
We propose a flow admission control (FAC) for setting 
up a wire-speed connection for new flows based on their 
negotiated bandwidth. It also terminates a flow that does 
not have a packet transmitted within a certain period 
determined by the users. The FAC can be used to provide 
a reliable transmission of user datagram and transmission 
control protocol applications. If the period of flows can be 
set to a short time period, we can monitor active flows that 
carry a packet over networks during the flow period. Such 
powerful flow management can also be applied to security 
systems to detect a denial-of-service attack. We implement 
a network processor called a flow management network 
processor (FMNP), which is the second generation of the 
device that supports FAC. It has forty reduced instruction 
set computer core processors optimized for packet 
processing. It is fabricated in 65-nm CMOS technology 
and has a 40-Gbps process performance. We prove that a 
flow router equipped with an FMNP is better than legacy 
systems in terms of throughput and packet loss. 
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I. Introduction 

In packet-switching networks, a packet flow is a sequence of 
packets from a source host to a destination [1], [2]. A flow can 
be uniquely identified by the following parameters within a 
certain time period: source and destination IP address, source 
and destination port, and layer-4 protocol, that is, a 
transmission control protocol (TCP), a user datagram protocol 
(UDP), and an Internet control message protocol. 

In the fourth layer of the open systems interconnection 
model, there are typically two types of protocol flows: a TCP 
and a UDP [3], [4]. A TCP is an end-to-end protocol used to 
compensate for packet loss and disordering caused over 
networks. A TCP establishes a connection of flows using a 
three-way handshake. It is used for connection-oriented 
services like the World-Wide Web (WWW), e-mail, and the 
file transfer protocol (FTP). For a better throughput of TCP 
flows at a router, studies have been conducted on the admission 
control of a TCP flow that discards an initiated packet of the 
TCP flow in a network node [2], [5]-[7]. These studies show 
that the TCP admission control improves the performance of 
TCP flows in terms of the flow throughput and transfer 
completion time. 

On the other hand, a UDP uses a simple transmission model 
without connection setup procedures to provide reliability, 
ordering, or data integrity. Therefore, UDP applications must 
generally accept some loss, errors, or duplication. Common 
network applications that use a UDP include the domain name 
system, such streaming media applications as IPTV, voice over 
IP, trivial FTP, IP tunneling protocols, and many online games. 
It is expected that the rise of new streaming applications [8] 
and new P2P protocols [9] will rapidly increase the use of a 
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UDP as a transport protocol. Congestion-insensitive UDP 
applications that consume a large fraction of available 
bandwidth could endanger the stability of the Internet. 
Network-based mechanisms have been proposed to minimize 
potential congestion collapse effects of uncontrolled heavy 
UDP traffic loads. The datagram congestion control protocol 
(DCCP) was designed as a partial solution to this potential 
problem by adding end host TCP-friendly congestion control 
behavior to high-rate UDP streams, such as streaming media 
[10].  

As an alternative solution of DCCP, flow admission control 
(FAC) is proposed in this paper, in which a connection is set up 
for a UDP flow. FAC can provide a reliable transmission of 
UDP applications against congestion and does not inflict other 
flows in service simply by rejecting a new flow in a congested 
node. FAC can also be applied to TCP applications, replacing 
the TCP admission control algorithms used at routers [2], [5]-
[7]. Thus, it can improve the performance of flow throughput 
without looking up synchronize packets to identify the starting 
packet of a TCP flow in an intermediate node.  

OpenFlow was designed as a new network paradigm, which 
enables researchers to test new ideas on an existing network 
infrastructure [11], [12]. An enormous amount of effort has 
recently been focused on the commercial success of OpenFlow 
through the Open Networking Foundation (ONF) [13], [14]. 
For large-scale commercial OpenFlow networks, performance 
of the controller is one of the issues to be resolved [15]. This 
paper notes that today’s controller implementations are unable 
to handle a huge number of new flows in high-speed networks 
with 10-Gbps links. Therefore, FAC is believed to be one of 
the key elements in both the forwarding plane and control 
plane for OpenFlow, which is trying to innovate current 
network technologies.  

