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Abstract: This paper presents an efficient schedule method for maintenance, repair, and overhaul

(MRO) tasks for aircraft engines using a constraint programming algorithm. Using data obtained

from Korean Air’s MRO maintenance logs, we analyze and predict the optimal scheduling of regular

inspections and fault repairs for various engine types. By proposing a proper modeling of the

problem and preparing data for the constraint programming algorithm, we demonstrate superior

performance in scheduling efficiency and resource utilization. The experimental results show an

average utilization of 99.35%, and the method can even achieve 100% utilization in some cases.

Keywords: MRO scheduling; aircraft engines; constraint programming; maintenance optimization

and repair

1. Introduction

Aircraft engine maintenance, repair, and overhaul (MRO) are critical operations that
ensure flight safety, operational reliability, and efficiency. The scheduling of MRO tasks is a
complex challenge due to the intricate nature of maintenance procedures, the variety of
engine types, and the need to minimize aircraft downtime. Efficient MRO task scheduling
is vital from economic, technical, and operational perspectives, directly impacting the
profitability and reliability of airlines.

From an economic standpoint, efficient MRO scheduling can significantly reduce
operational costs. Aircraft downtime due to maintenance is costly, as it involves both direct
costs, such as labor and parts, and indirect costs, such as lost revenue from grounded aircraft.
Optimized scheduling minimizes these downtimes, leading to a better utilization of assets
and resources. Furthermore, effective scheduling can prevent overstocking or stockouts of
critical spare parts, thus optimizing inventory levels and reducing carrying costs.

Technically, MRO scheduling requires a deep understanding of the maintenance tasks
and their dependencies. Aircraft engines are complex systems, and their maintenance
involves various procedures, including disassembly, inspection, repair, and reassembly.
Each of these tasks has specific requirements, such as skilled labor, specialized equipment,
and precise timing. Efficient scheduling ensures that all necessary resources are available
when needed, preventing delays and bottlenecks. It also facilitates the integration of
advanced diagnostic tools and predictive maintenance technologies, which can forecast
potential failures and optimize maintenance intervals.

Operationally, MRO scheduling is closely linked with flight schedules. Airlines must
ensure that maintenance activities do not disrupt flight operations. This involves careful
planning to align maintenance windows with aircraft availability, considering factors such
as flight routes, turnaround times, and regulatory requirements. Efficient MRO scheduling
helps maintain a balance between keeping aircraft in the air and ensuring they are safe and
well-maintained. It also supports operational flexibility, allowing airlines to adapt quickly
to unforeseen events such as unscheduled repairs or changes in flight schedules. MRO
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scheduling can be integrated with a digital twin-based smart manufacturing framework
such as in [1].

The objective of this study is to develop an efficient MRO task scheduling system
for aircraft engines. By analyzing data from Korean Air’s MRO maintenance logs, we
aim to optimize the scheduling of regular inspections and fault repairs for various engine
types. Our proposed algorithm improved scheduling efficiency and resource utilization,
ultimately enhancing the economic, technical, and operational aspects of MRO activities.

In summary, efficient MRO task scheduling is essential for minimizing costs, en-
suring technical accuracy, and maintaining operational continuity. This study addresses
these challenges by proposing a novel algorithm that can optimize MRO scheduling for
aircraft engines.

2. Related Works

The scheduling of maintenance, repair, and overhaul (MRO) tasks for aircraft engines
has been extensively studied, with various methods proposed to address the complexity and
resource-intensive nature of these operations. This section reviews the most relevant works
in the field, highlighting their contributions and limitations, and provides a comparison
with the approach proposed in this paper.

Aircraft MRO processes are inherently complex, involving multiple interdependent
tasks that must be carefully scheduled to minimize downtime and reduce operational
costs. The scheduling challenges in MRO operations, particularly focusing on the rela-
tionship between Original Equipment Manufacturers (OEMs) and MRO providers, and
the operational difficulties caused by unexpected component failures are described in [2].
While this study provided a comprehensive overview of the key factors influencing MRO
efficiency, it primarily relied on qualitative analysis, offering limited solutions for optimiz-
ing task scheduling under uncertainty. This paper aims to build upon these insights by
proposing a quantitative, constraint-based optimization approach to handle such challenges
more effectively.

