We also extract core information about sepsis treatment by
analyzing its policy. These results may not apply directly in clinical settings because they
were only tested on a database. However, they are expected to serve as important
guidelines for further research.

Sepsis, one of the most life-threatening medical conditions induced by
infection, is a leading cause of death that makes it difficult to decide the
optimal treatment strategy1–3. Even though there were improvements in the
treatment of sepsis, the mortality rate for sepsis still remains relatively high
at 30%4. Furthermore, it could sharply worsen the mortality rate due to
multiple organ failures if proper treatment is not provided5,6.

Although numerous clinical tests have been conducted to determine
the optimal sepsis treatment, deciding the optimal strategies for septic

patients is still difficult7–10. For instance, the “sepsis campaign” has
updated evidence-based sepsis treatment guidelines over 20 years and is
still changing due to new evidence10,11. Because if different medical trial
results have been reported for a similar treatment strategy due to the
different patient group conditions, their findings tend to be less
reliable10,12–14. In this case, large-scale experiments with varied cohorts are
required to ensure the reliability of the evidence. However, applying
unstable treatments to large-scale patient groups is unethical because
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Plain language summary

Sepsis is one of the most life-threatening
medical conditions. It can be challenging to
select the best treatment strategy for indivi-
dual patients.Wedeveloped a computational
model to identify optimal treatment strategies
and applied it to a large amount of data
obtained from patients with sepsis. We iden-
tified particular types of information about the
patients that can be used to decide on the
best medication and dose to treat sepsis.
Further development of our treatment model
could potentially enable it to be used to
improve the survival of patients with sepsis.
Also, the resultsweobtainedcouldbeused to
improve the general guidance followed when
treating people with sepsis.
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clinical trials must be conducted safely only for an inevitably small group
of patients15.

The reinforcement learning (RL) algorithm extracts optimal treatment
strategies from large-scale accumulated patient treatment records16. RL
optimizes the sequence of actions by choosing the most valuable action to
maximize the outcome, similar to how doctors optimize treatment to
maximize patients’ condition17,18. Recent studies have presented promising
results showing that RL can optimize intravenous fluid (IV), vasopressor,
and ventilation treatments for septic patients3,19. Furthermore, with deepRL
(DRL) with deep representations, some studies have attempted to generate
treatment regimens by referring to individual patient states without
clustering20,21.

However, the current RL-based treatment models are limited in
determining optimal sepsis treatment because of their unstable results. For
example, there are safety concerns regarding providing the same treatment
to all patients in a clustered patient group. The clustering method depends
on the start parameters and sometimes generates different results22. In
addition, the clusters are easily influenced by outlier data23, which is com-
mon inmedical datasets. Similarly, DRLmethods also have safety concerns.
Due to the limited number of patient records (offline RL problem), DRL
methods are often unable to predict the precise treatment24,25. Assigning
incorrect values to the treatment is associatedwith suboptimalAI training26,
which can compromise patient safety. This problemmay be more severe in
the medical field because there is always uncertainty in the treatment pro-
cess. Therefore, to avoid imprecise valuation, several studies have tried to
train the treatmentmodel by combiningDRLwith human knowledge, such
as incorporating reward strategy or physicians’ actions27,28. However, as our
human understanding of sepsis is imperfect, these approaches may lead to
suboptimal model training.

Considering the medical situation, we present a sepsis treatment AI
algorithm that can train DRL to predict treatment values precisely using
only treatment records to address this research gap. Our algorithm focuses
on creating AI-driven treatments personalized for each patient instead of
applying a uniform treatment to a group of patients. Note that our AI
algorithm also considers the following characteristics of sepsis treatment:
First, physicians may provide modified treatment (from the sepsis guide-
lines) by referring to the individual patient states to give them the best result.
Therefore, we used deep representation-based treatment to individually
manage all patients’ health states (no clustering). Second, uncertainties are
pervasive throughout the treatment stages. Therefore, we applied the
highlight-RL algorithm, which highly refers to the treatment results rather
than the middle of the treatment. Third, physicians should precisely judge
treatment expectations without overestimation or underestimation.
Therefore, we applied an over/underestimation-avoiding algorithm that
automatically changes the parameter of highlight-RL. Finally, our under-
standing of sepsis is not yet perfect. Therefore, we trained the AI model to
obtain an unbiased treatment model without additional medical informa-
tion; instead, we only used previously collected treatment data. Using this
algorithm, we demonstrate the potential of the DRL-based sepsis treatment
model, which can extract an optimal treatment regime from accumulated
treatment data.

