
ETRI Journal, Volume 36, Number 3, June 2014 © 2014 Seungkwang Lee et al. 469
http://dx.doi.org/10.4218/etrij.14.0113.0317

RSA signature algorithms using the Chinese remainder
theorem (CRT-RSA) are approximately four-times faster
than straightforward implementations of an RSA
cryptosystem. However, the CRT-RSA is known to be
vulnerable to fault attacks; even one execution of the
algorithm is sufficient to reveal the secret keys. Over the
past few years, several countermeasures against CRT-RSA
fault attacks have tended to involve additional
exponentiations or inversions, and in most cases, they are
also vulnerable to new variants of fault attacks. In this
paper, we review how Shamir’s countermeasure can be
broken by fault attacks and improve the countermeasure
to prevent future fault attacks, with the added benefit of
low additional costs. In our experiment, we use the side-
channel analysis resistance framework system, a fault
injection testing and verification system, which enables us
to inject a fault into the right position, even to within 1 μs.
We also explain how to find the exact timing of the target
operation using an Atmega128 software board.

Keywords: CRT-RSA, fault attack, countermeasure.

Manuscript received Apr. 23, 2013; revised Nov. 11, 2013; accepted Nov. 27, 2013.
This work was supported by the K-SCARF project, the ICT R&D program of ETRI

(Research on Key Leakage Analysis and Response Technologies).
Seungkwang Lee (phone: +82 42 860 1437, skwnag@etri.re.kr), Dooho Choi

(corresponding author, dhchoi@etri.re.kr), and Yongje Choi (choiyj@etri.re.kr) are with the
SW·Content Research Laboratory, ETRI, Daejeon, Rep. of Korea.

I. Introduction

The RSA algorithm has been used as an important
cryptographic tool for authentication, signature generation, and
verification. This is based on the presumed difficulty of
factoring large integers—that is, the factoring problem. Despite
the reliability of RSA, however, improvements in its
performance remain a challenging research topic owing to its
large size modulus. One solution is to adopt the Chinese
remainder theorem (CRT) to RSA, which provides
approximately a four-fold increase in performance. Additional
savings in memory space is also possible owing to the reduced
size of the modulus. These are the main reasons why CRT has
been used with RSA (CRT-RSA) in smart cards with limited
resources. However, injecting a fault (or faults), such as a clock
glitch, power glitch, or light, during the computation of CRT-
RSA and observing its faulty output gives the attacker
information about secret keys [1]; such attacks are known as
fault attacks. In contrast to power analysis attacks or brute force
attacks against cryptographic algorithms, fault attacks require
only one (or a few) fault injections and post-processing
algorithms to find the secret keys. Among various fault attacks,
some are practical, while others are only theoretically possible.
Researchers have also studied countermeasures against fault
attacks. As expected, the simplest way is to re-compute the
signature and compare the two outputs, but this is not an
efficient method. A challenging research topic is how to
provide a secure and computationally efficient CRT-RSA
algorithm. However, practical and secure solutions are hard to
find; most of the countermeasures involve additional
exponentiations or inversions [2]–[7], and the majority of those
are themselves also susceptible to fault attacks [4], [8]–[11].

We revisit Shamir’s countermeasure and show what types of

Improved Shamir’s CRT-RSA Algorithm:
Revisit with the Modulus Chaining Method

 Seungkwang Lee, Dooho Choi, and Yongje Choi

470 Seungkwang Lee et al. ETRI Journal, Volume 36, Number 3, June 2014
http://dx.doi.org/10.4218/etrij.14.0113.0317

fault attacks can be applied to this algorithm in practice. We
then propose an improved countermeasure against fault
attacks without involving additional heavyweight operations
such as exponentiations or inversions. The remainder of this
paper is organized as follows: we first introduce some basic
concepts, including Shamir’s countermeasure, and then look
at fault attacks that can be practically applied to Shamir’s
countermeasure in section II. We next propose a new CRT-
RSA algorithm in section III, and then we demonstrate its
security against fault attacks in section IV. We describe the
experiments used to verify the security of the proposed
countermeasure and show the experimental results in section
V. Finally, we conclude the paper in section VI.