The task scheduling problem with resource constraints, such as job shop scheduling,
is a NP-hard problem, as proved in [3]. There are many heuristic approaches to solve
NP-hard problems.

Many studies have employed heuristic and metaheuristic methods to solve this NP-
hard scheduling problem. For example, a genetic algorithm was used to optimize long-
term aircraft maintenance scheduling under uncertainty, demonstrating a 7% reduction
in heavy maintenance checks and a 4.4% increase in aircraft utilization [4]. Although
this approach showed promising results, heuristic methods like genetic algorithms often
struggle with finding truly optimal solutions, especially in dynamic environments where
task dependencies and resource availability fluctuate frequently.

Metaheuristic approaches like genetic algorithms, simulated annealing, or particle
swarm optimization often provide near-optimal solutions but are computationally expen-
sive and may require the fine-tuning of parameters for specific cases. In contrast, our study
leverages constraint programming, which, while computationally more straightforward for
certain problem sizes, guarantees optimal solutions within a reasonable time for the given
MRO task size. By focusing on a more structured optimization approach, our model effi-
ciently handles task dependencies and resource constraints, which are crucial in real-world
MRO settings.

A NeuroEvolution of Augmenting Topologies (NEAT) algorithm for dynamic hybrid
flow shop scheduling problems characterized by uncertain processing times, dynamic job
arrivals, and flexible maintenance was proposed in [5]. The study introduced a multi-agent
framework for efficient scheduling policy development and demonstrated that the NEAT
algorithm outperforms traditional dispatching rules and Deep Q-Network (DQN) in terms
of robustness, adaptability, and generalization across diverse test cases. This approach
emphasizes real-time decision making and provides a robust methodology for addressing
scheduling challenges in smart manufacturing environments.
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Machine learning and deep learning methods have gained popularity in MRO schedul-
ing for their ability to model complex relationships in large datasets. A reinforcement
learning (RL) was applied to optimize aircraft maintenance scheduling, showing that RL
could outperform traditional methods in certain stable environments [6]. Similarly, adap-
tive RL for task scheduling in aircraft maintenance, introducing a dynamic rescheduling
mechanism that responds to real-time changes in task requirements was explored in [7].

A Multi-Policy Deep Reinforcement Learning (DRL) framework for solving the multi-
objective multiplicity flexible job shop scheduling problem (MOMFJSP) was introduced
in [8]. The study employs a Multi-Policy Proximal Policy Optimization (MPPPO) algo-
rithm with a co-evolution mechanism to simultaneously optimize makespan and total
tardiness. The approach leverages multiple policy networks to generate diverse Pareto-
optimal solutions, guided by an adaptive reward mechanism. Comparative analyses show
that MPPPO outperforms traditional dispatching rules and other DRL-based methods in
terms of efficiency, convergence, and diversity, providing robust solutions for complex
scheduling scenarios.

However, while deep learning and RL approaches can offer flexible, data-driven so-
lutions, they often require large amounts of training data and computational resources,
making them less practical for smaller-scale problems or environments with limited data
availability. Additionally, these methods may struggle to incorporate strict task depen-
dencies and constraints without significant modifications to the learning algorithms. In
contrast, our proposed constraint programming approach does not rely on extensive data
or require lengthy training phases, making it more suitable for structured, deterministic
MRO environments where real-time data analysis is a primary focus.

Operational research (OR) tools have been widely applied in the aviation industry to
tackle complex scheduling problems [9]. A lookahead approximate dynamic programming
(ADP) methodology was introduced to optimize aircraft maintenance check scheduling
under uncertainty, achieving a significant reduction in maintenance slots and improving
aircraft availability [10]. While ADP and other OR-based approaches are effective for
handling large-scale optimization problems with stochastic elements, they often rely on
approximations and may not guarantee truly optimal solutions.

