
We investigate the light-emitting performances of blue 
phosphorescent organic light-emitting diodes (PHOLEDs) 
with three different electron injection and transport 
materials, that is, bathocuproine(2,9-dimethyl-4,7-
diphenyl-1,10-phenanthroline) (Bphen), 1,3,5-tri(m-pyrid-
3-yl-phenyl)benzene (Tm3PyPB), and 2,6-bis(3-(carbazol-
9-yl)phenyl)pyridine (26DCzPPy), which are partially 
doped with cesium metal. We find that the device 
characteristics are very dependent on the nature of the 
introduced electron injection layer (EIL) and electron 
transporting layer (ETL). When the appropriate EIL and 
ETL are combined, the peak external quantum efficiency  
and peak power efficiency improve up to 20.7% and 45.6 
lm/W, respectively. Moreover, this blue PHOLED even 
maintains high external quantum efficiency of 19.6% and 
16.9% at a luminance of 1,000 cd/m2 and 10,000 cd/m2, 
respectively. 
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I. Introduction 

Phosphorescent organic light-emitting diodes (PHOLEDs) 
are promising and tunable solid-state lighting sources for both 
lighting and display applications owing to their high light-
emitting performances [1]-[5]. In particular, white organic 
light-emitting diodes (OLEDs) have been attractive candidates 
for future solid-state lighting sources since their power 
efficiencies have surpassed those of incandescent bulbs [1]-[3]. 
However, the light-emitting efficiency of blue PHOLEDs is 
much lower than their longer wavelength counterparts (such as 
green, orange, and red), thus restricting the performance of 
white PHOLEDs [6], [7]. In pursuing highly efficient blue 
PHOLEDs, various results have been demonstrated through 
the development of host materials and device structures [8]-
[20]. Many types of device engineering, such as a mixed host, 
stepwise doping, or double emissive layer structure, have been 
reported to be applicable to blue PHOLEDs [8]-[14].

Enhanced blue PHOLED performances achieved through 
the development of carbazole-, trizine-, pridine-, or 
phenylsilane-type wide band-gap materials have also been 
reported [15]-[20]. Triplet exciton confinement in the emissive 
layer (EML) of PHOLEDs has been known as one of the key 
factors affecting the device characteristics [14], [18], [21], [22]. 
Since the blue electro-phosphorescent dopants have high triplet 
energy (T ) levels, wideband gap hole transporting materials 
and electron transporting materials with high T  levels are 
required [12]-[14], [23]-[26]. Recently, Zheng and others found 
that the use of a hole transporting layer (HTL) with T  levels 
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improved the light-emitting performances of an iridium(III) 
bis(2,4-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate 
(FIr6) doped blue PHOLED with 1,4-Bis(triphenylsilyl)benzene 
(UGH2) as the host [23]. Their study resulted in 1,1-bis[(di-4-
tolylamino)phenyl]cyclohexane (TAPC) (T  = 2.87 eV) giving 
a better exciton confinement compared to that of devices made 
with bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPB) (T = 
2.29 eV). However, there have been few systematic studies of 
the effect of the electron transporting layer (ETL) on the device 
characteristics.

1
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In this work, we fabricate five blue PHOLEDs based on 
iridium(III)bis(4,6-difluorophenyl)-pyridinato-N,C2′) picolinate 
(FIrpic) with different combinations of electron injection 
materials and transport materials. We demonstrate that light-
emitting characteristics such as current density, turn-on voltage, 
and performance are correlated with the energy level as well as 
the triplet energy of the introduced electron injection layer 
(EIL) and ETL.

II. Experiment 

Five blue PHOLEDs (Devices A through E) are fabricated 
using a configuration of indium tin oxide (ITO)/TAPC (50 nm) 
/4,4′,4″-tris(N-carbazolyl)triphenylamine (TcTa):FIrpic (7%,  
10 nm)/2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy): 
FIrpic (20%, 10 nm)/ETL (x nm)/EIL (50–x nm)/LiF (1 nm)/ 
Al (120 nm), as shown in Fig 1. TAPC with a wider triplet 
energy level (T ) of 2.9 eV, which is higher than that of FIrpic 
(T =2.62 eV), and with a high-lying of the lowest unoccupied 
molecular orbital (LUMO) energy level, is used as the 
HTL/electron blocking layer [24]-[26]. As a standard device, a 
cesium (Cs) non-doped device with Bphen material (Device A) 
is prepared. A non-doped Bphen, Tm3PyPB, or 26DCzPPy 
layer is used as an ETL/hole blocking layer, the thickness of 
which is x nm with x varying from 20 to 50. Cesium doped into 
the ETL material is used as the n-type EIL, the thickness of 
which is (50–x) nm (Devices B through E). As the EML, we 
employ a double EML (D-EML) structure using TcTa and 
26DCzPPy for the host materials of FIrpic in the two adjacent 
EMLs [8], [9]. The chemical structures of the materials and 
energy level diagrams used in this study are shown in Fig. 2 
(the energy levels are taken from the literature).

1

1 

ITO is cleaned using a standard oxygen plasma treatment. 
The OLED grade materials are purchased and used without 
further purification. All organic layers are deposited in a high-
vacuum chamber below 5 × 10  torr, and thin LiF and Al films 
are deposited as a cathode electrode. The OLEDs are 
transferred directly from a vacuum into an inert environment 
glove-box, where they are encapsulated using a UV-curable 
epoxy and a glass cap with a moisture getter. The  
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Fig. 1. Device structures of blue PHOLEDs tested in this study.
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Fig. 2. Chemical structures and energy level diagrams for
materials tested in this study. 
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electroluminescence (EL) spectrum is measured using a 
Minolta CS-1000. The current density-voltage (J-V) and 
luminescence-voltage (L-V) characteristics are measured using 
a current/voltage source/measure unit (Keithley 238) and a 
Minolta CS-100, respectively. 

