
We propose a flow admission control (FAC) for setting
up a wire-speed connection for new flows based on their
negotiated bandwidth. It also terminates a flow that does
not have a packet transmitted within a certain period
determined by the users. The FAC can be used to provide
a reliable transmission of user datagram and transmission
control protocol applications. If the period of flows can be
set to a short time period, we can monitor active flows that
carry a packet over networks during the flow period. Such
powerful flow management can also be applied to security
systems to detect a denial-of-service attack. We implement
a network processor called a flow management network
processor (FMNP), which is the second generation of the
device that supports FAC. It has forty reduced instruction
set computer core processors optimized for packet
processing. It is fabricated in 65-nm CMOS technology
and has a 40-Gbps process performance. We prove that a
flow router equipped with an FMNP is better than legacy
systems in terms of throughput and packet loss.

Keywords: Flow-based network processor, flow
admission control, OpenFlow, flow management,
multicore processor.

Manuscript received Apr. 24, 2012; revised July 27, 2012; accepted Sept. 10, 2012.
Kyeong-Hwan Doo (phone: +82 42 860 5374, khdoo@etri.re.kr), Bhum-Cheol Lee

(bclee@etri.re.kr), and Soon-Seok Lee (sslee@etri.re.kr) are with the Advanced
Communications Research Laboratory, ETRI, Daejeon, Rep. of Korea.

Bin-Yeong Yoon (byyun@etri.re.kr) is with the Creative & Challenging Research Division,
ETRI, Daejeon, Rep. of Korea.

Man Soo Han (mshan@mokpo.ac.kr) is with the Department of Information and
Communications Engineering, Mokpo National University, Mokpo, Rep. of Korea.

Whan-Woo Kim (wwkim@cnu.ac.kr) is with the Division of Electrical and Computer
Engineering, Chungnam National University, Daejeon, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.12.1812.0046.

I. Introduction

In packet-switching networks, a packet flow is a sequence of
packets from a source host to a destination [1], [2]. A flow can
be uniquely identified by the following parameters within a
certain time period: source and destination IP address, source
and destination port, and layer-4 protocol, that is, a
transmission control protocol (TCP), a user datagram protocol
(UDP), and an Internet control message protocol.

In the fourth layer of the open systems interconnection
model, there are typically two types of protocol flows: a TCP
and a UDP [3], [4]. A TCP is an end-to-end protocol used to
compensate for packet loss and disordering caused over
networks. A TCP establishes a connection of flows using a
three-way handshake. It is used for connection-oriented
services like the World-Wide Web (WWW), e-mail, and the
file transfer protocol (FTP). For a better throughput of TCP
flows at a router, studies have been conducted on the admission
control of a TCP flow that discards an initiated packet of the
TCP flow in a network node [2], [5]-[7]. These studies show
that the TCP admission control improves the performance of
TCP flows in terms of the flow throughput and transfer
completion time.

On the other hand, a UDP uses a simple transmission model
without connection setup procedures to provide reliability,
ordering, or data integrity. Therefore, UDP applications must
generally accept some loss, errors, or duplication. Common
network applications that use a UDP include the domain name
system, such streaming media applications as IPTV, voice over
IP, trivial FTP, IP tunneling protocols, and many online games.
It is expected that the rise of new streaming applications [8]
and new P2P protocols [9] will rapidly increase the use of a

Multicore Flow Processor
with Wire-Speed Flow Admission Control

Kyeong-Hwan Doo, Bin-Yeong Yoon, Bhum-Cheol Lee, Soon-Seok Lee,
Man Soo Han, and Whan-Woo Kim

ETRI Journal, Volume 34, Number 6, December 2012 © 2012 Kyeong-Hwan Doo et al. 827

UDP as a transport protocol. Congestion-insensitive UDP
applications that consume a large fraction of available
bandwidth could endanger the stability of the Internet.
Network-based mechanisms have been proposed to minimize
potential congestion collapse effects of uncontrolled heavy
UDP traffic loads. The datagram congestion control protocol
(DCCP) was designed as a partial solution to this potential
problem by adding end host TCP-friendly congestion control
behavior to high-rate UDP streams, such as streaming media
[10].

As an alternative solution of DCCP, flow admission control
(FAC) is proposed in this paper, in which a connection is set up
for a UDP flow. FAC can provide a reliable transmission of
UDP applications against congestion and does not inflict other
flows in service simply by rejecting a new flow in a congested
node. FAC can also be applied to TCP applications, replacing
the TCP admission control algorithms used at routers [2], [5]-
[7]. Thus, it can improve the performance of flow throughput
without looking up synchronize packets to identify the starting
packet of a TCP flow in an intermediate node.

OpenFlow was designed as a new network paradigm, which
enables researchers to test new ideas on an existing network
infrastructure [11], [12]. An enormous amount of effort has
recently been focused on the commercial success of OpenFlow
through the Open Networking Foundation (ONF) [13], [14].
For large-scale commercial OpenFlow networks, performance
of the controller is one of the issues to be resolved [15]. This
paper notes that today’s controller implementations are unable
to handle a huge number of new flows in high-speed networks
with 10-Gbps links. Therefore, FAC is believed to be one of
the key elements in both the forwarding plane and control
plane for OpenFlow, which is trying to innovate current
network technologies.