Our study differs from these approaches by utilizing constraint programming, which
focuses on deterministic optimization. The key advantage of constraint programming
in this context is its ability to find exact solutions in cases where the problem size is
manageable, such as the MRO task scheduling problem presented in this paper. This
contrasts with the approximate nature of ADP and other OR methods, which may not
always provide the most efficient schedule.

While prior studies have made significant advances in optimizing MRO scheduling
through heuristic, machine learning, and operational research methods, each of these
approaches has limitations in handling dynamic and unpredictable MRO environments
or in balancing the trade-offs between solution quality and computational efficiency. Our
proposed constraint programming model addresses these gaps by focusing on a struc-
tured optimization approach that leverages task dependencies, resource constraints, and
workplace allocation to achieve high scheduling efficiency and resource utilization.

Compared to heuristic and deep learning-based models, our constraint programming
approach offers a more precise solution in a reasonable time frame without requiring
extensive computational resources. By using maintenance log data obtained from Korean
Air’s MRO, we demonstrate that this method can achieve superior resource utilization
(up to 100% in some cases) and provide near-optimal solutions for small-to-medium-sized
MRO scheduling problems, where real-time data analysis is required.

3. Methodology

This section outlines the methodology used to develop and evaluate the proposed
MRO task scheduling algorithm. It includes details on data collection, preprocessing, model
development, and the proposed hybrid algorithm.
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3.1. Data Preparation

The data used in this study were collected from Korean Air’s MRO (Seoul, Republic
of Korea) maintenance logs. The dataset includes historical records of various engine main-
tenance tasks and subtasks, such as disassembly, inspection, repair, and reassembly. Each
record contains information about the task type, duration, start time, and completion time.

To estimate the duration of each task and subtask, we calculated the average duration
based on historical data. This approach provides a reliable estimate for scheduling purposes.
The average duration values were derived from past maintenance records, ensuring they
reflect realistic time frames for task completion.

We focused on scheduling MRO tasks for a one-year period. This timeframe allowed
for the inclusion of regular inspections, planned maintenance, and unexpected repairs,
providing a comprehensive view of the scheduling requirements and challenges.

Table 1 shows an example of a simplified table describing subtasks and their working
days for an PW1100G-type engine depending on the level of the work. Each subtask has
maintenance levels from 0 to 3 depending on the difficulty of the subtask, which results
in working days for the maintenance. There is a set of whole tables like Table 1 for all the
engine types.

Table 1. An example table of subtasks and working days of an PW1100G-type engine (unit: day).

Subtask\Level L0 L1.3 L1.9 L2.3 L2.3 L2.3 L2.3 L2.9 L3

FRG 1 1 7 2 6 6 7 6

FDBG 1 2 5 8 8 8

FDGG 1 1 3 2 4

FICG 1 4 5 5 6 5

2BG 1 1 2 3 4

FCG 1 1 3 7 9 8

LCSG 1 2 5 6 9 8

LCRG 1 1 4 3 4

25BLG 1 1 2 3 4 4

CICG 1 1 3 5 6 6

3BG 1 1 3 4 5

HCRSG 1 2 7 24 25 22

HCFCG 1 1 7 11 22 20

HCRG 1 2 7 21 22 19

DCG 1 1 3 6 8

CTNG 1 1 2 3 4 6 10 11

HTSG 1 2 4 10 13 12

HTRG 1 1 2 3 5 5

TICG 1 2 9 8 10 9

LTSG 1 2 6 37 23 20

LTRG 1 2 4 5 6 7 8 7

TECG 1 3 9 10 11 10

MGBG 1 5 11 16

AGBG 1 2 5 5

Other 10
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Table 2 shows an example task table describing a set of subtasks to be conducted for
the checkup of an engine. Working days were extracted from Table 1 based on subtask and
level. Most of the regular checkups have similar tables depending on the checkup level or
fault type and engine type. So, the table has a name like type_level_version.csv, for example,
PW1100G_A_1.0.csv. These tables are maintained as a library for the MRO system.