The treatment strategies recommended by AI using a pre-collected
patient test dataset (MIMIC-III) producea 10.03%higher estimated survival
rate. In addition, when we apply the same model to a different dataset
(eICU), the estimated survival rate of patients increases by 9.81%. The
model’s suggested dose is associatedwith the highest estimated survival rate,
indicating its optimality. Notably, this estimated survival rate is calculated
using a pre-collected real dataset to make it more reliable compared with
value-based survival rate estimation3,21. We also provide detailed analysis
results and discussions to provide a proper understanding of the AI-
treatment model’s behavior. Through our analysis, we extract optimal
treatment strategies and treatment-highly-related variables. Moreover, we
reveal some interesting evidence on how the AI model improves treatment
performance.Our results reveal that vasopressor dosing strategies should be
revisited. Several variables such as age, BUN, SOFA score, and Shock index

will influence the recommendedmedication dosages administered to sepsis
patients. Even though this study is not a clinical test, it is worthwhile as it
provides results from comparing a large dataset and extraction of treatment
strategies from previously conducted treatments. Therefore, our data could
be used as a reference for future studies. In addition, ourmethodology could
be applied to other medical conditions requiring continuous care because
ourmethodfinds the optimal treatment regime by optimizing the treatment
sequence16,29.

Methods
Dataset
We used the Medical Information Mart for Intensive Care database
(MIMIC-III)30 and the eICUCollaborative ResearchDatabase v2.031, which
contain treatment data of 61,293 and 200,859 patients, respectively. The
MIMIC-III data is not publicly available, but access can be requested as
detailed at https://physionet.org/content/mimiciii/1.4/. The eICU data is
also not publicly available, but access can be requested as detailed at https://
physionet.org/content/eicu-crd/2.0/. Each dataset was collected from an
intensive care unit (ICU); therefore, the datasets are very similar and have
over 60 patient variables like vital signs, demographic information, health
scores, and prescription information. We extracted the patients’ sepsis data
from the whole data by following Singer et al.’s international sepsis
definition1. Altogether, the data of 20,927 and 14,875 patients were obtained
from the MIMIC-III and eICU datasets, respectively. The MIMIC-III
dataset contains more patients with sepsis and includes survival data for
90 days after discharge30. This variable is useful when considering death
from sepsis after discharge (long-term aspect training). Therefore, 80% of
MIMIC-III data (n = 16,744) was used for training, and 20% of MIMIC-III
data (n = 4183) was used for testing. The eICU dataset contains multiple
ICU patient treatment records (208 hospitals), suitable for cross-institution
testing (n = 14,875).

Statistics and reproducibility
To train the patient treatment model, we preprocessed the defined sepsis
patients’ data to make it suitable for model training. The followings are
structured processes:

Initial datapreparation. Because sepsis treatment is highly affected at the
initial state of sepsis, the first 80 h of data were used for the strategy
training sequence. To ensure that each data contains reasonable updates
on patients’ states, we separated the collected data by 4 h.

Data imputation. Due to various reasons such as long measurement
intervals, human omission, or unmeasurable data, medical data often
contains missing data. In this study, data imputation was conducted to
facilitate smooth training of the treatment model. Data imputation was
conducted following these steps, in the listed order: First, we filled in
missing values with the sample and hold method. Here, if a patient has
missing data at a certain state, but if there aremeasured values before that
state, those values are used to fill in the missing data. Only when no
previous data are available do we substitute missing values with future
data by assuming that the previous state has beenmaintained. Second, we
filled themissing valueswith calculated values fromothermeasurements.
If some data is still missing but can be calculated using the measured
values of other variables (such as SOFA score), then the missing value is
filled in through calculation.

We employed a data-driven approach to address missing values not
handled by the imputation steps. In the case of the MIMIC-III dataset, we
used the k-nearest neighbor imputation method, as described by ref. 32.
However, owing to the extensive amount of missing data, including whole
columns, within the eICU dataset collected from multiple institutions,
applying the k-nearest neighbor method presented challenges. Under these
circumstances, we chose median imputation as the most conservative
approach. While potentially overly cautious, this method ensures the
replacement of missing values with the general median, mitigating the risk
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of inaccurate predictions based on incomplete data. This decision is sup-
ported by previous research, which suggests that median imputation per-
forms comparably to more complex methods in specific applications, such
as cardiovascular prediction models or metabolomics data33,34.

Finally, 47 variables reflective of a patient’s health status were selected.
All variables used are listed in Supplementary Table 1. We referred to a
previous study’s open-source code at this stage3.

Outlier removal. After all data were set, we removed outlier data. To
utilize data from as many people as possible, medically nonsensical and
only clear outliers were removed. Detailed criteria for outliers are pro-
vided in Supplementary Table 2.