We have developed a network processor (NP) called a flow
management (FM) NP (FMNP), also known as an OmniFlow
processor, which implements the FAC algorithm based on
hardware. The FMNP does not have a pipelined architecture
with multiple stages but has rather a single stage with 32 core
processors. Thus, it can conduct incorporate packet processing,
from packet lookups to scheduling. It also supports a wire-
speed connection setup for flows that are not registered in the
flow information table and a connection termination of flows in
which there is no packet transmitted within a period
determined by the users. Wire-speed FAC is expected to be
used not only for OpenFlow to develop new network services
but also for network QoS to provide reliable transmissions of
UDP/TCP applications against congestion. It has been shown
that fast FM can contribute to the implementation of various
applications [16]. In particular, upon analyzing the routing
paths of active flows, it was found that wire-speed FAC is

effectively used for the detection and prevention of distributed
denial of service (DDoS) attacks [17]. We believe that the
FMNP will be used to explore new network services by
manipulating and monitoring active flows.

The remainder of this paper is organized as follows. In
section II, the structure of the NP and the flow-based
mechanism are reviewed. In addition, we propose a scalable
architecture of the FMNP. In section III, we analyze the
hardware performance of a DDR2 SDRAM controller, which
is one of the most critical issues for implementing the FMNP.
Through simulations, the performance of FAC is evaluated for
a comparison with legacy models in terms of bandwidth
utilization and packet loss. Next, section IV shows the results
of implementation and verification of the FMNP chip. As an
application of the FMNP, the OmniFlow system is proposed in
section V. Finally, some concluding remarks are given in
section VI.

II. Architecture

An NP is a software programmable device for packet
processing, such as pattern matching, address lookups, queue
management, scheduling, and so on. It has two architectural
features for high performance: multicore processors and a
pipeline [18], [19]. A multicore processor executes multiple
instructions with two or more independent actual processors
(called “cores”), which increases the performance of program
execution. According to Amdahl’s law, the speed of the
program execution in multiple processors is dominated by the
sequential fraction of the program rather than by the number of
processors [20]. This means that how the workload (program)
is assigned to each processor is important for efficient parallel
processing. The FMNP, which has 32 multicore processors,
usually distributes the workload to each core on a packet-by-
packet basis and sometimes assigns the workload on a flow
basis to maintain the sequence of incoming packets.

The FMNP does not have a pipelined architecture, and, thus,
it can do all packet processing within a single stage, from a
packet lookup to scheduling. Cisco’s NP, QuantumFlow, is a
typical case and enables more flexibility for cooperative packet
processing [21].

1. Parallelism

A sequence of packets in the same flow should be
maintained over networks to meet the requirements of higher
layers, such as TCP [22]. However, there are several factors in
changing the sequence in multicore processors. Therefore,
multicore NPs require specific schemes to keep the packet
sequence of each flow [23]. Figure 1 illustrates how the

828 Kyeong-Hwan Doo et al. ETRI Journal, Volume 34, Number 6, December 2012

Fig. 1. Flow-based parallel packet process.

Flow-based multicore processors

Core 4
B1

A3 3rd A flow
processing

 1st D flow
processing

Flows are classified by flow ID

Executed
flow

 1st B flow
processing

Independent sequence
among different flows

Packet arrival order Packet departure order

A3

B2

4th A flow
waiting

Dn

An
Bn

Cn n

C1

C1 C1

 n-th A flow
 n-th B flow

-th C flow
 n-th D flow

 1st C flow
processing

 2nd B flow
waiting

Core 3

Core 2

Core 1

D1

D1 A3 A4 B1 B2 B1 D1 A3 A2 A1

sequence for the same flow is kept in the FMNP. There are
eight packets belonging to one of four flows (An, Bn, Cn, and
Dn) to be processed in the cores, where n represents the order
of arrival. When the FMNP receives a packet, it should send
the packet to one of the cores for packet processing. The
FMNP uses the flow numbers to decide which core to use to
process the packet. If there is any core processing a packet with
the same flow number as the received packet, the received
packet is sent to that core. If there is no core processing a
packet with the same flow number as the received packet, the
FMNP sends the received packet to one of the idle cores.
Based on the rule of packet distribution, packet A3 is sent to
Core 1, followed by packet A4, since packets A3 and A4 have
the same flow number, A. This makes packet A4 wait in the
queue of Core 1 even if all the remaining cores are in an idle
state. Packet B1 is assigned to Core 4, followed by packet B2.

2. FMNP Architecture

The FMNP has a scalable architecture, as shown in Fig. 2,
which consists of five major blocks: a physical interface block,
that is, a flexible header parser (FHP), a physical layer receiver
(PHY_Rx), an egress scheduler (ESch), and a PHY transmitter
(PHY_Tx); a switch interface block, that is, an ingress Sch
(ISch), a switch fabric Rx (SF_Rx), and an SF_Tx; a data
bridge; a context Sch (ConSch); and a processor array (PA).

A data bridge is a bridge that connects one physical interface
block to one of the PAs or one switch interface block to one of
the PAs. Each PA contains 16 multicore processors. The packet
processing power is easily increased simply by duplicating the
PA block and then pasting it to the data bridge. External data
interfaces are also easily extended by duplicating the physical
interface block and the switch interface block and then pasting
them to the data bridge. The white-colored blocks represent a
unit of the functional block used for scalability. The FMNP is
the second generation of the device that supports FAC. The
first-generation device consists of a unit functional block. The
FMNP has a unit functional block and an additional PA and

Fig. 2. Scalable architecture of FMNP.

PA

MAC device

FBM

Ingress
Egress

Switch fabric

PAn

FMNP

Data bridge

ConSch

PA1

ConSch1 ConSchn

FHP

PHY_
Rx

ESch

PHY_
Tx

1
… n

SF_ Rx

ISch

SF_ Tx

DBM

NSE
(TCAM)

Local CPU
1
… m

physical interface block.