We have developed a network processor (NP) called a flow 
management (FM) NP (FMNP), also known as an OmniFlow 
processor, which implements the FAC algorithm based on 
hardware. The FMNP does not have a pipelined architecture 
with multiple stages but has rather a single stage with 32 core 
processors. Thus, it can conduct incorporate packet processing, 
from packet lookups to scheduling. It also supports a wire-
speed connection setup for flows that are not registered in the 
flow information table and a connection termination of flows in 
which there is no packet transmitted within a period 
determined by the users. Wire-speed FAC is expected to be 
used not only for OpenFlow to develop new network services 
but also for network QoS to provide reliable transmissions of 
UDP/TCP applications against congestion. It has been shown 
that fast FM can contribute to the implementation of various 
applications [16]. In particular, upon analyzing the routing 
paths of active flows, it was found that wire-speed FAC is 

effectively used for the detection and prevention of distributed 
denial of service (DDoS) attacks [17]. We believe that the 
FMNP will be used to explore new network services by 
manipulating and monitoring active flows. 

The remainder of this paper is organized as follows. In 
section II, the structure of the NP and the flow-based 
mechanism are reviewed. In addition, we propose a scalable 
architecture of the FMNP. In section III, we analyze the 
hardware performance of a DDR2 SDRAM controller, which 
is one of the most critical issues for implementing the FMNP. 
Through simulations, the performance of FAC is evaluated for 
a comparison with legacy models in terms of bandwidth 
utilization and packet loss. Next, section IV shows the results 
of implementation and verification of the FMNP chip. As an 
application of the FMNP, the OmniFlow system is proposed in 
section V. Finally, some concluding remarks are given in 
section VI. 

II. Architecture 

An NP is a software programmable device for packet 
processing, such as pattern matching, address lookups, queue 
management, scheduling, and so on. It has two architectural 
features for high performance: multicore processors and a 
pipeline [18], [19]. A multicore processor executes multiple 
instructions with two or more independent actual processors 
(called “cores”), which increases the performance of program 
execution. According to Amdahl’s law, the speed of the 
program execution in multiple processors is dominated by the 
sequential fraction of the program rather than by the number of 
processors [20]. This means that how the workload (program) 
is assigned to each processor is important for efficient parallel 
processing. The FMNP, which has 32 multicore processors, 
usually distributes the workload to each core on a packet-by-
packet basis and sometimes assigns the workload on a flow 
basis to maintain the sequence of incoming packets.  

The FMNP does not have a pipelined architecture, and, thus, 
it can do all packet processing within a single stage, from a 
packet lookup to scheduling. Cisco’s NP, QuantumFlow, is a 
typical case and enables more flexibility for cooperative packet 
processing [21]. 

1. Parallelism 

A sequence of packets in the same flow should be 
maintained over networks to meet the requirements of higher 
layers, such as TCP [22]. However, there are several factors in 
changing the sequence in multicore processors. Therefore, 
multicore NPs require specific schemes to keep the packet 
sequence of each flow [23]. Figure 1 illustrates how the  
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Fig. 1. Flow-based parallel packet process. 
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sequence for the same flow is kept in the FMNP. There are 
eight packets belonging to one of four flows (An, Bn, Cn, and 
Dn) to be processed in the cores, where n represents the order 
of arrival. When the FMNP receives a packet, it should send 
the packet to one of the cores for packet processing. The 
FMNP uses the flow numbers to decide which core to use to 
process the packet. If there is any core processing a packet with 
the same flow number as the received packet, the received 
packet is sent to that core. If there is no core processing a 
packet with the same flow number as the received packet, the 
FMNP sends the received packet to one of the idle cores. 
Based on the rule of packet distribution, packet A3 is sent to 
Core 1, followed by packet A4, since packets A3 and A4 have 
the same flow number, A. This makes packet A4 wait in the 
queue of Core 1 even if all the remaining cores are in an idle 
state. Packet B1 is assigned to Core 4, followed by packet B2.  

2. FMNP Architecture 

The FMNP has a scalable architecture, as shown in Fig. 2, 
which consists of five major blocks: a physical interface block, 
that is, a flexible header parser (FHP), a physical layer receiver 
(PHY_Rx), an egress scheduler (ESch), and a PHY transmitter 
(PHY_Tx); a switch interface block, that is, an ingress Sch 
(ISch), a switch fabric Rx (SF_Rx), and an SF_Tx; a data 
bridge; a context Sch (ConSch); and a processor array (PA).  