Normalize. The data were normalized over three stages: z-score nor-
malization, data clipping, and min-max normalization. First, to align the
ranges of measurements by column, we converted each column’s mea-
surements to z-scores through z-score normalization. However, the
normalized z-score includes extreme data; therefore, DRL training might
be poor if the data distribution is not uniform. Therefore, we clipped data
with a z-score exceeding the range [−3.3,3.3] (over 99.94% chance of
abnormal data. We then conducted min-max normalization (0 ~ 1)
for efficient DRL training. Both MIMIC-III and eICU were normalized
in the same manner. However, when performing z-scoring on the
eICU data, the mean and variance of the MIMIC-III data were used to
ensure that the z-scoring was performed on the same basis as the
MIMIC-III.

Treatment model implementation
We implemented the treatment model using preprocessed data. The
detailed sequence of this implementation is shown in Fig. 1. After pre-
processing, we define a state s, an action a, a next state s0, and a reward r.
These variables are used for DRL training to decide optimal action (a) by
referring to the current state (s) for reaching a more valuable next state (s0)
and getting rewards (r). Each variable was defined as follows.

State (s) indicates the current patient condition. Demographic infor-
mation, electronic health records, and culture data, and other information
are necessary to determine treatment. Action (a) indicates the physician’s
treatment record.The IVandvasopressor injection levels overfive stages (25
discreteactions in total, SupplementaryTable 3).Next State (s0) indicates the
patient’s condition after 4 h.When a physician treats a patient in state s, the
changes are recorded 4 h later. Reward (r) indicates the reward for action a
when the patient’s condition changes from s to s’. Following the approach
adopted in DRL models addressing other complex problems like Go and
video games, we incorporated a straightforward and intuitive reward
function toprevent themodel fromconvergingon suboptimal solutions35–37.
The reward when the patient survived for 90 days was+1, and the reward
when the patient died, it was −1; the reward for all actions during
treatment was 0.

We trained the DRL model using the above variables with 80% of
MIMIC-III data. The DRL model estimates 25 possible action values
(output) from 47 patient states (input). In the training, the DRL model
updates its action value estimator to reduce the error between the expected
action value (Q) and the estimated action value of physicians’ actions. The
expected action value can be calculated by adding the actual reward of
physicians’ actions and thediscounted (γ) estimatedbest action value for the
next state from another estimator (Qtarget). Qtarget acts like a teacher for the
training DRL model, and it is updated by the training DRL model in a
specific period (in our case, 1 iteration). This loss systemcan be expressed as
follows:

Loss ¼ MSEðQðtÞ; r þ γ×Qtargetðt þ 1ÞÞ ð1Þ

The training lasted until it converged, and in our case, it was 200
iterations of the whole dataset training. To confirm the robustness of the
DRLmodel training process, we conducted 500 training sessions repeatedly.
We then tested each model using the remaining 20% of theMIMIC-III test
data. We calculated each model’s estimated patient survival rate at the test
stage based onAI suggestions. The estimated survival rate was calculated by

Fig. 1 | Treatment model training and testing sequences. The overall process of training, testing, and analyzing the treatment model. Sepsis patients are extracted from the
MIMIC and eICU datasets, which are then used to train, select, test, and analyze the reinforcement learning-based treatment model.
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averaging the survival rates of patients who are prescribed the same dose of
medication as suggested by AI from the total test dataset. Note that this
estimated survival rate is derived from a data-driven approach, which does
not accurately represent the survival rate verified through a human-in-the-
loop approach. Therefore, it does not reflect the “true” survival rate that
might be observed if our treatment model were implemented in a clinical
trial. However, consistent with previous studies, this estimated survival rate
serves as a valuable indicator for indirectly assessing the potential perfor-
mance of artificial intelligence treatmentmodels in patient care3,19,21. Finally,
the best model with the highest estimated survival rate among the 500
candidates was tested with another hospital dataset (eICU). Here, we
examined whether it could maintain its optimal treatment performance
despite using data from different institutions’. Furthermore, we analyzed
(with statistics and literature) the training stages and results to understand
AI behavior. In addition, with in-depth discussion, we investigated how the
AI model works effectively and which variables are highly related to
decision-making when treating patients with sepsis.