II. Preliminaries

In this section, we introduce some basic concepts and
notations that will be used throughout the paper and briefly
explain the RSA algorithm. Also included in the explanation is
the CRT, which is used to speed up RSA.

1. The RSA Algorithm

RSA, which is named after its inventors, Rivest, Shamir and
Adleman, is the first public-key cryptosystem known to be
suitable for both digital signatures and encryption. The details
of the parameters, including the public and private key pairs,
are as follows:

Generating two large primes, p and q, in equal size so that
their product N = p · q has the bit length required by the
cryptosystem.

Compute N = p · q and φ (p · q), where φ denotes Euler’s
totient function.

Choose a number e, 1 < e < φ (p · q), such that gcd (e, φ (p ·
q)) = 1.

Find another number d, 1 < d < φ (p · q), such that (e · d) – 1
is divisible by φ (p · q).

The two numbers e and d, are called public and private
exponents, respectively, and a public key is a pair of (N, e); a
private key is (N, d). The factors p and q, may be destroyed or
kept secret. It is currently intractable to find the private key d
from the public key (N, e). If it is possible to factorize N into p
and q, one can obtain the private key d. For this reason, the
security of the RSA algorithm is based on the difficulty of
factoring large numbers. Algorithm 1 shows the process used
for making digital signatures using RSA. Exponentiations and
modulo computations are the main operations used in the
algorithm and are sometimes too heavyweight to be used in
resource-limited devices.

Algorithm 1: RSA digital signing

Input: message msg, private key (N, d).
Output: signature S = md mod N.
1 begin
2 Create a message digest to be sent.
3 Represent the digest as an integer m,

0 < m < N–1.
4 S md mod N.
5 Return S.
6 end

2. CRT-RSA

For better computation speed and efficiency, RSA can use
the CRT. CRT-RSA provides approximately a four-fold faster
computation than directly computing S = md mod (p · q). The
additional benefit is that the two modular exponentiations in
CRT-RSA use smaller exponents and smaller moduli, thereby
reducing resource consumption.

The following explains the basic concept of CRT. Suppose
n1, n2, … , nk are positive integers that are pairwise coprime.
Then, for any given set of integers a1, a2, … , ak, there exists an
integer x satisfying the following simultaneous congruences:

x ≡ a1 (mod n1),
x ≡ a2 (mod n2),

x ≡ ak (mod nk).

In addition, all solutions x are congruent modulo to the
product N = n1×n2×···×nk. Thus, x ≡ y (mod ni), for 1 < i < k, if
and only if, x ≡ y (mod N).

This theorem provides a way to improve the performance of
RSA. Unlike RSA, CRT-RSA uses p and q, and three
additional secrets dp, dq, and iq —where dp and dq are known as
CRT exponents and iq as a CRT coefficient. These values are
obtained by computing the following:

dp = d mod (p – 1),
dq = d mod (q – 1),

 iq q · iq mod p = 1.
Given the quintuple (p, q, dp, dq, iq), CRT-RSA can be
represented as shown in Algorithm 2.

Algorithm 2: CRT-RSA

Input: message digest m, private key p, q, dp, dq, iq.
Output: signature S.
1 begin
2 Sp mdp mod p.
3 Sq mdq mod q.
4 Combine two Sp and Sq using Garner’s recombination

algorithm as follows:
S = (((Sp – Sq) mod p) iq mod p) q + Sq.

5 Return S.
6 end

ETRI Journal, Volume 36, Number 3, June 2014 Seungkwang Lee et al. 471
http://dx.doi.org/10.4218/etrij.14.0113.0317

We note that Gauss’ recombination, described below,
consumes more memory space than Garner’s recombination

S = (Sp · q · (iq mod p) + Sq · p · (ip mod q)) mod N.