Table 2. An example checkup task table for PW1100G-type engine.

No. Subtask Level Days

1 HCRSG L0 1

2 HCFCG L0 1

3 HCRG L0 1

4 DCG L0 1

5 CTNG L0 1

6 HTSG L0 1

7 HTRG L0 1

8 TICG L1.3 2

9 LTRG L1.3 2

10 TECG L1.3 3

11 FDGG L1.9 3

12 FICG L1.9 5

13 FCG L1.9 3

14 LCSG L1.9 5

15 25BLG L1.9 2

16 CICG L1.9 3

17 LTSG L1.9 6

18 MGBG L1.9 5

19 AGBG L1.9 2

20 Other L2.3 10

To plan MRO tasks for the year, we needed a list of expected tasks as shown in Table 3,
where the start day is the expected start day of the task from the beginning of the year.
Each csv file has a task table like Table 2.

Table 3. Tasks table example for a period.

No. Task Start Day

1 PW1100G_A.csv 10

2 PW1100G_C.csv 15

3 PW1100G_D.csv 20

4 PW1100G_A.csv 30

5 PW1100G_C.csv 40

6 PW1100G_D.csv 50

. . .. . .
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3.2. Application of Constraints Programming

3.2.1. Constraint Definition

We used constraint programming for the scheduling. The constraints considered in
the optimization process included the following:

1. Limited Number of Workplaces: The number of workplaces available for performing
tasks is limited. Each workplace can perform any MRO task or subtask.

2. Task Dependencies: Certain tasks must be completed before others can begin.
3. Resource Availability: Ensuring that the necessary resources (e.g., tools, personnel)

are available for each task.
4. Workplace Allocation: Allocating tasks to available workplaces to maximize efficiency

and minimize idle time.
5. Minimum Start Date: Some work will arrive at some points when the check-up

time arrives.

3.2.2. Problem Definition

There are N tasks and M workplaces. Each task Ji can only be executed in a specific
workplace Wj, and each task has a start time Si and a duration di. The goal is to schedule
all tasks across the workplace and minimize the total completion time.

3.2.3. Mathematical Model

Variables

• Sij: Start time of task Ji in workplace Wj (i = 1, 2, . . ., N; j = 1, 2, . . ., M).

• Cij: Completion time of task Ji in workplace Wj.

• Cmax: Maximum completion time among all tasks.

Domains

• Sij∈{0, 1, 2, . . ., T}, where T is the maximum possible time.

Constraints

• Constraint-1: Each task can only be executed in specific workplaces. aij is a binary
variable indicating if task Ji can be executed in workplace Wj (1 if possible, 0 if
not possible):

Sij aij = Si ∀i,j

• Constraint-2: The completion time of each task is the sum of its start time and
its duration:

Cij = Sij + di ∀i,j

• Constraint-3: Tasks in the same workplace must not overlap. For tasks Ji and Jk in
workplace Wj, one of the following must hold:

Sij + di ≤ Skj or Skj + dk ≤ Sij ∀i ̸=k, ∀j

• Constraint-4: The overall completion time Cmax is the maximum of the completion
times of all tasks:

Cmax ≥ Cij ∀i,j

Objective Function

• The goal is to minimize the overall completion time: Minimize Cmax
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Figure 1 shows the conceptual visualization of the mathematical model.
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Figure 1. Visualization of mathematical model.

Example
Suppose there are 3 tasks and 2 workplaces:

• Task J1: duration d1 = 3, possible workplace W1

• Task J2: duration d2 = 2, possible workplaces W1, W2

• Task J3: duration d3 = 4, possible workplace W2

Constraints:

• a11 = 1, a12 = 0
• a21 = 1, a22 = 1
• a31 = 0, a32 = 1

Based on these constraints, the domain, and objective function, a constraint program-
ming solver can find the optimal task schedule.