A data bridge is a bridge that connects one physical interface 
block to one of the PAs or one switch interface block to one of 
the PAs. Each PA contains 16 multicore processors. The packet 
processing power is easily increased simply by duplicating the 
PA block and then pasting it to the data bridge. External data 
interfaces are also easily extended by duplicating the physical 
interface block and the switch interface block and then pasting 
them to the data bridge. The white-colored blocks represent a 
unit of the functional block used for scalability. The FMNP is 
the second generation of the device that supports FAC. The 
first-generation device consists of a unit functional block. The 
FMNP has a unit functional block and an additional PA and  

 

Fig. 2. Scalable architecture of FMNP. 
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physical interface block.  

Incoming packets are processed along two data paths, as 
shown in Fig. 2: ingress and egress. Ingress packets arriving at 
the framer interface of the PHY_Rx are sent to one of the PAs 
through the data bridge. The packets leave the switch fabric 
interface of the SF_Tx through the data bridge after being 
processed in the PA. Egress packets coming from the switch 
fabric interface of the SF_Rx arrive at the PA through the data 
bridge and then return to the data bridge after packet processing 
by the PA. The packets finally leave the framer interface of the 
PHY_Tx. 

For functional blocks along the ingress path, the PHY_Rx 
that receives packets through SPI4.2 from the external MAC 
device segments the incoming packets into 48-byte chunks and 
stores them in the data block memory (DBM), except for the 
first chunk. An FHP, which consists of four reduced instruction 
set computer (RISC) core processors, parses the first chunk 
using a microcode and generates a hash key and value to 
identify the flow for a packet. The data bridge has a mux and 
demux architecture that connects one of the framer interfaces to 
one of the PAs. The ConSch determines one of 32 contexts in 
the PA to process a chunk, as described in section II.1, and then 
forwards the chunk to the PA. The PA includes 16 RISC core 
processors. Each processor has two contexts (threads) and an 
internal memory that can store 2,048 instructions. One of the 
multicore processors continuously monitors all flows and 
terminates any registered flow that has an absence of packets 
for a period of time. The period of each flow, which we define 
as the “allowed sleeping timeout” (as-timeout), can be set by 
the users to be short. All of the multicore processors can access 
the flow block memory (FBM) to store the flow-state 
information, the DBM to store data packets, and the network 
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search engine (NSE) to store a lookup table. One of the main 
jobs of the PA is to schedule packets to meet the QoS 
requirements. It determines the scheduling information: time to 
send (TTS), queue number, and output port number. The TTS 
represents the output time of the packet. The PA sends a pointer 
to the ISch to locate a packet in the DBM along with the 
scheduling information above. The scheduler saves the pointer 
in a calendar queue of the schedule table of the DBM and 
eventually retrieves it after sending out a complete packet in 
due time. The SF_Tx converts the packet into internal switch 
frames to transmit to the switch fabric. 

For functional blocks along the egress path, the SF_Rx, 
which receives egress packets from the switch fabric, stores all 
packets except for the first chunk in the DBM, after converting 
the internal switch frames of a packet into chunks. The PA 
sends the packets to the ESch along with scheduling 
information after processing them. Like the ISch does in the 
ingress path, the ESch schedules packets using the scheduling 
information, such as TTS and queue number. The PHY_Tx 
sends the packet to the MAC device after assembling the 
chunks to make a complete packet. 

3. Flow Management 

The FMNP has a wire-speed connection setup of flows to 
support the wire-speed FAC. Figure 3(a) shows the connection 
setup and packet forwarding procedures.  