III. Results and Discussion 

The EL spectra of the blue PHOLEDs (Devices A through 
E) are shown in Fig. 3 according to the EIL and ETL materials. 
All devices exhibit a similar maximum luminescence 
wavelength at a driving current of 10 mA/cm2, near 470 nm,  
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Fig. 3. Normalized EL spectra of Devices A through E at driving
current of 10 mA/cm2. 
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which originates from the triplet emission of FIrpic dopant and 
the second vibration peaks with a wavelength of approximately 
500 nm. The slight differences in the relative intensities of the 
second vibration peaks can be understood by the slight shift of 
the recombination zone as well as the different optical 
properties of the ETL/EIL combination [25]-[27]. 

Figure 4 shows the current density-voltage-luminance (J-V-
L) curves of the blue PHOLEDs (Devices A through E) 
according to the EIL and ETL materials. We can easily see that 
the different combinations of ETL and EIL greatly influence 
the I-V-L characteristics of the blue PHOLEDs. Compared to 
standard Device A with only Bphen as the ETL/EIL, Device B 
with Cs doped Bphen as the EIL shows an increased current 
density as well as luminance at the same voltage. For example, 
the current density and luminance at a driving voltage of 4.5 V 
shows 8.5 mA/cm2 (Device A) and 25.8 mA/cm2 (Device B) 
and 1544 cd/m2 (Device A) and 5699 cd/m2 (Device B), 
respectively. This could be attributed to the difference in the 
electrical conductivity of the Cs doped Bphen as the EIL, 
which results in a reduction of the total resistance of the organic 
layers and an enhancement of the charge injection from the 
electrode [11], [25], [28]. 

In terms of the external quantum efficiency (EQE) 
characteristics, Device B shows a slight increase compared to 
standard Device A; however, this increase is not impressive 
due to the lower T1 of Bphen (2.5 eV) compared to that of 
FIrpic (2.65 eV) [25]. In Fig. 5, the EQE characteristics of blue 
PHOLEDs are plotted against the current density. To overcome 
the low efficiency of Device B, we fabricate Devices C and D, 
which have wider T1 materials (Tm3PyPB and 26DCzPPy) as 
ETL/EIL, along with Cs doping. To achieve efficient blue 
PHOLEDs, an effective confinement of the triplet exciton is 
necessary [10], [14], [17]. Since the triplet energy level of both 
Tm3PyPB and 26DCzPPy (T1 = 2.78 eV and 2.71 eV, 

 

Fig. 4. (a) Current density-voltage (J-V) and (b) luminescence-
voltage (L-V) characteristics of Devices A through E. 
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respectively) is higher than that of FIrpic, the triplet exciton of 
FIrpic can be confined within the EML. Accordingly, we find 
highly enhanced EQEs in Devices C and D, as shown in Fig. 5. 
The peak EQEs of Devices C and D are 20.7% and 21.5%, 
respectively, while those of Devices A and B are only 10.1% 
and 12.1%. 

Moreover, these enhanced EQEs that are a 1.9-fold 
enhancement compared with that of Device B with Bphen 
(18.7 lm/W) of around 100 cd/m2, along with reduced driving 
voltages, result in a significantly increased maximum 
luminance efficiency (LE) of 36.7 lm/W (Device C with 
Tm3PyPB) and 35.8 lm/W (Device D with 26DCzPPy) 
without an out-coupling enhancement technique. In Fig. 6, the 
LE characteristics of the blue PHOLEDs are plotted against 
brightness. 

To obtain higher LE, especially for lighting applications with 
OLED technology, a low driving voltage is necessary. Note 
that the turn-on voltage of Device D is 0.5 V lower than that of 
Device C, which can be explained by a lower electron injection 
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Fig. 5. EQE vs. current density characteristics of Devices A
through E. 
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Fig. 6. LE vs. brightness characteristics of Devices A through E.
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barrier from the ETL to the EML. The LUMO levels of 
26DCzPPy and Tm3PyPB are 2.56 eV and 2.78 eV, 
respectively. Thus, Device C with Tm3PyPB encounters an 
additional electron injection barrier (0.22 eV), which causes an 
increased driving voltage compared with that of Device D. 
However, there is another aspect to consider in terms of the 
current density slope at the light-emitting region. Even though 
the driving voltage of Device D is lower than that of Device C, 
the current density slope of Device C is much steeper than that 
of Device D, as Tm3PyPB has a much higher electron mobility 
and an adequate HOMO level for hole blocking than does 
26DCzPPy. For instance, the current density of Device C at a 
driving voltage of 6.0 V shows 69.6 mA/cm2, while that of 
Device D is only 29.2 mA/cm2. By combining the advantages 
of Device C (steep current density slope) and Device D (low 
driving voltage), we fabricate Device E, which is constituted by 
26DCzPPy ETL and Cs doped Tm3PyPB EIL. As a result, we 
develop a highly efficient blue PHOLED, which shows a low 
driving voltage as well as a steep increase of the current density. 

Consequently, the maximum LE of Device E reaches up to 
45.6 lm/W and can be expected to be over 100 lm/W, 
considering the potential of the improved out-coupling 
technique to achieve a 2.3-fold enhancement [1], [3], [25]. 

IV. Conclusion 

Investigating the nature of a Cs-doped ETL, we successfully 
developed highly efficient blue PHOLEDs along with a 
reduced driving voltage and an enhanced quantum efficiency, 
in which a peak power efficiency of 45.6 lm/W without an out-
coupling enhancement was shown. 
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