Algorithm
In this study, we adopted the Double-Dueling-Deep-Q-Network
(DDDQN) proposed by ref. 38 as the base training model owing to its
exceptional suitability for the patient care model. DDDQN is an advanced
version of the Deep-Q-Network introduced by ref. 39. Its incorporation of
dueling and double structures distinguishes it, making RL training more
similar to real clinical scenarios (Detailed explanations of DDDQN
described in Supplementary Note 1). The dueling structure enables the
simultaneous estimation of state values and action advantages, a departure
from traditional RL algorithms that primarily focus on action values. This
capability allows DDDQN to evaluate the patient’s current health state and
the potential impact of various treatment actions.

Moreover, DDDQN addresses the common issue of action over-
estimation encountered in standardQ-learning techniques. Typically, when
a single network uses the q-value to select the best action and subsequently
updates the q-value based on it, there is a risk of reinforcing a specific
behavior, potentially leading to overestimating its value.Tomitigate this, the
double structure of DDDQN employs one network to select the best action
and another to update the q-value, as outlined by ref. 26. This separation is
critical for ensuring a fair assessment of treatment options without over-
valuing any particular action.

However, DDDQN is mainly used in online RL. However, in the
healthcare domain, it differs from the existing online RL in that the agent
must be trained from the collected data sets (offline RL). Therefore, we
added two additional algorithms to make DDDQNwork well in offline RL
training.

First, we applied the Highlight DDDQN. Highlight DDDQN, add a
variable termed “Highlight coefficient (h)” and apply it to the DDDQN loss
function. Q and Qtarget are both estimated values and each estimator is
updated during the training process. However, because uncertainties are
always present in the treatment stages, estimators can be trained in
unwanted directions. To prevent this unwanted direction training, we
intentionally suppressed estimator updates to make it slowly improve. At
the same time, it strongly updates as much as h when the actual reward
income. Therefore, the reward propagates more effectively from the final
stage of treatment to the uncertain treatment stages. In conclusion, our
estimator learns from reliable data quickly, while it learns from less reliable
data slowly in the middle of treatment when the reward is 0 (Detailed
experiment results of highlight coefficient described in Supplementary
Fig. 1). This can be expressed as follows:

Loss ¼ MSE
1
h
QðtÞ; r þ γ

h
×Qtargetðt þ 1Þ

� �
ð2Þ

Second, we applied an over/under estimation monitoring algorithm.
Highlight coefficients can suppress unstable updates by as much as h to
make them never greater than the expected maximum reward (hr). If Qh is
getting out of the final reward r range (+ 1 ~− 1) in some cases, which is a
clear overestimation signal, we immediately stop training and update h as a
greater value. Then, we start training again with updated h. Greater h
suppresses unstable network updates harder, so overestimation disappears
because h getting bigger. In our case, we set h as 100.

Ethics
MIMIC-III data collection and release were approved by the institutional
review boards of Beth Israel Deaconess Medical Center (Boston, MA) and
theMassachusetts Institute of Technology (Cambridge,MA) [Johnson et al
(2016)]. For the eICU data, institutional review board approval was
exempteddue to the retrospective design, lack of direct patient intervention,
and the security schema, for which the re-identification risk was certified as

Fig. 2 | Patients’ estimated survival rates from AI
andwhole dataset treatment records.AI test results
at each MIMIC-III and eICU dataset and overall
survival rate of MIMIC-III and eICU data records.
Error bars indicate outlier bounds of each model
testing. 500 samples of the treatment model have
been compared with the total MIMIC dataset
patients' survival rate and 2000 samples of treatment
model results have been compared with the total
eICU sepsis patients' survival rate.
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meeting safe harbor standards by an independent privacy expert (Privacert,
Cambridge, MA) (Health Insurance Portability and Accountability Act
Certification no. 1031219-2) [Pollard et al (2018b)]. In both projects, the
requirement for individual patient consent was waived because the projects
did not impact clinical care, and all protected health information was uni-
dentified [Johnson et al. (2016); Pollard et al. (2018a)]. All authors of the
present study completed registration at PhysioNet (data provider; https://
physionet.org), including completion of the ‘research with human subjects’
course, and signed a data use agreement mandating responsible use of the
data. This study has been waived from IRB approval by the Ethical Com-
mittee of the Gwangju Institute of Science and Technology with the fol-
lowing statements. No issues related to safety, protection of personal
information, or compliance with bioethics were identified, and it was
determined that the exemption from review was possible because the aca-
demic and ethical legitimacy was sufficient.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Model performance
We used a pre-collected clinical dataset (MIMIC-III) containing various
prescribeddoses and their results to evaluate theAImodel results.When the
model generatedprescription suggestions,we collecteddata onpatientswho
received the same drug dosage from the physicians in the dataset. We
classified the collected patient dataset as the AI-treatment group and cal-
culated their estimated survival rate. To confirm the robustness of themodel
performance, we conducted 500 individual model training with 80%
MIMIC-III data and tested themwith 20%unseenMIMIC-III data. The test
result illustrated in the MIMIC test is shown in Fig. 2. The AI-MIMIC test
denotes a box plot of the MIMIC-III data test result of the 500 trained
models. Themedian estimatedsurvival ratewas 84.35%,whereas thehighest
and lowest estimated survival rates were 86.48% and 82.03%, respectively,
with an average of 84.32 ± 0.59%. The average estimated survival rate of
patients with sepsis in the MIMIC-III dataset was 76.45%. The t-tests
revealed statistically significant differences (P value < 0.001, t = 296.251,
SupplementaryNote 2). Here, we observed that patients who took the same
amount ofmedication as theAI recommendation survived by up to 10.03%.
Ofnote, every 500-test result improved the current treatment regime’s result
in the MIMIC-III dataset, ensuring the safety of the AI-treatment model.