When a packet arrives at the FMNP, a flow ID is determined 
by the FHP block, which generates a 48-byte hash key and  
22-bit hash value. The hash key is extracted from the header of 
the packets or a certain part of the packets programmed by the 
users. Receiving the hash information and the packet, the PA 
accesses the flow base (FB) table by taking a 22-bit hash value 
as a table address to search for the flow information of the 
packet. If no flow information exists at the address, the flow 
connection is not set up. Thus, the PA starts a new connection 
setup of the flow. First, the PA registers the new flow into the 
FB table that stores the hash information, flow statistics, and so 
on. Second, the PA builds up and stores the flow information of 
the FM table by referring to the forwarding information base 
(FIB) and classification tables. The FM table is used to forward 
the packet to a destination port of the flow and to generate the 
scheduling information of the flow. The entries of the FIB and 
FM tables are filled with predefined parameters that are 
mapped to the flows. The parameters of the FIB and FM tables 
are determined by the routing protocols and management 
systems. After creating the FM table, the PA transfers the 
packet to the scheduler along with the forwarding and 
scheduling information. If the flow of a packet has already 
been registered in the FB table when the packet arrives at the 

 

Fig. 3. FM: (a) flow setup and (b) flow matching using hash
value. 
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FMNP, the PA refers to the FM table to create the scheduling 
and forwarding information. It then transfers the packet to the 
scheduler along with this information. 

The FIB, classification, and FM tables are all included in the 
FBM, 1G DDR2 SDRAM, which can be accessed by the 32 
multicore processors. The FB table has a maximum of 6M 
flow entries. Each entry has 64-byte flow data that includes the 
hash information, as-timeout, statistics, and the pointer to an 
entry of the FM table for the forwarding and classification 
information. We use a technique to register the entries, which is 
shown in Fig. 3(b). 

Receiving a hash key and value from the FHP, the PA 
accesses the FB table by taking a 22-bit hash value as an 
address of the table. If there is no flow information at the 
address, the connection of the new flow is set up for the 
received packet. For the registration, the entry of the FB table is 
stored with the statistics, as-timeout, hash key, and so on. If any 
flow information exists in the address, the PA compares the 
hash key of the received packet with the one stored in the FB. 
If they match, the stored flow information is used to process the 
packet. If there is no match, the PA jumps to the extended FB 
to search for the flow information. It then repeats the same 
steps as above. After setting the as-timeout of the flow, the PA 
continuously checks the flow status. The as-timeout of each 
flow can be set differently and is continuously checked to 
update the flows. The flows are terminated if there is no packet 
during the as-timeout. If the period is set to be short, we can 
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monitor the active flows that have packets during service. This 
feature can be applied to security systems to prevent DDoS 
attacks and to a fast FAC to guarantee the QoS of the flows. 

III. Performance Analysis 

In this section, we analyze the performance from two 
different perspectives: the bandwidth of a memory controller 
and an FAC. The hardware processing power of the FMNP can 
be estimated by the former, and the differentiated FM can be 
evaluated by the latter. 

1. Data Block Memory Interface 

One of the most critical issues when implementing a high-
speed NP is a lack of bandwidth of the external data memory 
interfaces used to store and forward incoming packets. We 
must develop effective arbitration logics to maximize the 
bandwidth utilization of the memory interfaces. Therefore, 
analyzing the performance of the total memory bandwidth is 
important to estimate the processing power of NPs. 

A. Structure 

The FMNP has a DBM controller (DBMC) with an efficient 
arbitration algorithm to control many agents that compete to 
access the DBM, as shown in Fig. 4. The DBMC has four 
memory interfaces of DDR2 SDRAM DIMM. The DBM 
externally connected to the DBMC is allocated for the queue 
buffer to store packets and the queue table to contain the 
scheduling information. The following agents have access to 
the DBM for packet processing. 

• PHY0_Rx and PHY1_Rx write the queue buffer packets 
received from the physical links. 

• ESch0_A and ESch1_A write a pointer in a calendar queue 
of the queue table to schedule packets transmitted to the 
physical links. 

• ESch0_B and ESch1_B obtain a pointer in a calendar 
queue of the queue buffer by a virtual clock and then read a 
complete packet from the queue buffer to transmit packets to 
the physical links. 

• SF_Rx writes the queue buffer packets received from the 
switch fabric. 

• ISch_A writes a pointer in a calendar queue of the queue 
table to schedule packets transmitted to the switch fabric. 

• ISch_B obtains a pointer in a calendar queue of the queue 
buffer by a virtual clock and then reads a complete packet from 
the queue buffer to transmit packets to the switch fabric. 

• PA0 and PA1 write the first chunk of packets to the queue 
buffer after processing. 