For example, tasks could be assigned, and their start and completion times determined
as follows:

• S11 = 0, C11 = 3
• Sm21 = 3, C21 = 5
• S32 = 0, C32 = 4

In this case, the overall completion time Cmax = 5. This modeling approach enables the
efficient allocation and scheduling of tasks.

3.3. Experimental Setup

The CP algorithm was evaluated using the dataset from Korean Air, focusing on
scheduling MRO tasks for a one-year period. The performance of the CP algorithm was
examined for several cases, demonstrating its superior efficiency and resource utilization.
For the MRO in Korean Air, Constr-1 was not considered, since any workplace can handle
any task for efficient operations.

3.4. Justification for Selecting Constraints Programming

The choice of constraint programming (CP) for solving the maintenance, repair, and
overhaul (MRO) task scheduling problem was primarily driven by the nature and complex-
ity of the problem. Unlike large-scale problems commonly addressed by machine learning
(ML) or metaheuristic methods, MRO scheduling typically involves a manageable number
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of tasks and constraints, making CP an efficient and optimal choice. Below, we outline the
key reasons for selecting constraint programming and compare it to alternative methods.

3.4.1. Complexity of the Scheduling Problem

MRO scheduling is inherently a combinatorial optimization problem, with tasks hav-
ing dependencies, limited resources, and specific temporal constraints. As demonstrated in
the literature, such problems are often NP-hard, meaning that finding an optimal solution
requires significant computational effort, especially as the problem size grows. While
heuristic and metaheuristic methods like genetic algorithms or simulated annealing can be
used to provide near-optimal solutions for large, complex problems, they do not guarantee
optimality and can require significant parameter fine-tuning.

The worst-case complexity of CP is O(dn), where d is the domain size of task start
times, and n is the number of tasks. However, CP is well-suited for smaller, structured
problems with well-defined constraints. CP systematically explores the search space using
constraint satisfaction techniques, ensuring that the optimal solution is found when the
problem size remains within a practical range. This is particularly advantageous in the
MRO context, where the task set is not as large as in typical machine learning or deep
learning applications. The finite nature of MRO tasks (e.g., scheduled inspections and
repairs) makes CP an efficient method for exploring the solution space exhaustively, rather
than for relying on approximation techniques.

3.4.2. Deterministic vs. Stochastic Environments

Many of the alternative approaches, particularly those based on machine learning or
reinforcement learning (RL), are designed to handle dynamic or stochastic environments
where task requirements may change in real time. For instance, reinforcement learning
has shown potential in adapting to unpredictable changes in task availability or resource
constraints. However, these methods require extensive training data and computational
resources, which may not always be available or practical in MRO settings.

In contrast, the MRO scheduling problem in this study is relatively deterministic, with
the task requirements and constraints known in advance. While unforeseen maintenance
events (e.g., unscheduled repairs) can occur, the focus of this paper is on optimizing the
scheduling of regular inspections and fault repairs, which follow predictable patterns.
Constraint programming excels in such deterministic environments, where it can efficiently
model the problem using predefined constraints and deliver optimal schedules without the
need for large training datasets or dynamic updates. This deterministic nature makes CP a
more appropriate choice for this specific problem.

3.4.3. Resource Utilization and Task Dependencies

In MRO scheduling, it is critical to ensure that resources (e.g., workplaces, tools,
and personnel) are optimally allocated, and that task dependencies are strictly followed.
Metaheuristic approaches like genetic algorithms and simulated annealing can handle
these constraints but often do so through approximation, potentially leading to suboptimal
resource utilization or violations of task dependencies.

CP, by contrast, is designed to handle these types of complex, interdependent con-
straints natively. In our approach, the task dependencies, resource availability, and work-
place limitations are explicitly modeled as part of the constraint satisfaction process. This
allows the CP algorithm to ensure that all tasks are scheduled in accordance with their
dependencies and that resource allocation is optimized. The result is a highly efficient
schedule that maximizes resource utilization (up to 100% in some cases, as shown in the
experimental results) while minimizing idle time across workplaces.