Additionally, cross-institution tests were conducted using the eICU
dataset. For these tests, we selected the best model that performed in the
MIMIC test.Using thismodel, we executed 2000 evaluations using the same
survival rate estimation process as the MIMIC test. At each test, 50% of the
randomly resampled patient data in the eICU dataset was used for eva-
luation. The cross-institution test results of the eICU test are illustrated in
Fig. 2. The median estimated survival rate was 87.18%, whereas the highest
and lowest estimated survival rates were 89.98% and 84.25%, respectively,
with an average value of 87.18 ± 0.75%. The average estimated survival rate
of the patients with sepsis included in the eICU dataset was 80.17%. The
t-tests revealed statistically significant differences (P value < 0.001,
t = 416.257, Supplementary Note 2) even when using other hospital
datasets. Also we confirmed that these increased survival rates were also
observed for underrepresented races in the data. Detailed treatment results
in underrepresented groups can be found in Supplementary Table 4.

Furthermore,we conducted anoptimality checkon the eICUdataset to
determine whether the AI-treatment model could provide an optimal
treatment regime for cross-institution patients. In this test, we investigated
patients’ estimated survival rates using the difference between the actual
prescribed doses and theAI-suggested prescribed dose.We conducted 2000
evaluations with 50% resampled data and then averaged it. Since there are
not enough patient samples to continuously investigate different survival
rates associated with the dosages, we grouped patients on similar mean
dosages (split with discrete value; IV range: 100ml/4 hour, vasopressor
range: 0.1mcg/kg/min). We then calculated each patient group’s survival
rate. Interestingly, the highest estimated survival rate was noted in patients
prescribed the same dose as the AI model’s suggestion in both IV (85.68%)
and vasopressor (88.70%) treatment scenarios (Fig. 3). In both cases, the
estimated survival rate decreased when the difference between the AI-
treatment model’s suggested dose and actually prescribed dose increases.
These results are not biased on the small-sizedpatient groups, as each group
comprised sufficient patients except IVover 400ml/4 hours and vasopressor
over 0.5mcg/kg/min. Detailed patient distribution can be found in Sup-
plementary Fig. 2.

Model analysis
To confirmwhether theAImodel learns the treatment strategy properly, we
visualized theAImodel’s treatment valuation.We investigated all estimated
treatment values for all patients and every sequence of their treatments.
Figure 4 shows howAI improves treatment valuation during training. Each
dot represents the estimated treatment value (q value in theDRL aspect) for
every treatment on patients. The blue dots denote the surviving patient
samples, and the red dots denote the dead patient samples.We assume that
the treatments for surviving patients are more valuable than those for dead

Fig. 3 | Estimated changes to survival rates at different doses. In each figure panel,
the red line shows the AI model’s recommended IV (a) and vasopressor (b) doses.
The red line’s left side indicates when the prescribed dose was lower than the AI
model’s recommended dose. The right side of the red line denotes when the pre-
scribed dose was greater than that suggested by the AImodel. The blue line indicates
the average survival rate value from the total experiment results. The blue shade
indicates the standard deviation of 2000 resampling experiment results. A total of
14875 patient treatment records have been used for testing.
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patients. According to this assumption, well-trained AI models should
clearly separate the blue and reddots to specify the valuable andnonvaluable
individual treatment values. Therefore, we set the ‘not separable area’ as the
area where the values are lower than the top 10% of the dead patient
treatment value and higher than the bottom 10% of the survived patient
treatment value. In this area, the treatment values of the surviving and
deceased patients are strongly mixed.