Table 1 shows the access types and ratios of the queue buffer 

 

Fig. 4. DBMC interface. 
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Table 1. DBM access ratio (%). 

 Type of DBM 
access Max Typical Min 

Buffer WR/RD 49.60 45.00 36.69 

Table RD 0.19 2.38 6.34 Ingress

Table WR 0.13 1.33 3.52 

Buffer WR/RD 49.60 45.00 36.69 

Table RD 0.30 4.07 10.89 Egress

Table WR 0.18 2.22 5.87 

 

 
and queue table in the DBM obtained using a simulator made 
with Verilog code and Perl script. According to three types of 
flows, that is, max, typical, and min, we analyze the ratio 
performance based on the types of DBM access. A “min” flow 
means that all of the packets are 44 bytes in size. A “max” flow 
means that all of the packets are 4,096 bytes. Finally, a 
“typical” flow has two types of packets: one that is 4,096 bytes 
(75%) and one that is 44 bytes (25%). The DBM has a queue 
buffer and queue table for ingress and egress packet flows. 
Many internal blocks of the FMNP have access to the DBM 
information. Thus, we can classify the access to the DBM into 
six types of operations, as shown in Table 1. The WR/RD 
buffer is used to store a packet and retrieve it from the queue 
buffer of the DBM. The RD table is used to read information 
from the queue table. 

The WR table is used to write scheduling information to the 
queue table. Table 1 also shows the ratio of the DBM access 
bandwidth based on the types of DBM access. For a max flow, 
the ratio of the packet WR/RD buffer is dominant, whereas the 
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Fig. 5. Available vs. demanded bandwidth of DBM. 

0

20,000

40,000

60,000

80,000

100,000

B
W

 (M
b/

s)
 

Max          Typical          Min 
Packet size 

Available (556 MHz) 
Demand (duplex) 

Demand (ingress) 
Demand (egress) 

 
 
ratio of the RD/WR table is small. As the packet size of the 
flow increases, the ratio of the RD/WR table increases. Table 1 
also shows that the ratio of the RD/WR table is higher in the 
egress path than in the ingress path. The reason for this is that 
the egress path requires more scheduling procedures than the 
ingress path requires, in architectural terms. 

B. Performance Analysis 

We calculated the available bandwidth of the DBMC using 
(1). Since the FMNP has four external memory buses 64 bits 
wide and operates using a 556-MHz clock, the total available 
bandwidth is about 72 Gbps. We assume that the bus utilization 
is about 50%. 

avail num b clk(Mb/s) .BW B W Intf U= × × ×         (1) 

BBnum : the number of banks      
Wb : bus width per bank (bits)   
Intfclk : interface clock rate (MHz)   
U : bus utilization      

We simulated the demanded bandwidth of the DBM 
interface using the three types of flows and compared it to the 
available bandwidth in Fig. 5.  

The figure indicates that the FMNP has sufficient power to 
process typically sized 40-Gbps packets, though it does not 
support the flow of the minimum packet size (min). However, 
we think that the actual bus utilization is higher than the 
estimation, as the bus utilization is higher than the 50% 
conservatively used in (1). Thus, we believe that the FMNP can 
almost support wire-speed packet processing. 

2. Evaluation of FAC 

Generally, the legacy router supporting connection 
admission control (CAC) determines the acceptance or 
rejection of a new flow depending on the service level 
agreement, which includes the flow information, such as the 

service class, negotiated flow bandwidth, and so on. If the total 
bandwidth passes over the threshold of the allowed bandwidth 
by a new flow, the flow is rejected. Contrary to the legacy 
router, the flow router implemented with the FMNP supports 
the CAC (as with the FAC) when considering the actual traffic. 
The flow router does not admit a new flow if the total sum of 
the average input rates of the admitted flows exceeds the 
capacity of the flow router. In addition, the flow router can 
discard the packets of a specific flow under a congestion 
situation to control the throughput of the flow router. 

We simulated three types of routers to estimate the 
performance of their bandwidth utilization in terms of the 
CAC: the peak cell rate (PCR)-based CAC (Juniper model), 
the measurement-based CAC (measurement-based admission 
control [MBAC] model), and the proposed flow router (FAC 
model).  