Owing to the reduced size of the modulus, CRT-RSA provides
two noticeable enhancements: a faster computation speed, and
less required memory space. As a cryptographic algorithm,
however, CRT-RSA has a critical drawback as it is known to be
susceptible to a simple fault attack called a Bellcore attack,
which reveals the secret prime factors by inserting a single fault.
Simply speaking, fault attacks refer to malicious behaviors
used to change the normal executions of a chip by inducing an
exploitable fault. In doing so, an attacker can then obtain useful
information that will assist them in the revealing of secrets
from such hardware devices. A Bellcore attack [12], the most
well-known fault attack on CRT-RSA, enables an attacker to
reveal the secret prime factors by inducing a single fault on a
chip. Suppose that by some event, a fault occurs only during

the computation of Sp. We let pS and S denote a faulty Sp

and a faulty signature, respectively. We then know the

following:

S ≢ Ŝ mod p, but S ≡ Ŝ mod q,

which gives us

gcd ((S – Ŝ) mod N, N) gcd ((m – ˆeS) mod N, N) = q.

Thus, the attacker can easily factorize N. There are a variety
of countermeasures for protecting against a Bellcore attack. In
the next section, we introduce Shamir’s countermeasure [13]
and several fault attacks that can be practically applied to this
countermeasure.

3. Shamir’s Countermeasure and Fault Attacks

To protect against the fault attack described in the previous
section, Shamir proposed a CRT-RSA algorithm, shown
in Algorithm 3. Unlike recently published CRT-RSA
countermeasures, this countermeasure requires d as an input.
Thus, this can be a burden for the overall computation.

Algorithm 3: Shamir’s countermeasure
Input: message digest m, private key p, q, d, iq.
Output: signature S = md mod N.
1 begin
2 Generate a random prime r.
3 Spr md mod (p r) mod p r.
4 Sqr md mod (q r) mod q r.
5 if Spr ≢ Sqr mod r then
6 Return error.
7 end
8 Sp Spr mod p and Sq Sqr mod q.

9 Recombine Sp and Sq as explained previously.

10 Return S.

11 end

Since p, q, and r are prime numbers, we know that

Spr ≡ Sqr mod r,

provided that faults are never injected. As it is, noting ˆ
prS as

the faulty value of Spr and |r| as the bit size of r, we have the

following:

Pr [ˆ
prS ≡ Sqr mod r] ≈ 2–(| r | –1)ln 2.

Based on this probability, if any fault is injected during the
computation of Spr or Sqr, an error message must be returned
with a probability of about 1 – (2– (| r | –1) ln 2).

However, this countermeasure has several drawbacks. First,
a fault induced while p (or q) is accessed to compute p · r (or q ·
r, respectively) is not detected. This is based on the assumption
that p is likely to be reloaded when needed owing to the limited
amount of registers in smart cards. With a faulty p (or a faulty
q), a Bellcore attack reveals the secrets. Second, the
computations below are not protected

Sp ← Spr mod p and Sq ← Sqr mod q.
This reveals the same security hole of the straightforward CRT-
RSA on a Bellcore attack. Similarly, the recombination of Sp
and Sq is never protected; and as a result, it is possible to inject
a fault to iq without being noticed. Let q̂i denote a faulty value
of iq, we then have the following:

Ŝ = (((Sp – Sq) mod p) · q̂i mod p) ·q + Sq

and

S ≢ Ŝ mod p, but S ≡ Ŝ mod q.

This enables an attacker to perform a Bellcore attack.
We do not take into account an attack on the security

comparison. For these kinds of attacks, the attacker has to
disturb two precise parts of the computation to bypass the
checking procedure: a) a temporary value or an operation to be
disturbed and b) the coherence test to bypass. The latter will be
possible if the attacker modifies the zero flag of the status
register so as to bypass the security comparison. However, it is
strongly assumed that sensitive registers are unprotected by
redundancy mechanisms such as hardwired checksums or
error-correcting codes. In addition, we set aside zero-value
attacks in which the attacker is supposed to set one of the target
buffers to zero during the execution of the exponentiation. To
the best of our knowledge, it is not possible in practice to set a
large buffer to zero [14].