3.4.4. Computational Efficiency

While machine learning and deep learning approaches can handle larger-scale prob-
lems, they are often computationally expensive and require significant amounts of training
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time and data preprocessing. For smaller-scale problems like the MRO task scheduling
problem discussed in this paper, these approaches may be unnecessarily complex and
resource-intensive.

The computational efficiency of constraint programming is another key reason for its
selection. As shown in the experimental results, our CP-based method is able to generate
near-optimal schedules in a matter of seconds to minutes, even as the number of tasks
increases. For example, scheduling 24 tasks across 6 workplaces can be completed in under
74 s on a standard PC setup. This is considerably faster than many machine learning
approaches, which could take hours or days to train, depending on the dataset size and
the complexity of the model. CP provides an optimal solution with significantly lower
computational overhead.

3.4.5. Scalability Considerations

While CP is efficient for small to medium-sized problems, its scalability may be a
concern for very large-scale MRO environments where the number of tasks and constraints
grows significantly. However, in this study, the size of the MRO task scheduling problem
is well within the capabilities of CP. Future work could explore hybrid approaches that
combine CP with heuristic or machine learning techniques to address scalability in larger
environments, but for the current scope, CP offers the best trade-off between computational
efficiency and optimal solution quality.

3.4.6. Flexibility in Handling Task Variations

Another advantage of CP is its flexibility in handling variations in task requirements.
Unlike heuristic methods, which may require significant re-tuning for different task sets,
CP can easily accommodate changes in the number of tasks, task durations, or resource
constraints by updating the model’s constraints without the need for retraining or extensive
modifications to the algorithm. This adaptability makes CP a more straightforward and
efficient solution for the structured, repeatable nature of MRO task scheduling.

By selecting constraint programming for the MRO scheduling problem, this study
leverages the strengths of CP in handling structured, deterministic optimization problems
with well-defined constraints. This choice is validated by the experimental results, which
show high scheduling efficiency and resource utilization, making CP an ideal method for
the specific challenges of aircraft engine MRO scheduling.

4. Experimental Results

4.1. Performance Metrics

The performance metrics used for evaluation were as follows:

- The number of days required to finish all the given work.
- The number of workplaces required to finish all the given work in a year of 260 work-

ing days.
- Resource utilization–-evaluated based on the optimal use of available workplaces.

4.2. Case Studies

First, we explain the experimental results with small examples, since real-world
cases are difficult to use for demonstration. Figures 2 and 3 show the scheduling results
without and with start days constraints, respectively. The numbers in each box represent
{Task ID}_{SubTask ID} and the numbers above an arrow show the start day constraints.
The horizontal axis shows the timeline in days, and the vertical axis represents the three
workplaces (0~2). The color coding or shading differentiate the tasks to help visualize how
tasks are distributed across workplaces over time.
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Figure 3. A simple scheduling result with start day constraint as shown in blue arrows.

4.3. Summary of Experimental Results

We tested several cases by duplicating the 3 given works to 6, 9, 12, and 24. Up
to 12 works, all the works can be conducted with three workplaces within a year of
260 working days. However, in the case of 24 works, works cannot be performed with
three workplaces, and this should be increased to six workplaces, as shown in Table 4. In
Table 4, horizon is the maximum days boundary expected when all the tasks are assigned
consecutively. CPU time increases when the number of tasks increases. Most of the cases
achieved over 99% utilization, except the first case. Some cases even have 100% utilization.
The average utilization of all the cases is 99.34%. We used an Intel i7-14700K-based PC
with Ubuntu 22.04. In Table 4, we compared the results with a genetic algorithm (GA)
using a population size of 50; 30,000 generations; and mutation rate of 0.1. To obtain the
optimum solution using the genetic algorithm, we had to tune the parameters by trying
several combinations of parameters. When using the parameters for a similar order of CPU
time, the GA could not find optimal solutions.