In contrast, outside this area, there is more separated data (surviving
or dead patients). As a result, different from the initial step of the
training, each dot color is separated more clearly when the training is
completed. At the initial stage, 70.58% of the data were found in the ‘not
separable area,’ which means that the AI model could specify only
29.42% of the clear valuable/nonvaluable individual treatments. How-
ever, at the end of the AI model training, only 57.63% of the data were
found in the green area. Notably, the AI model could separate 12.95% of
the more valuable/nonvaluable data.

We used a heatmap graph to investigate how AI changed treatment
behavior to improve patient treatment outcomes. Figure 5 shows the results
of the individual treatment analysis for each IV and vasopressor dose. The
AI’s treatment agreed to some extent with the physicians’ prescription
regarding IV dosage (36% of individual treatments agreed); a little more or
less fluid was administered (34% has 1 level of difference). The activated
diagonal line indicates a high level of agreement between the AI model and
the physician’s response to the same patient condition in individual treat-
ment decisions. In contrast, regarding the vasopressor dosage, the AImodel
showed a high agreement (67% of data) when physicians decided on
minimumprescriptions. At the same time, they are less likely to agree on the
other levels of prescriptions (20.5% agree, 39.5% 1 level difference on
average). Notably, when the physician prescribed level 1 or 2 vasopressors,
the agreements were lower than those for other levels of treatments.

Conversely, the AI model suggested a high-dose vasopressor to be
prescribed to many patients who have been prescribed level 0 vasopressors
by a physician. Even though their agreement rates were low (6% ~ 14%),
considering the total number of treatments (217,093 cases), many cases
exist. The AI-treatment model prescribes a level 0 vasopressor dose in only
59.87% of the treatment cases. This means that the AI-treatment model
more actively prescribes vasopressors, compared with treatment cases in
MIMIC-III (84.42% of prescriptions were level 0 in theMIMIC-III dataset).

Figure 6 shows the variables that affect the AI model’s decision-
making. A decision tree classifier has been used to calculate the importance
of each feature of patients’ states. Interestingly, although age and blood urea
nitrogen (BUN, the indicator for renal function) levels are less referred to in
clinical practice (compared toother vital signs), theAImodel highly refers to
these values.

We investigate which important variables, as shown in Fig. 6, have
different tendencies than the physician’s. Figure 7 shows several examples of
variables with different tendencies. We investigated the average dosage of
each medication (IV, vasopressor) according to the value of each variable.
Age andBUN levels donotmeaningful affect the average dosage in IV cases.
However,AImore actively suggested vasopressor dosing according to age or
BUN level increase in the vasopressor case. On the other hand, physicians
tend to refer more highly to the SOFA or shock index scores than the AI
model. As these two values increase, physicians quickly increase the vaso-
pressor and IV dosage compared with AI.

Discussion
We created an optimal AI sepsis treatment model by extracting optimal
treatment regimens for IV and vasopressor dosages from the accumulated
treatmentdata.Our study is important because large treatment recordswere
used to obtain optimal treatment strategies; thus, a more reliable treatment
regime was extracted.

Remarkably, our analysis revealed that the estimated survival rate for
patients who received the same dosage as recommended by theAI exceeded
the overall survival rate by up to 10.03% and 9.81% in the MIMIC-III and
eICU test data, respectively (Fig. 2). This result indicates that the AI-
treatment model could support physicians’ decision making through high-
quality patient analysis and dosing suggestions. Furthermore, the AI-
treatment model shows their prescription optimality in the other hospital
dataset (Fig. 3). This is also a remarkable result because the AI-treatment
model could maintain its suggestion quality, irrespective of the institution.
In other words, these results indicate that our AI model could be used in
several institutions even if their data were not included in the training
dataset. Note that these results are reliable because all estimated survival
rates are calculated based on actual patient survival rates.

Moreover, our AI treatment model could provide individualized
treatment. As shown in Fig. 4, our model was trained to evaluate every

Fig. 4 | Individual treatment value visualization when model trained. Visualized
dot-graph of individual treatment value by AI estimation, with the last treatment (1)
to the first treatment (19). As there was so much data in each discrete sequence, we
uniformly spread the data in each sequence (1~19) in a range sequence±0.5 to clearly
see all data. a treatment value visualization when the treatment model is trained in
one cycle. b treatment value visualizationwhen the treatmentmodel is trained in 200

cycles. Blue points denote the surviving patients' treatment records, and red points
denote the dead patient’s treatment records. The green area is the not separable
(valuable or not valuable treatment) area where the individual estimated treatment
values of survival/dead patients data are stronglymixed. A total of 204,800 individual
treatment records have been used to compare; those data contain 153,785 survival
patients' treatment records and 51,015 dead patients' treatment records.
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treatment value individually by referring to each patient’s state. Therefore,
without using any additional machine learning technique, such as cluster-
ing, it could evaluate every possible treatment for individual patients.
Therefore, the AI-treatment model could immediately provide the most
effective dosage by being placed at the patient’s side while continuously
referring to the patient’s health status to increase patients survival rate40.
This result is remarkable because one of the essential things to managing
sepsis is continuous monitoring and providing immediate response to
changes in the patient’s status10. A previous study also showed that the AI
model could provide more immediate and frequent dosing changes to
reduce physicians’ heavy workload and decrease patient mortality19.