Thus far, several variants of Shamir’s countermeasure have
been proposed. In most cases, they tend to involve additional
exponentiations or inversions; thus, resulting in performance

472 Seungkwang Lee et al. ETRI Journal, Volume 36, Number 3, June 2014
http://dx.doi.org/10.4218/etrij.14.0113.0317

degradation. Furthermore, most of them are still susceptible to
fault attacks.

III. New CRT-RSA Algorithm Based on Modulus
Chaining for Protecting against Fault Attacks

In this section, we propose a new CRT-RSA algorithm
withstandable to fault attacks. Our algorithm, based on
Shamir’s countermeasure, performs additional security-
purpose operations; thus, making up for the vulnerabilities of
Shamir’s countermeasure. From the practical standpoint of
smart cards, it is a noticeable aspect that our algorithm does not
need additional exponentiations or inversions from Shamir’s
algorithm, which results in acceptable performance and
resource requirement. We exclusively focus on how to offer a
fault-infective CRT-RSA [15], thereby preventing a Bellcore
attack. To that end, an error induced by a fault attack must lead
to a fault-infective CRT computation on both Sp and Sq, or on
the overall computation of S. Consequently, any kind of fault is
expected to result in

S ≢ Ŝ mod p and S ≢ Ŝ mod q.

In particular, we aim to use a special purpose fault-infective
computation on a secret modulus such that a fault induced
while a secret prime is being loaded spreads throughout the
other secret primes. For this purpose, we constructed a
modulus chaining where all of the secret primes are tangled up
together. This modulus chaining consists of two main concepts:
PUSH and POP. In Algorithm 4, PUSH is a procedure adding
input values to the target variable sum, where the addition is
performed by XORing. In Algorithm 5, POP, on the other hand,
outputs the value of a specific variable as follows. Given sum =
 , for example, [POP] performs the following:

1) Loads and from memory.
2) Computes Tsum= .
3) Computes value= sum Tsum.
4) Updates sum using Tsum and value, that is,

sum = Tsum value.
5) Returns value.

What is important here is that [POP] does not load from
memory but instead loads and , and then it computes value

from sum. In addition, [POP] updates sum = value .
These contribute to the following facts. First, if any fault is
induced while or is accessed, or while Tsum is computed, it
results in a faulty ŝumT and consequently produces faulty ˆsum
and faulty ˆ .value Consequently, subsequent POPs performed
on this faulty ˆsum result in faulty outputs. Moreover, we
verify the integrity of sum in the later part of the algorithm so
that the faulty ˆsum returns an error code. Second, injecting
faults while value or sum is computed has the same result as

Algorithm 4: PUSH x, y, ···.

Input: variable x, y, ···.
1 begin
2 sum x y ···.
3 W W {x, y, ···}.
4 end

Algorithm 5: POP x

Input: variable x,
Output: the value of x.
1 begin
2 T W– {x}.
3 Tsum .

t T
t

4 valuex sum Tsum.
5 sum Tsum valuex.
6 return valuex.
7 end

Algorithm 6: Proposed algorithm
Input: message digest m, private key p, q, d, iq.
Output: signature S = md mod N.
1 begin
2 Generate a random prime r.
3 [PUSH p, q, and r].
4 dpr d mod ([POP p][POP r]).
5 dqr d mod ([POP q][POP r]).
6 p ([POP p][POP r].
7 q ([POP q][POP r].
8 Spr mdpr mod .p
9 Sqr mdqr mod .q

10 if Spr ≢ Sqr mod [POP r] then
11 Return error.
12 end
13 Sp Spr mod [POP p].
14 Sq Sqr mod [POP q].
15 S (((Sp Sq) mod p) iq mod p) q + Sq.
16 if (S ≢ Spr mod [POP p] or
17 (S ≢ Sqr mod [POP q]) then
18 Return error.
19 end
20 check sum .

w W
w

21 if check ≠ 0 then
22 Return error.
23 end
24 Return S.
25 end

the previous case. This has an influence on not only value but
also on the subsequent outputs of POPs. Owing to these
properties, the attacker is unable to succeed in a Bellcore attack if
faults are injected while PUSHs or POPs are executed. The
details of the proposed algorithm are represented in Algorithm 6.