When the minimum start days for each work is given, the total days required increases,
as shown in Table 5. The increased days and utilization depend on the given minimum
start days.

The observed CPU times follow an expected trend: as the number of tasks increases,
the CPU time required to compute the optimal schedule grows. This is due to the increased
complexity of the problem, which involves a larger number of task dependencies, resource
constraints, and possible combinations of task assignments across workplaces. The compu-
tational effort required to explore the solution space and satisfy the constraints grows with
the size of the problem, leading to a nonlinear increase in CPU time.
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Table 4. Experimental results for various tasks and workplaces without minimum start days.

Tasks
Work
Places

Horizon
[Days]

CP (Ours) GA

Days Utilization CPU [s] Days Utilization CPU [s]

3 3 175 61 95.63% 1.37 90 64.81% 11.63

6 3 350 117 99.72% 2.82 181 64.46% 21.03

9 3 525 175 100.00% 6.90 236 74.15% 30.27

12 3 700 234 99.72% 22.77 292 79.91% 39.62

24 3 1400 467 99.93% 26.93 548 85.16% 76.47

24 4 1400 350 100.00% 56.32 456 76.75% 76.12

24 5 1400 280 100.00% 132.96 365 76.71% 75.83

24 6 1400 234 99.72% 73.49 331 70.49% 75.73

Table 5. Experimental results for various tasks and workplaces with minimum start days given.

Tasks Work Places Days CPU [s]

3 3 76 1.30

6 3 132 11.74

9 3 190 35.07

12 3 249 57.49

24 3 470 26.93

24 4 355 59.30

24 5 289 145.93

24 6 244 52.82

However, the increase in CPU time is manageable, even for the larger problem in-
stances tested. See the following example:

For 3 tasks: The algorithm finds a schedule in just 1.37 s.
For 24 tasks: It takes about 73.49 s to compute the schedule, which is still within a

reasonable time frame for practical use in MRO environments where scheduling tasks can
span weeks or months.

This scalability trend indicates that the constraint programming approach remains
computationally feasible for small-to-medium-sized MRO scheduling problems. However,
as the problem size continues to increase, it is likely that the CPU time will grow more sig-
nificantly, potentially posing challenges for very large-scale problems involving hundreds
of tasks or more.

The CPU times reported in this study are encouraging, as they indicate that the
proposed constraint programming approach can generate high-quality schedules within
seconds or minutes for small-to-moderate problem sizes. In practical MRO environments,
where maintenance tasks are typically planned well in advance (e.g., weeks or months),
these CPU times are highly acceptable. This makes the algorithm suitable for day-to-day
scheduling tasks in MRO operations. Even if urgent checkup interruptions occur, it can
provide dynamic task scheduling by using a fast automatic task scheduling which can be
rescheduled in minutes.

5. Conclusions

This study demonstrates the effectiveness of a constraint programming algorithm for
efficient MRO workspace scheduling of aircraft engines. By leveraging data from Korean
Air’s MRO maintenance logs, the proposed method achieves a good scheduling efficiency
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and resource utilization of up to 100%, with an average of 99.34%, highlighting its potential
for broader application in the aviation industry.

The CPU time analysis demonstrates that the constraint programming algorithm
proposed in this study is highly efficient for solving small-to-medium-sized MRO schedul-
ing problems. While CPU time increases as the number of tasks and workplaces grows,
it remains within practical limits for the scenarios tested. Future research should focus
on enhancing scalability through parallel computing, incremental scheduling, or hybrid
approaches to handle larger and more complex MRO environments efficiently.

By achieving a near-optimal utilization of resources and maintaining computational
efficiency, this method holds significant potential for improving MRO operations in the
aviation industry. However, to fully realize its potential, future research must address the
current limitations and explore ways to scale the solution for larger, more dynamic environ-
ments. With further validation and refinement, this approach could play a crucial role in
advancing the efficiency, reliability, and sustainability of aircraft maintenance practices.
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