In the Juniper router [24], the CAC is performed based on 
the PCR for a label switched path (LSP) to support DiffServ 
traffic engineering. In [24], to enhance the link utilization, LSP 
size oversubscription and link size oversubscription are 
recommended, especially for best effort traffic. According to 
[24], “LSP size oversubscription is to configure simply less 
bandwidth than the peak rate expected for the LSP, and the link 
size oversubscription is to increase the maximum reservable 
bandwidth on the link.” The oversubscriptions may increase 
packet delay and cause packet loss [24]. We assume that the 
LSP size oversubscription is 0.8 × PCR and that the link size 
oversubscription is 1.2 × output link rate. 

In the MBAC model [25], the input traffic is measured over 
period (P), which is split into units of sampling period (S). The 
largest value among the input traffic values measured over each 
unit of the sampling period is considered the current load (CL). 
A new flow is permitted if the sum of the PCR of the new flow 
and the CL is less than or equal to the output link rate. It is 
simulated under the condition of P/S=10 and S=1,000 unit 
times (2 µs), where the unit time is the transmission time of a 
256-byte packet at the output link rate. 

We assume that all of the three systems have the same 
simulation parameters shown in Fig. 6: 32 flows, 110k      
× 256 byte queue buffer per flow, 1-Gbps maximum output 
rate, and 256-byte input packets. We use the self-similar traffic 
model that each connection is fed by a Pareto distributed on-off 
process. The shape parameters for the on and off intervals are 
set to 1.4 and 1.2, respectively. Hence, the Hurst parameter is 
0.8. It is simulated until the number of admitted packets 
reaches at least 500M.  

The output bandwidth is 1 Gbps, and the flow bandwidth is 
variable at up to 100 Mbps. We measured the following 
parameters, increasing the input rate of each flow from 10% of 
the maximum rate (100 Mbps) to 98%: throughput (utilization), 
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Fig. 6. System configuration for simulation. 
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Fig. 7. Number of admitted flows. 
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Fig. 8. Packet loss rate of admitted connections. 
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mean delay, number of admitted flows, and packet loss rate. 

Figures 7 and 8 show the number of admitted flows and their 
packet loss ratio, respectively, as the offered load increases. The 
offered load means the input rate of a flow. The packet loss in 
the rejected connections is not considered. 

In the case of the Juniper model in Fig. 8, the packet loss 
starts, owing to traffic congestion, when the offered load 
reaches 0.7, and the packet loss ratio increases as the load 
increases because of the LSP and link size oversubscription. 
The number of admitted flows of the FAC and MBAC models 
decreases as the load increases. Thus, we can protect a loss of  

 

Fig. 9. Mean packet delay. 
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Fig. 10. Packet throughput. 
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packets in the flows serviced by limiting the number of 
accepted flows. Even if a packet loss occurs from an 
unexpected surge of traffic flows, these models can minimize 
the loss. The number of admitted flows in the MBAC model is 
less and decreases less regularly than that in the FAC model, 
depending on the measurement error. 

Figure 9 shows the mean delay of packets. The mean delay 
of the Juniper model increases sharply as the waiting time of 
packets in the queues increases. The delay time of the FAC and 
MBAC models repeats the ups and downs after the load 
reaches 0.2. The reason for this is that the delay time drops 
whenever the number of admitted flows decreases. Whenever 
the number of admitted flows decreases by one, a congested 
state is instantly released, such that the packet processing 
becomes faster. The mean delay of the FAC model is greater 
than that of the MBAC model due to the difference in the 
number of admitted connections. 

Figure 10 shows that the throughput of the FAC model is 
best among the three types of systems, on average. Although 
the throughput of the Juniper model is best in a high load, the 
packet loss occurs due to congestion, as shown in Fig. 8. The 
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throughput of the FAC model linearly increases up to 1 Gbps, 
while the packet loss rate is almost zero. There are ups and 
downs in the throughput after the offered load reaches 0.3. The 
throughput instantly drops whenever the number of admitted 
flows decreases by one. As we can see from Figs. 8 through 10, 
it is clear that the FAC model has the best performance in terms 
of throughput and packet loss rate in this simulation scenario 
because it performs the CAC based on accurate traffic 
variables per flow. 