The AI-treatment model’s notable results could be explained by AI’s
changed policy, as illustrated in Fig. 5. Figure IV shows a strong relationship
between the AImodel and physicians’ prescriptions. Approximately 70% of

the AI model’s IV prescription doses matched or were within one level
higher or lower than the doses prescribed by physicians. This suggests that
the physician and AI model may have a high level of agreement in their
individual treatment responses to the same patient condition. Furthermore,
in the feature importance test, the AI model considered input/output,
cumulated balance, and diaBP as important features for IV dose decision-
making (Fig. 6). This is also interesting because even though we did not
provide any medical information, the AI-treatment model extracted the
core criteria from the patient’s treatment records.

However, there was a notable difference in the vasopressor treatment
dose betweenAI andphysicians’ actions.Whenphysicians prescribe highor
lowdoses of vasopressors, theAI-treatmentmodel tends to agreewith them.
However, when they prescribe medium doses of a drug, the AI-treatment
model recommends high or low doses, not medium doses. This finding is

Fig. 5 | AI and physician treatment tendency comparison. AI-treatment
Model Action (horizontal) Agreement Rate (sum = 1 for horizontal) per Physician
Treatment Action (vertical). Each heatmap square color and number indicate the
action agreement rate. A darker color denotes a high agreement rate. The num

treatment denotes the number of all treatments that received level X (0 ~ 4)
from the physicians. a shows action comparison between AI and physicians in IV
dosage. b shows action comparison between AI and physicians in vasopressor
dosage.

Fig. 6 | Important feature pie chart. This chart indicates the importance of features
whenAImakes decisions. a shows important features whenAI decides on IV dosage.
b shows important features when AI decides on vasopressor dosage. Each impor-
tance has been extracted using a decision tree when classifying the AI model’s
suggested actions by features. Each abbreviation means as following: previous IV
dose(previous_dose); previous urine output(output_4hourly); total uri-
ne(output_total); total IV input dose(input_total); blood urea nitrogen(BUN); heart
rate(HR); body temperature(temp_c); diastolic blood pressure(diaBP); mean blood

pressure(meanBP); respiratory rate(RR); white blood cell count(WBC_count);
systolic blood pressure(sysBP); partial thromboplastic time test(PTT); oxygen
saturation(SpO2); PaO2/FiO2 rate(pao2_fio2); hemoglobin(Hb); oxygen pressure
in arterial(paO2); carbon dioxide pressure in arterial(paCO2); prothrombin time
test(PT); serum glutamic oxaloacetic transaminase(SGOT); previous vasopressor
dose(pre_dose_vaso); Sequential Organ Failure Assessment Score(SOFA);
mechanical ventilation flag(mechvent); bicarbonate(HCO3).
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supported by a recent animal study reporting that vasopressors may sup-
press immune responses41. Therefore, we considered that the AI-treatment
model tried to avoid amoderate and lasting range of dosages tomaintain the
functioning of the human immune system. The AI-treatment model
recommended short-term, intensive prescriptions when a vasopressor is
needed. This interpretation aligns with a previous study reporting that
norepinephrine may aggravate sepsis-induced immunoparalysis42.
Although it is not strictly proven in a clinical test, this result found an

interesting possible guideline to further study vasopressor dosages. Note
that the AI model’s vasopressor strategies show higher estimated patient
survival rates (Fig. 3).

It is also interesting to note that the AI-treatment model considers
BUN and age as the most important criteria (Fig. 6). When the patients’
BUN and age increase, the AI model increases the vasopressor dose even
when the physician does not increase the dose. Since BUN is strongly
related to renal function, this result is reasonable because the kidney is

Fig. 7 | AI and physician treatment tendency comparison on specific features.
The horizontal line denotes the column values, whereas the Vertical line denotes
the averaged AI model’s prescription level (0 ~ 4;5 levels). Age, BUN, SOFA score,

and Shock index were selected to compare. Each abbreviation means the
following: blood urea nitrogen(BUN) and sequential Organ Failure Assessment
Score (SOFA).
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the second most frequently failing organ (15%) in patients with sepsis6.
Additionally, recent research reveals that a high BUN level is related to
30-day mortality in patients with sepsis43. Since proper vasopressor
treatment also affects renal function, proper vasopressor prescription
may have beneficial effects on obtaining renal function recovery44. Several
articles reported that treatment for sepsis should be applied according to
patients’ age45,46. More specifically, older patients more frequently
develop acute renal failure than younger people47. Thus, some studies
have reported that a high mean arterial pressure (MAP) goal would be
useful in improving renal function48,49.