ETRI Journal, Volume 36, Number 3, June 2014 Seungkwang Lee et al. 473
http://dx.doi.org/10.4218/etrij.14.0113.0317

Table 1. Comparison of previous countermeasures and our own.

 Time complexity [16]

Aummuler el al. [4] 4(k+l)3+2k2+4kl

Boscher el al. [17] 4k3+11k2

Ciet and Joye [18] (4k+1)(k+l)2+4l3+k2+l2+3kl+inversion

Giraud [14] 4k(k+l)2+5k2+2kl

Our CRT-RSA 2(k+l)3+2k2+2kl

On the assumption that each prime used in the algorithm is

reloaded every time—owing to the limited number of registers
in smart cards—we perform PUSH p, q, and r in the beginning
and obtain the value of each prime through POP instead of
accessing the primes directly. As previously pointed out,
Shamir’s countermeasure does not protect computations from
obtaining Sp, Sq, or the CRT recombination. For this reason, we
check the congruence relations on S, Spr, and p as well as on S,
Sqr and q after finishing the CRT recombination. The value of
check must be confirmed as an integrity check to make sure the
POPs have been performed without disturbance by faults.
Based on Shamir’s countermeasure, we place the following
additional operations in the algorithm.
Two congruence modulo operations.
One simple comparison between check and 0.
Modulus chaining: 1 PUSH and 13 POPs.
It is worth noting that PUSH consists of two XORs, POP,

and four XORs. Hence, PUSH/POP impose 54 XORs in total.
It is also important to note that no inversions or exponentiations
are additionally used from Shamir’s countermeasure. Table 1
compares the computational cost of previous countermeasures
and our own countermeasure for CRT-RSA, where k is the bit
length of secret primes, and l is the bit length of a random
prime. Our CRT-RSA algorithm requires two exponentiations
of a (k + l)-bit modulus with a (k + l)-bit exponent, one CRT
recombination with two multiplications of two k-bit numbers
and two multiplications of k-bit and l-bit numbers. Therefore,
the final time complexity of CRT-RSA with our
countermeasure is 2(k + l)3+ 2k2+ 2kl, excluding the cost for
extra operations (that is, addition and logical operations). We
note that our CRT-RSA has almost the same level of
complexity with Shamir’s countermeasure; the additional
operations stated earlier do not impose a noticeable increase in
the computational cost.

IV. Security Analysis

We now analyze the security of the proposed algorithm
against the fault attacks described in section II. Our analysis

does not include all kinds of fault attacks like permanent faults,
where some parameters may be permanently corrupted or
damaged by some serious environmental factors. The first type
of fault is induced while a prime is accessed. As shown in
Algorithm 4, there are three primes in the algorithm: p, q, and r.
They are loaded at PUSH or POP, except for the CRT
recombination. If a fault is injected while a specific prime, say
p for example, is accessed, then the following analysis shows
the reason why the algorithm is resistant to a fault attack:
except for the recombination, p is loaded at PUSH (p, q, r),
POP q, and POP r. Let p̂ denote a faulty p. If a fault is
injected during the execution of PUSH, we then have

ˆsum = p̂ q r. The faulty ˆsum has dependency upon
subsequent POPs as follows:

POP p ˆsum q r.

 p̂ q r q r = ˆ.p

POP q ˆsum p r,

 p̂ q r p r = p̂ p q.

POP r ˆsum p q,

 p̂ q r p q = p̂ p r.