IV. Verification and Implementation 

The most difficult part of a chip design is the task of 
verifying whether the logic design conforms to the 
specifications. In this section, we present the test bench 
designed for functional verification of the FMNP and then 
show the implemented chip specification. 

1. Design Verification 

We developed a test bench architecture that is targeted to 
verify the FMNP design. The FMNP supports the layer-3 
protocol of IPv4, IPv6, and multiprotocol label switching. It 
has programmable support for Ethernet, frame relay, point-to-
point protocol, and fiber channel over Ethernet initialization 
protocol of the second layer. The complete test bench 
implemented with Verilog and Perl is designed in a layer-based 
architecture, as shown in Fig. 11.  

The Perl module layer (SL1_1 and SL1_2) is on the top level. 
The second-level layer is the simulation executable layer, SL2, 
which interfaces with the Perl layer. The third layer, SL3, is the 
complete design and test bench component layer. The major 
Perl modules are a sender and a checker that create a 
connection to the Verilog test bench through the corresponding 
sockets and pipes. The sender generates the command and 
packet data based on the test case configuration. The Verilog 
test bench receives the command data, which it decodes, and 
then applies the packet data as a stimulus to the FMNP. 

The checker receives the command and packet information 
from the sender, which it uses as a reference. The checker also 
receives the resulting data from the Verilog test bench using a 
receiver socket, which it compares with the reference data to 
obtain a pass/fail status. The post processor module counts the 
number of errors to generate the pass and fail statistics. On each 
interface bus, the Verilog test bench has interface monitors that 
capture the data on the interface and send it to the checker via 
Socket2 using Verilog programming language interface (PLI) 
calls. The functional coverage is captured at the SPI4.2 
interface, which targets the various packet formats to be 
supported in the FMNP. We executed about 1,000 test cases to  

  

Fig. 11. Layer-based architecture of test bench. 
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Fig. 12. Layout of FMNP. 
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verify all corner cases of the FMNP design and achieved 
complete coverage (100%) for the functional verification. 

2. Chip Implementation 

We chose a TSMC foundry, which is suitable for the FMNP 
design in terms of cost and technology. The FMNP uses 
several third-party libraries including ternary content-
addressable memory (TCAM), phase-locked loop, RAM, and 
I/O cells. Most of the FMNP design is synthesized using 
Verilog models of a standard cell library and third-party 
libraries in 65-nm CMOS technology. Figure 12 shows the 
layout of the chip. 

The FMNP has 2,196 RAM instances, including 140  
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instances of repairable SRAM. The gate count of the 
synthesized chip is about 25M, and the total memory bits are 
17.6M, except for the repairable memory at 9.25 Mbits. The 
die size is 17 mm × 17 mm. The power consumption is about 
48 W. The core voltage is 1 V. The FMNP package is a 2,377- 
ball high-performance flip-chip ball grid array with a 12-layer 
substrate, and its size is 50 mm × 50 mm. A back-annotated 
timing analysis and simulation were performed under a worst-
case condition, and the maximum operating clock rate was  
556 MHz with a considered clock uncertainty of 30%. 

V. Application 

Recent network services have become more complicated by 
the deep relationship between the L2 and L3 forwarding 
protocols and the L7 application protocols. This means that a 
result of L7 protocol processing affects L2 and L4 protocol 
processing. Some premium network services strongly require 
the incorporation of protocol processing through multilayers 
for packet forwarding. This is shown in security systems like 
intrusion detection and prevention systems, in which incoming 
packets are inspected by L7 protocols and then dropped or 
forwarded by L2 or L3 protocols reflecting the results of the L7 
protocol processing [26]. Sufficing for the trend of network 
services and problems described above, the OmniFlow system 
was invented, which consists of two subsystems: a high-layer 
OmniFlow system (HLOS) and a low-layer OmniFlow system 
(LLOS) [27], as shown in Fig. 13.  