Incoming packets are processed along two data paths, as
shown in Fig. 2: ingress and egress. Ingress packets arriving at
the framer interface of the PHY_Rx are sent to one of the PAs
through the data bridge. The packets leave the switch fabric
interface of the SF_Tx through the data bridge after being
processed in the PA. Egress packets coming from the switch
fabric interface of the SF_Rx arrive at the PA through the data
bridge and then return to the data bridge after packet processing
by the PA. The packets finally leave the framer interface of the
PHY_Tx.

For functional blocks along the ingress path, the PHY_Rx
that receives packets through SPI4.2 from the external MAC
device segments the incoming packets into 48-byte chunks and
stores them in the data block memory (DBM), except for the
first chunk. An FHP, which consists of four reduced instruction
set computer (RISC) core processors, parses the first chunk
using a microcode and generates a hash key and value to
identify the flow for a packet. The data bridge has a mux and
demux architecture that connects one of the framer interfaces to
one of the PAs. The ConSch determines one of 32 contexts in
the PA to process a chunk, as described in section II.1, and then
forwards the chunk to the PA. The PA includes 16 RISC core
processors. Each processor has two contexts (threads) and an
internal memory that can store 2,048 instructions. One of the
multicore processors continuously monitors all flows and
terminates any registered flow that has an absence of packets
for a period of time. The period of each flow, which we define
as the “allowed sleeping timeout” (as-timeout), can be set by
the users to be short. All of the multicore processors can access
the flow block memory (FBM) to store the flow-state
information, the DBM to store data packets, and the network

ETRI Journal, Volume 34, Number 6, December 2012 Kyeong-Hwan Doo et al. 829

search engine (NSE) to store a lookup table. One of the main
jobs of the PA is to schedule packets to meet the QoS
requirements. It determines the scheduling information: time to
send (TTS), queue number, and output port number. The TTS
represents the output time of the packet. The PA sends a pointer
to the ISch to locate a packet in the DBM along with the
scheduling information above. The scheduler saves the pointer
in a calendar queue of the schedule table of the DBM and
eventually retrieves it after sending out a complete packet in
due time. The SF_Tx converts the packet into internal switch
frames to transmit to the switch fabric.

For functional blocks along the egress path, the SF_Rx,
which receives egress packets from the switch fabric, stores all
packets except for the first chunk in the DBM, after converting
the internal switch frames of a packet into chunks. The PA
sends the packets to the ESch along with scheduling
information after processing them. Like the ISch does in the
ingress path, the ESch schedules packets using the scheduling
information, such as TTS and queue number. The PHY_Tx
sends the packet to the MAC device after assembling the
chunks to make a complete packet.

3. Flow Management

The FMNP has a wire-speed connection setup of flows to
support the wire-speed FAC. Figure 3(a) shows the connection
setup and packet forwarding procedures.

When a packet arrives at the FMNP, a flow ID is determined
by the FHP block, which generates a 48-byte hash key and
22-bit hash value. The hash key is extracted from the header of
the packets or a certain part of the packets programmed by the
users. Receiving the hash information and the packet, the PA
accesses the flow base (FB) table by taking a 22-bit hash value
as a table address to search for the flow information of the
packet. If no flow information exists at the address, the flow
connection is not set up. Thus, the PA starts a new connection
setup of the flow. First, the PA registers the new flow into the
FB table that stores the hash information, flow statistics, and so
on. Second, the PA builds up and stores the flow information of
the FM table by referring to the forwarding information base
(FIB) and classification tables. The FM table is used to forward
the packet to a destination port of the flow and to generate the
scheduling information of the flow. The entries of the FIB and
FM tables are filled with predefined parameters that are
mapped to the flows. The parameters of the FIB and FM tables
are determined by the routing protocols and management
systems. After creating the FM table, the PA transfers the
packet to the scheduler along with the forwarding and
scheduling information. If the flow of a packet has already
been registered in the FB table when the packet arrives at the

Fig. 3. FM: (a) flow setup and (b) flow matching using hash
value.

PA

64 B

Complex
comparator

64 B

Base FB

FM table
pointer

Hash value (2n–1)

Hash value 0

Ext FB

Hash key 48 B

From FHP

Ext FB

Hash key
FB

Packet
parsing

Check
FB

table

Generate scheduling
info. based on FM table

l

Packet
scheduling

Registration
of FB table

Build-up of
FM table

FIB
table

New connection
setup

Registered
flow

New flow

Hash key &
value

QoS
table

(a)

64 B
64 B

Hit/miss
(b)

PA (microcode program) SchedulerFHP

FMNP, the PA refers to the FM table to create the scheduling
and forwarding information. It then transfers the packet to the
scheduler along with this information.

The FIB, classification, and FM tables are all included in the
FBM, 1G DDR2 SDRAM, which can be accessed by the 32
multicore processors. The FB table has a maximum of 6M
flow entries. Each entry has 64-byte flow data that includes the
hash information, as-timeout, statistics, and the pointer to an
entry of the FM table for the forwarding and classification
information. We use a technique to register the entries, which is
shown in Fig. 3(b).

Receiving a hash key and value from the FHP, the PA
accesses the FB table by taking a 22-bit hash value as an
address of the table. If there is no flow information at the
address, the connection of the new flow is set up for the
received packet. For the registration, the entry of the FB table is
stored with the statistics, as-timeout, hash key, and so on. If any
flow information exists in the address, the PA compares the
hash key of the received packet with the one stored in the FB.
If they match, the stored flow information is used to process the
packet. If there is no match, the PA jumps to the extended FB
to search for the flow information. It then repeats the same
steps as above. After setting the as-timeout of the flow, the PA
continuously checks the flow status. The as-timeout of each
flow can be set differently and is continuously checked to
update the flows. The flows are terminated if there is no packet
during the as-timeout. If the period is set to be short, we can

830 Kyeong-Hwan Doo et al. ETRI Journal, Volume 34, Number 6, December 2012

monitor the active flows that have packets during service. This
feature can be applied to security systems to prevent DDoS
attacks and to a fast FAC to guarantee the QoS of the flows.