Moreover, other researchers argue that a higher MAP goal is poten-
tially beneficial in older patients because of their other comorbidities50,
which is consistent with our study findings. Although sepsis treatment
protocols remain consistent, clinical practice advises a more cautious
approach to IV fluid administration in elderly patients with elevated BUN,
owing to the increased risk of pulmonary edema resulting from volume
overload.Theuse of ventilators owing to pulmonary edema in these patients
may exacerbate the risk of increased morbidity and mortality, requiring a
conservative approach to IV fluid management. Similarly, vasopressors,
while crucial for managing hypotension, need to be administered with
caution to mitigate potential cardiovascular complications and avoid trig-
gering arrhythmias. However, our AI model seems to judge that these
patients are in more dangerous conditions and recommend a more
aggressive management strategy involving IV fluids and vasopressors for
these patient groups (Fig. 7).

Interestingly, AI demonstratesmore sensitivity to severity scores, such
as the SOFA score and shock index, compared to physicians. Instead, AI
tends to initiate IV fluid and vasopressor administration before serious
increases in SOFA and shock index scores, and less so thereafter. In clinical
practice, SOFA score and shock index, which require manual calculation,
are essential tools for assessing disease severity and monitoring patient
progress, as indicatedby refs. 51–53.However, integrating thesemetrics into
real-time treatment decisions poses challenges. Interventions such as IV
fluids and vasopressors are typically initiated in response to hypotension,
often solely based on blood pressure readings. Yet, as depicted in Fig. 7,
initiating treatment based on the SOFA score from the outset, rather than
reacting solely to changes in blood pressure, appears to reduce the required
doses of IV fluids and vasopressors in patients with elevated SOFA scores.
Furthermore, in cases of an elevated shock index, a more aggressive vaso-
pressor regimen may be warranted. Conversely, considering previous
clinical studies indicating that intensive vasopressor treatment in patients
with multiple organ failure may reduce survival rates, reducing vasopressor
dosing in patients with elevated SOFA scores may be imperative, as high-
lighted by ref. 54.

However, our study has several limitations. First, this research version
primarily focused on expanding patient states to facilitate individualized
treatment in limited aspects, specifically dosage decisions. Consequently,
our model requires further expansion of actions, encompassing con-
siderations such as medication type, concentration, injection speed, or
continuous dosage adjustments. Because our model does not consider the
side effects on patients, taking these into account is also a part that physi-
cians must handle. In addition, because our study is a data-driven research,
our model is not yet ready for direct clinical use. Clinical work is far more
complex and diverse, and always unexpected situations exist. Sincemedical
decision-making is closely related topatient survival, to apply research in the
current phase of data-driven approaches to real-world situations, additional
in-depth research will be necessary regarding the conclusions drawn from
this study.

Although there are several limitations, this study is still meaningful.
It provides insight into the sepsis treatment strategy by analyzing the AI-
treatment model’s treatment regime. We believe it could be a relatively
safe reference for future clinical trials because all these findings extracted
large-sized treatment records. It is more remarkable that our metho-
dology could be applied to other conditions that require continuous
treatment. In this study, we only enrolled patients with sepsis. However,

because DRL is a sequence-optimizing algorithm, our methodology
could be applied to other conditions, such as diabetes and cancer, all of
which necessitate continuous care records16,29. These findings could be
extracted by accumulating treatment records without other medical
information input (using naturally generated patients’ treatment data).
Therefore, we can extract the potential optimal treatment using only data
without excessive human effort.

Data availability
The MIMIC-III data is not publicly available, but access can be requested
as detailed at https://physionet.org/content/mimiciii/1.4/. The eICU data
is also not publicly available, but access can be requested as detailed at
https://physionet.org/content/eicu-crd/2.0/. The source data for Figs. 2–7
can be found in https://zenodo.org/records/13842300(https://doi.org/10.
5281/zenodo.13842300) Sepsis_treatment_model/experimental_results
folder55.

Code availability
Theunderlying code for this study is available in theZenodo canbe accessed
via the following link: https://zenodo.org/records/13842300(https://doi.org/
10.5281/zenodo.13842300)55.
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