LLOS, including multiple FMNPs, is well fitted for the 
protocol processing of lower layers from L2 through L4, 
generating a flow ID of incoming packets, managing the flow 
database (DB), and retrieving the flow ID when the flow is 
terminated. HLOS comprising multiple general purpose 
 

 

Fig. 13. Configurations of OmniFlow system, consisting of low-
and high-layer subsystems: (a) packet flow and (b)
control information flow. 
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processors is used for protocol processing of higher layers like 
layer 7. It is a scalable architecture that can be easily extended 
simply by adding more processors if its traffic load increases. 
The key element of the OmniFlow system is the reference flow 
ID that provides a good communication channel between two 
subsystems. Each subsystem has a DB referenced to the flow 
ID to process incoming packets. The DB has two types of 
information. Shared information (S-IN) is the information 
commonly used and shared by two subsystems. Exclusive 
information (E-IN) is the information exclusively used for each 
subsystem. The information includes statistics, packet 
processing rules, and results. By exchanging the information of 
S-IN with the peer subsystem, each subsystem can maintain 
the complete amount of information necessary to seamlessly 
process protocols of incoming packets from a low layer to a 
high layer. This means that packets with the same flow ID 
assigned by LLOS are interactively processed by two separate 
subsystems. It is exemplified that HLOS can sometimes detect 
a critical virus and attack in incoming packets because LLOS 
transmitted them to HLOS with a flow ID. If this occurs, 
HLOS notifies the situation to LLOS along with the flow ID of 
the packets shared by LLOS. LLOS is then able to block the 
following incoming packets, so that HLOS is unloaded by 
getting rid of the job of processing the hazard packets.  

The OmniFlow system, which is a flow-based connection 
system, offers more advantages than existing systems for the 
following reasons. The first reason is that two separate 
subsystems can be independently implemented and evolved, 
resulting in a shortening of the development time of the whole 
system. The second reason is that we can reuse existing 
systems or applications of the high layer running on the general 
purpose processor without modifying it too much. The third 
reason is that the scalability of the general purpose processor 
system can be easily expanded to the OmniFlow system 
through Ethernet interfaces if a user wants to increase the 
system performance. 

A DDoS attack occurs when multiple systems flood the 
bandwidth or resources of the target systems, which are usually 
one or more Web servers. This usually creates many abnormal 
flows within a certain period of time. A DDoS attack can be 
detected using the relationship between the number of active 
flows and their characteristics [17]. For example, a DDoS 
attack can be declared when the total flow bandwidth is 
abnormally small compared to the number of flows.  

As a strong candidate for future Internet use, OpenFlow 
separates the control plane from the data plane and connects 
them using an open interface called the OpenFlow protocol. An 
open interface allows network users to control packet flows in 
the data (forwarding) plane, which enables the implementation 
of virtual networks, user mobility, future Internet, and transport 
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layer protocols. Generally, when the OpenFlow system 
receives a packet, it first checks whether the packet flow is in 
service by checking the forwarding table. If the packet flow is 
not registered in the forwarding table, it is forwarded to the 
controller. The controller receiving the packet creates the flow 
information of a new flow, including the forwarding and 
classification information, and then sends it to the switch. Thus, 
we observed that there are some similarities between FAC and 
the packet processing of OpenFlow. Therefore, we believe that 
a function such as large FM or a wire-speed connection setup 
can be very useful for implementing OpenFlow systems for 
future network services. 

VI. Conclusion 

The proposed FAC supports a wire-speed connection setup. 
It also terminates a flow that does not have a packet transmitted 
within a certain period set by users. Thus, it provides the 
function to monitor active flows that carry a packet over 
networks during a short time period. We propose that this wire-
speed FM will be very useful for the following applications: 
the reliable transmission of UDP/TCP applications against 
congestion, security (DDoS), and future network services.  

To support a hardware-based FAC, we implemented the 
FMNP using 65-nm CMOS technology that has a scalable 
architecture and 40 core processors (32 packet processing cores 
and 8 packet hashing cores). The FMNP is the second 
generation of the device that supports FAC. The FMNP is a 
scalable architecture that easily increases the performance by 
adding each functional block to an internal bridge. We 
analyzed the external memory bandwidth, which is the most 
critical part in the design of a high-speed NP. It was proven that 
the FMNP has a sufficient performance to support 40 Gbps. 
We also showed that the flow router equipped with the FMNP 
was better than legacy systems in terms of throughput and 
packet loss. We believe that the FMNP will provide solutions 
for exploring future network services. 
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