III. Performance Analysis

In this section, we analyze the performance from two
different perspectives: the bandwidth of a memory controller
and an FAC. The hardware processing power of the FMNP can
be estimated by the former, and the differentiated FM can be
evaluated by the latter.

1. Data Block Memory Interface

One of the most critical issues when implementing a high-
speed NP is a lack of bandwidth of the external data memory
interfaces used to store and forward incoming packets. We
must develop effective arbitration logics to maximize the
bandwidth utilization of the memory interfaces. Therefore,
analyzing the performance of the total memory bandwidth is
important to estimate the processing power of NPs.

A. Structure

The FMNP has a DBM controller (DBMC) with an efficient
arbitration algorithm to control many agents that compete to
access the DBM, as shown in Fig. 4. The DBMC has four
memory interfaces of DDR2 SDRAM DIMM. The DBM
externally connected to the DBMC is allocated for the queue
buffer to store packets and the queue table to contain the
scheduling information. The following agents have access to
the DBM for packet processing.

• PHY0_Rx and PHY1_Rx write the queue buffer packets
received from the physical links.

• ESch0_A and ESch1_A write a pointer in a calendar queue
of the queue table to schedule packets transmitted to the
physical links.

• ESch0_B and ESch1_B obtain a pointer in a calendar
queue of the queue buffer by a virtual clock and then read a
complete packet from the queue buffer to transmit packets to
the physical links.

• SF_Rx writes the queue buffer packets received from the
switch fabric.

• ISch_A writes a pointer in a calendar queue of the queue
table to schedule packets transmitted to the switch fabric.

• ISch_B obtains a pointer in a calendar queue of the queue
buffer by a virtual clock and then reads a complete packet from
the queue buffer to transmit packets to the switch fabric.

• PA0 and PA1 write the first chunk of packets to the queue
buffer after processing.

Table 1 shows the access types and ratios of the queue buffer

Fig. 4. DBMC interface.

Port 0

Queue
buffer

DBM1 DBM2 DBM3 DBM4

DBMC

Port 1 SF

Queue
table =

PA0 PA1

Esch0_B

Esch0_A

PHY0_Rx

Esch1_B

Esch1_A

PHY1_Rx

Isch_B

Isch_A

SF_Rx

P15

P14

P1

P0

P31

P30

P17

P16

Table 1. DBM access ratio (%).

 Type of DBM
access Max Typical Min

Buffer WR/RD 49.60 45.00 36.69

Table RD 0.19 2.38 6.34 Ingress

Table WR 0.13 1.33 3.52

Buffer WR/RD 49.60 45.00 36.69

Table RD 0.30 4.07 10.89 Egress

Table WR 0.18 2.22 5.87

and queue table in the DBM obtained using a simulator made
with Verilog code and Perl script. According to three types of
flows, that is, max, typical, and min, we analyze the ratio
performance based on the types of DBM access. A “min” flow
means that all of the packets are 44 bytes in size. A “max” flow
means that all of the packets are 4,096 bytes. Finally, a
“typical” flow has two types of packets: one that is 4,096 bytes
(75%) and one that is 44 bytes (25%). The DBM has a queue
buffer and queue table for ingress and egress packet flows.
Many internal blocks of the FMNP have access to the DBM
information. Thus, we can classify the access to the DBM into
six types of operations, as shown in Table 1. The WR/RD
buffer is used to store a packet and retrieve it from the queue
buffer of the DBM. The RD table is used to read information
from the queue table.

The WR table is used to write scheduling information to the
queue table. Table 1 also shows the ratio of the DBM access
bandwidth based on the types of DBM access. For a max flow,
the ratio of the packet WR/RD buffer is dominant, whereas the

ETRI Journal, Volume 34, Number 6, December 2012 Kyeong-Hwan Doo et al. 831

Fig. 5. Available vs. demanded bandwidth of DBM.

0

20,000

40,000

60,000

80,000

100,000

B
W

 (M
b/

s)

Max Typical Min
Packet size

Available (556 MHz)
Demand (duplex)

Demand (ingress)
Demand (egress)

ratio of the RD/WR table is small. As the packet size of the
flow increases, the ratio of the RD/WR table increases. Table 1
also shows that the ratio of the RD/WR table is higher in the
egress path than in the ingress path. The reason for this is that
the egress path requires more scheduling procedures than the
ingress path requires, in architectural terms.

B. Performance Analysis

We calculated the available bandwidth of the DBMC using
(1). Since the FMNP has four external memory buses 64 bits
wide and operates using a 556-MHz clock, the total available
bandwidth is about 72 Gbps. We assume that the bus utilization
is about 50%.

avail num b clk(Mb/s) .BW B W Intf U= × × × (1)

BBnum : the number of banks
Wb : bus width per bank (bits)
Intfclk : interface clock rate (MHz)
U : bus utilization

We simulated the demanded bandwidth of the DBM
interface using the three types of flows and compared it to the
available bandwidth in Fig. 5.

The figure indicates that the FMNP has sufficient power to
process typically sized 40-Gbps packets, though it does not
support the flow of the minimum packet size (min). However,
we think that the actual bus utilization is higher than the
estimation, as the bus utilization is higher than the 50%
conservatively used in (1). Thus, we believe that the FMNP can
almost support wire-speed packet processing.

2. Evaluation of FAC

Generally, the legacy router supporting connection
admission control (CAC) determines the acceptance or
rejection of a new flow depending on the service level
agreement, which includes the flow information, such as the

service class, negotiated flow bandwidth, and so on. If the total
bandwidth passes over the threshold of the allowed bandwidth
by a new flow, the flow is rejected. Contrary to the legacy
router, the flow router implemented with the FMNP supports
the CAC (as with the FAC) when considering the actual traffic.
The flow router does not admit a new flow if the total sum of
the average input rates of the admitted flows exceeds the
capacity of the flow router. In addition, the flow router can
discard the packets of a specific flow under a congestion
situation to control the throughput of the flow router.

We simulated three types of routers to estimate the
performance of their bandwidth utilization in terms of the
CAC: the peak cell rate (PCR)-based CAC (Juniper model),
the measurement-based CAC (measurement-based admission
control [MBAC] model), and the proposed flow router (FAC
model).

In the Juniper router [24], the CAC is performed based on
the PCR for a label switched path (LSP) to support DiffServ
traffic engineering. In [24], to enhance the link utilization, LSP
size oversubscription and link size oversubscription are
recommended, especially for best effort traffic. According to
[24], “LSP size oversubscription is to configure simply less
bandwidth than the peak rate expected for the LSP, and the link
size oversubscription is to increase the maximum reservable
bandwidth on the link.” The oversubscriptions may increase
packet delay and cause packet loss [24]. We assume that the
LSP size oversubscription is 0.8 × PCR and that the link size
oversubscription is 1.2 × output link rate.

In the MBAC model [25], the input traffic is measured over
period (P), which is split into units of sampling period (S). The
largest value among the input traffic values measured over each
unit of the sampling period is considered the current load (CL).
A new flow is permitted if the sum of the PCR of the new flow
and the CL is less than or equal to the output link rate. It is
simulated under the condition of P/S=10 and S=1,000 unit
times (2 µs), where the unit time is the transmission time of a
256-byte packet at the output link rate.

We assume that all of the three systems have the same
simulation parameters shown in Fig. 6: 32 flows, 110k
× 256 byte queue buffer per flow, 1-Gbps maximum output
rate, and 256-byte input packets. We use the self-similar traffic
model that each connection is fed by a Pareto distributed on-off
process. The shape parameters for the on and off intervals are
set to 1.4 and 1.2, respectively. Hence, the Hurst parameter is
0.8. It is simulated until the number of admitted packets
reaches at least 500M.

The output bandwidth is 1 Gbps, and the flow bandwidth is
variable at up to 100 Mbps. We measured the following
parameters, increasing the input rate of each flow from 10% of
the maximum rate (100 Mbps) to 98%: throughput (utilization),

832 Kyeong-Hwan Doo et al. ETRI Journal, Volume 34, Number 6, December 2012

Fig. 6. System configuration for simulation.

Flow 0

Flow 31

Buffer 110k

Buffer 110k

Buffer 110k
Flow 1

1 Gb/s

Fig. 7. Number of admitted flows.

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FAC
Juniper
MBAC

Offered load

N
um

be
r o

f a
dm

itt
ed

 c
on

ne
ct

io
ns

Fig. 8. Packet loss rate of admitted connections.

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FAC
Juniper
MBAC

Offered load

Pa
ck

et
 lo

ss
 ra

te

mean delay, number of admitted flows, and packet loss rate.

Figures 7 and 8 show the number of admitted flows and their
packet loss ratio, respectively, as the offered load increases. The
offered load means the input rate of a flow. The packet loss in
the rejected connections is not considered.

In the case of the Juniper model in Fig. 8, the packet loss
starts, owing to traffic congestion, when the offered load
reaches 0.7, and the packet loss ratio increases as the load
increases because of the LSP and link size oversubscription.
The number of admitted flows of the FAC and MBAC models
decreases as the load increases. Thus, we can protect a loss of

Fig. 9. Mean packet delay.

1.E–6

1.E–5

1.E–4

1.E–3

1.E–2

1.E–1

1.E+0

1.E+1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FAC
Juniper
MBAC

Offered load

M
ea

n
de

la
y

(s
)

Fig. 10. Packet throughput.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FAC
Juniper
MBAC

Offered load

Th
ro

ug
hp

ut
 (G

b/
s)

packets in the flows serviced by limiting the number of
accepted flows. Even if a packet loss occurs from an
unexpected surge of traffic flows, these models can minimize
the loss. The number of admitted flows in the MBAC model is
less and decreases less regularly than that in the FAC model,
depending on the measurement error.

Figure 9 shows the mean delay of packets. The mean delay
of the Juniper model increases sharply as the waiting time of
packets in the queues increases. The delay time of the FAC and
MBAC models repeats the ups and downs after the load
reaches 0.2. The reason for this is that the delay time drops
whenever the number of admitted flows decreases. Whenever
the number of admitted flows decreases by one, a congested
state is instantly released, such that the packet processing
becomes faster. The mean delay of the FAC model is greater
than that of the MBAC model due to the difference in the
number of admitted connections.

Figure 10 shows that the throughput of the FAC model is
best among the three types of systems, on average. Although
the throughput of the Juniper model is best in a high load, the
packet loss occurs due to congestion, as shown in Fig. 8. The

ETRI Journal, Volume 34, Number 6, December 2012 Kyeong-Hwan Doo et al. 833

throughput of the FAC model linearly increases up to 1 Gbps,
while the packet loss rate is almost zero. There are ups and
downs in the throughput after the offered load reaches 0.3. The
throughput instantly drops whenever the number of admitted
flows decreases by one. As we can see from Figs. 8 through 10,
it is clear that the FAC model has the best performance in terms
of throughput and packet loss rate in this simulation scenario
because it performs the CAC based on accurate traffic
variables per flow.

IV. Verification and Implementation

The most difficult part of a chip design is the task of
verifying whether the logic design conforms to the
specifications. In this section, we present the test bench
designed for functional verification of the FMNP and then
show the implemented chip specification.

1. Design Verification

We developed a test bench architecture that is targeted to
verify the FMNP design. The FMNP supports the layer-3
protocol of IPv4, IPv6, and multiprotocol label switching. It
has programmable support for Ethernet, frame relay, point-to-
point protocol, and fiber channel over Ethernet initialization
protocol of the second layer. The complete test bench
implemented with Verilog and Perl is designed in a layer-based
architecture, as shown in Fig. 11.

The Perl module layer (SL1_1 and SL1_2) is on the top level.
The second-level layer is the simulation executable layer, SL2,
which interfaces with the Perl layer. The third layer, SL3, is the
complete design and test bench component layer. The major
Perl modules are a sender and a checker that create a
connection to the Verilog test bench through the corresponding
sockets and pipes. The sender generates the command and
packet data based on the test case configuration. The Verilog
test bench receives the command data, which it decodes, and
then applies the packet data as a stimulus to the FMNP.

The checker receives the command and packet information
from the sender, which it uses as a reference. The checker also
receives the resulting data from the Verilog test bench using a
receiver socket, which it compares with the reference data to
obtain a pass/fail status. The post processor module counts the
number of errors to generate the pass and fail statistics. On each
interface bus, the Verilog test bench has interface monitors that
capture the data on the interface and send it to the checker via
Socket2 using Verilog programming language interface (PLI)
calls. The functional coverage is captured at the SPI4.2
interface, which targets the various packet formats to be
supported in the FMNP. We executed about 1,000 test cases to

Fig. 11. Layer-based architecture of test bench.

CPU I/F

SW
driver

CPU
driver

Socket1

Driver

Monitors

Mesh-
socket

Socket2

Socket

Perl module
(checker)

Socket_mesh

FMNP

Models
Perl module

(sender)

Socket_R

Verilog PLI’s

SL1_2

SL1_1 SL2 SL3

CLK & RST
generator

MEM
initializer

SPI4.2
model

SPI4.2
model

Post
processor

DDR2
model

DDR2
model NSE

FBM
I/F

FBM
I/F

NSE
I/F

SPI4.2 I/F

SPI4.2 I/F

SF I/F

Fig. 12. Layout of FMNP.

PA1 PA
ConSch1
ConSch

Isch
Esch

Esch1

TCAM

PHY_Rx
PHY_Tx

PHY_Rx1
PHY_Tx1

SF_Rx
SF_Tx

FB
M

D

B
M

D
B

M

FB
M

NSE

verify all corner cases of the FMNP design and achieved
complete coverage (100%) for the functional verification.

2. Chip Implementation

We chose a TSMC foundry, which is suitable for the FMNP
design in terms of cost and technology. The FMNP uses
several third-party libraries including ternary content-
addressable memory (TCAM), phase-locked loop, RAM, and
I/O cells. Most of the FMNP design is synthesized using
Verilog models of a standard cell library and third-party
libraries in 65-nm CMOS technology. Figure 12 shows the
layout of the chip.

The FMNP has 2,196 RAM instances, including 140

834 Kyeong-Hwan Doo et al. ETRI Journal, Volume 34, Number 6, December 2012

instances of repairable SRAM. The gate count of the
synthesized chip is about 25M, and the total memory bits are
17.6M, except for the repairable memory at 9.25 Mbits. The
die size is 17 mm × 17 mm. The power consumption is about
48 W. The core voltage is 1 V. The FMNP package is a 2,377-
ball high-performance flip-chip ball grid array with a 12-layer
substrate, and its size is 50 mm × 50 mm. A back-annotated
timing analysis and simulation were performed under a worst-
case condition, and the maximum operating clock rate was
556 MHz with a considered clock uncertainty of 30%.

V. Application

Recent network services have become more complicated by
the deep relationship between the L2 and L3 forwarding
protocols and the L7 application protocols. This means that a
result of L7 protocol processing affects L2 and L4 protocol
processing. Some premium network services strongly require
the incorporation of protocol processing through multilayers
for packet forwarding. This is shown in security systems like
intrusion detection and prevention systems, in which incoming
packets are inspected by L7 protocols and then dropped or
forwarded by L2 or L3 protocols reflecting the results of the L7
protocol processing [26]. Sufficing for the trend of network
services and problems described above, the OmniFlow system
was invented, which consists of two subsystems: a high-layer
OmniFlow system (HLOS) and a low-layer OmniFlow system
(LLOS) [27], as shown in Fig. 13.

LLOS, including multiple FMNPs, is well fitted for the
protocol processing of lower layers from L2 through L4,
generating a flow ID of incoming packets, managing the flow
database (DB), and retrieving the flow ID when the flow is
terminated. HLOS comprising multiple general purpose

Fig. 13. Configurations of OmniFlow system, consisting of low-
and high-layer subsystems: (a) packet flow and (b)
control information flow.

 Processor(M)

Processor(2)

FMNFMNP(2)
FMNP(1)

Flow ID
management

Per
flow

queue Phys
ic

al

in
te

rfa
ce

s

Processor(1)

HLOS

+ (H): High layer
+ (L): Low layer

(a) (b)

LLOS

FMNP(k)

Flow
ID

E-IN
(H)

S-IN
(H)

S-IN
(H)

1 A aa

2 B bb
C cc

L

Flow
ID

E-IN
(L)

S-IN
(L)

S-IN
(L)

1 A aa

2 B bb

C cc

L

processors is used for protocol processing of higher layers like
layer 7. It is a scalable architecture that can be easily extended
simply by adding more processors if its traffic load increases.
The key element of the OmniFlow system is the reference flow
ID that provides a good communication channel between two
subsystems. Each subsystem has a DB referenced to the flow
ID to process incoming packets. The DB has two types of
information. Shared information (S-IN) is the information
commonly used and shared by two subsystems. Exclusive
information (E-IN) is the information exclusively used for each
subsystem. The information includes statistics, packet
processing rules, and results. By exchanging the information of
S-IN with the peer subsystem, each subsystem can maintain
the complete amount of information necessary to seamlessly
process protocols of incoming packets from a low layer to a
high layer. This means that packets with the same flow ID
assigned by LLOS are interactively processed by two separate
subsystems. It is exemplified that HLOS can sometimes detect
a critical virus and attack in incoming packets because LLOS
transmitted them to HLOS with a flow ID. If this occurs,
HLOS notifies the situation to LLOS along with the flow ID of
the packets shared by LLOS. LLOS is then able to block the
following incoming packets, so that HLOS is unloaded by
getting rid of the job of processing the hazard packets.

The OmniFlow system, which is a flow-based connection
system, offers more advantages than existing systems for the
following reasons. The first reason is that two separate
subsystems can be independently implemented and evolved,
resulting in a shortening of the development time of the whole
system. The second reason is that we can reuse existing
systems or applications of the high layer running on the general
purpose processor without modifying it too much. The third
reason is that the scalability of the general purpose processor
system can be easily expanded to the OmniFlow system
through Ethernet interfaces if a user wants to increase the
system performance.

A DDoS attack occurs when multiple systems flood the
bandwidth or resources of the target systems, which are usually
one or more Web servers. This usually creates many abnormal
flows within a certain period of time. A DDoS attack can be
detected using the relationship between the number of active
flows and their characteristics [17]. For example, a DDoS
attack can be declared when the total flow bandwidth is
abnormally small compared to the number of flows.

As a strong candidate for future Internet use, OpenFlow
separates the control plane from the data plane and connects
them using an open interface called the OpenFlow protocol. An
open interface allows network users to control packet flows in
the data (forwarding) plane, which enables the implementation
of virtual networks, user mobility, future Internet, and transport

ETRI Journal, Volume 34, Number 6, December 2012 Kyeong-Hwan Doo et al. 835

layer protocols. Generally, when the OpenFlow system
receives a packet, it first checks whether the packet flow is in
service by checking the forwarding table. If the packet flow is
not registered in the forwarding table, it is forwarded to the
controller. The controller receiving the packet creates the flow
information of a new flow, including the forwarding and
classification information, and then sends it to the switch. Thus,
we observed that there are some similarities between FAC and
the packet processing of OpenFlow. Therefore, we believe that
a function such as large FM or a wire-speed connection setup
can be very useful for implementing OpenFlow systems for
future network services.

VI. Conclusion

The proposed FAC supports a wire-speed connection setup.
It also terminates a flow that does not have a packet transmitted
within a certain period set by users. Thus, it provides the
function to monitor active flows that carry a packet over
networks during a short time period. We propose that this wire-
speed FM will be very useful for the following applications:
the reliable transmission of UDP/TCP applications against
congestion, security (DDoS), and future network services.

To support a hardware-based FAC, we implemented the
FMNP using 65-nm CMOS technology that has a scalable
architecture and 40 core processors (32 packet processing cores
and 8 packet hashing cores). The FMNP is the second
generation of the device that supports FAC. The FMNP is a
scalable architecture that easily increases the performance by
adding each functional block to an internal bridge. We
analyzed the external memory bandwidth, which is the most
critical part in the design of a high-speed NP. It was proven that
the FMNP has a sufficient performance to support 40 Gbps.
We also showed that the flow router equipped with the FMNP
was better than legacy systems in terms of throughput and
packet loss. We believe that the FMNP will provide solutions
for exploring future network services.

References

[1] N. Brownlee, C. Mills, and G. Ruth, “Traffic Flow Measurement:
Architecture,” IETF RFC 2722, Oct 1999.

[2] J. Rajahalme et al., “IPv6 Flow Label Specification,” IETF RFC
3697, Mar. 2004.

[3] J. Postel, “Transmission Control Protocol,” RFC 793, Sept. 1981.
[4] http://en.wikipedia.org/wiki/User_Datagram_Protocol
[5] A. Kumar et al., “Nonintrusive TCP Connection Admission

Control for Bandwidth Management of an Internet Access Link,”
IEEE Commun. Mag., May 2000.

[6] R. Mortier et al., “Implicit Admission Control,” IEEE J. Sel. Areas

Commun., Dec. 2000.
[7] J.W. Roberts and S. Oueslati-Boulahia, “Quality of Service by

Flow Aware Networking,” Phil. Trans. Royal Soc. London, 2000.
[8] P. Pan, Y. Cui, and B. Liu, “A Measurement Study on Video

Acceleration Service,” IEEE CCNC, 2009.
[9] “Micro transport protocol,” Wikipedia.org, Apr. 2009.

[10] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion
Control Protocol (DCCP),” IETF RFC 4340, Mar. 2006.

[11] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Commun. Rev., vol. 38,
no. 2, Apr. 2008, pp. 69-74.

[12] “OpenFlow Switch Specification, V1.2,” Open Netw. Foundation,
Dec. 2011.

[13] http://opennetsummit.org/index.html
[14] https://www.opennetworking.org/
[15] M. Jarschel et al., “Modeling and Performance Evaluation of an

OpenFlow Architecture,” ITC2011, Sept. 2011.
[16] N.S. Ko et al., “Quality-of-Service Mechanisms for Flow-Based

Routers,” ETRI J., vol. 30, no. 2, Apr. 2008, pp.183-193.
[17] H.K. Yi et al., “DDoS Detection Algorithm Using the

Bidirectional Session,” CN, vol. 160, June 2011, pp.191-203.
[18] http://www.ezchip.com/products.htm
[19] http://www.xelerated.com/en/hx/
[20] G.M. Amdahl, “Validity of the Single-Processor Approach to

Achieving Large Scale Computing Capabilities,” ACM Press, vol.
30, 1967, pp. 483-485

[21] “The Cisco QuantumFlow Processor: Cisco’s Next Generation
Network Processor,” Cisco Systems, 2008.

[22] V. Paxson, “End-to-End Internet Packet Dynamics,” IEEE/ACM
Trans. Netw., vol. 7, no. 3, June 1999.

[23] S. Govind, R. Govindarajan, and J. Kuri, “Packet Reordering in
Network Processors,” IEEE IPDPS, Mar. 2007.

[24] “Junos OS MPLS Applications Configuration Guide R12.1,”
Juniper Netw., Mar. 2012.

[25] J. Lakkakorpi, “Flexible Admission Control for DiffServ Access
Networks,” Proc. SPIE, vol. 5244, Aug. 2003.

[26] “Guide to Intrusion Detection and Prevention Systems (IDPS),”
NIST Special Publication 800-94, 2007.

[27] B.Y. Yoon, B.C. Lee, and S.S. Lee, “Scalable Flow-Based
Network Processor for Premium Network Services,” ICTC, Nov.
2011, pp. 436-440.

836 Kyeong-Hwan Doo et al. ETRI Journal, Volume 34, Number 6, December 2012

Kyeong-Hwan Doo received his BS and MS in
electronics engineering from Chonbuk National
University, Jeonju, Rep. of Korea, in 1996 and
1998, respectively. In 2001, he joined ETRI,
Daejeon, Rep. of Korea, and has participated in
several projects, including work on the PON
MAC device, flow processor design, and ATM

switching systems. Currently, he is working toward his PhD at
Chungnam National University, Daejeon, Rep. of Korea. His research
interests are passive optical networks and network processor design.

Bin-Yeong Yoon received his BS and MS in
electrical engineering from Chung-Ang
University, Seoul, Rep. of Korea in 1986 and
1991, respectively. He received his PhD in
electrical engineering from Chungnam National
University, Daejeon, Rep. of Korea in 2004. He
joined ETRI in 1991, where he has worked on

several projects, including PON MAC device design and interface
design of routers, MPLS, ATM, and TDX. Recently, his research
interests are SDN (OpenFlow) and network processor design.

Bhum-Cheol Lee received his BS in electrical
engineering from Kyunghee University, Seoul,
Rep. of Korea, in 1981. He received his MS and
PhD in electrical engineering from Yonsei
University, Seoul, Rep. of Korea, in 1983 and
1997, respectively. In 1983, he joined ETRI,
Daejeon, Rep. of Korea, where he worked on

the development of the TDX digital switching system family, including
TDX-1, TDX-10, and ATM switching systems. In 2009, he worked on
the development of the OmniFlow processor for the QoS Router
system. His research interests are flow processors, virtual networks,
and synchronization.

Soon-Seok Lee received his BS, MS, and PhD
in industrial engineering from Sungkyunkwan
University, Seoul, Rep. of Korea, in 1988, 1990,
and 1993, respectively. In 1993, he joined ETRI,
Daejeon, Rep. of Korea, where he has worked
on several projects related to high-level
designing and planning of networks, such as

ATM networks, mobile networks, and optical networks. He is currently
working in the engineering area for future networks as the director of
the Computing Network Research Department and a principal member
of the engineering staff in ETRI. His research interests are network
architecture and its business models, including content-centric
networks, named data networks, and unified all-IP converged networks.

Man Soo Han received his BS, MS, and PhD
in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, Rep. of Korea, in 1992,
1994, and 1999, respectively. He was a senior
researcher at ETRI, Daejeon, Rep. of Korea,
from 1999 to 2003. He is an associate professor

in the Department of Information and Communications Engineering at
Mokpo National University, Mokpo, Rep. of Korea. His research
interests include scheduling in high speed networks, passive optical
networks, and wireless networks. He is a member of IEEE, OSA,
IEICE, and KICS.

Whan-Woo Kim received his BS in electronics
engineering from Seoul University, Seoul, Rep.
of Korea, in 1977 and his MS and PhD from
KAIST, Daejeon, Rep. of Korea, and the
University of Salt Lake City, UT, USA, in 1979
and 1988, respectively. Since 1980, he has been
with the Division of Electrical and Computer

Engineering at Chungnam University, Daejeon, Rep. of Korea, where
he is a professor. His current research interests include cable, digital
broadcasting, and OFDM systems.

ETRI Journal, Volume 34, Number 6, December 2012 Kyeong-Hwan Doo et al. 837

	I. Introduction
	II. Architecture
	III. Performance Analysis
	IV. Verification and Implementation
	V. Application
	VI. Conclusion
	References