(We omit the case of disturbing access to q or r, because it
causes a similar result).
This shows that a fault injection leads to a fault-infective
computation because the faulty sum propagates through the
subsequent POPs. For this reason, sum must be intact for an
attacker to succeed. It is also possible to inject faults while
accessing primes in the execution of POPs. More specifically,
fault injection, making the faulty Tsum, outputs the faulty ˆ ,sum
which results in a faulty infective computation (see line 5 in
Algorithm 5). The primes can also be accessed at the CRT
recombination. To protect the recombination from fault attacks,
we place a security comparison right after the recombination.
Thus, if a fault makes a faulty p̂ , for example, another fault
should be injected during the computation of Spr mod [POP p]
such that Ŝ ≢ Spr mod [POP p] becomes false, which enables
an attacker to pass the security comparison. However, the
probability for an attacker to succeed in injecting faults at two
precise parts of the computation is negligible [14].

The second type of fault is those that could be injected in a
transient manner during any computation. Our algorithm
performs a total of three security comparisons. The first is to
detect either a faulty Spr or Sqr. To that end, Spr ≡ Sqr mod [POP
r] is checked at line 10 in Algorithm 6. Since we have
Pr [ˆ

prS ≡ Sqr mod r] ≈ 2–(| r | –1)ln 2, the bit length of r
determines the security level of the algorithm. The second is to
mainly detect faults that are possibly injected during the
computation of Sp ← Spr mod [POP p] and Sq ← Spr mod

474 Seungkwang Lee et al. ETRI Journal, Volume 36, Number 3, June 2014
http://dx.doi.org/10.4218/etrij.14.0113.0317

[POP q] or during the CRT recombination. Since the bit length
of p and q is |S|/2, faulty outputs are unlikely to pass this
comparison. The last one, is to verify the integrity of sum,
which might be distorted during the last execution of POP;
[POP q]. For this purpose, all primes are newly loaded from the
storage and XORed with sum; the result must be 0 if all
operations have been normally performed without faults.
Consistency checks at lines 10 and 16, and the use of POP and
PUSH to guarantee the integrity of p, q and r, are closely
correlated with each other so that they verify that no error
occurred during the computation of Sp or Sq and the CRT
recombination.

V. Experimental Setup and Results

In this section, we first describe our fault-injection setup. We
then detail the experiment we performed and present the results.
We first show the vulnerabilities of Shamir’s countermeasure
and show the security of our proposed CRT-RSA against fault
attacks using the SCARF system.

1. Experimental Setup

For injecting faults and analyzing the response during the
execution of CRT-RSA, we need a parameter-controlling PC,
an experimental board for fault injection, and an oscilloscope.
Specifically, implementing CRT-RSA on a software board is
more recommendable than porting on a smart card, because we
have to insert an additional trigger for injecting a fault during a
specific period. Figure 1 shows the hardware setup that we use
to inject faults into an Atmega 128 software board. We
implemented both Shamir’s countermeasure and our proposed
algorithm on an Atmega 128 microcontroller that can operate
within the standardized smart card communication
specification [19]. The setup consists of a fault-injection control
system, named SCARF, our board containing an Atmega 128
microcontroller, a field programmable gate array (FPGA), a
triggercontroller, and more. SCARF sends a command
including operating parameters to the microcontroller, which in
turn forwards the fault parameters to the FPGA. The FPGA
then controls the operating environment of the on-board
algorithm. The parameters we can handle include the clock
cycle and power supply. To inject a fault during the execution
of CRT-RSA, we change one of these parameters into
abnormal values.

Basically, the parameters consist of timing information and
fault types. Timing information specifies an offset,
synchronizing duration with the control devices and fault
injection duration, as shown in Fig. 2. Fault types can be given
by an abnormal clock cycle (Fig. 3), power supply (Fig. 4), or a

Fig. 1. Fault-injection setup. Atemga 128 microprocessor,
connected to PC, forwards fault parameters to FPGA.
FPGA then controls operating environment. We can see
power traces and clock signals through oscilloscope (a
LeCroy WaveRunner 104Mxi-A): (a) experiment
setting and (b) setting block diagram.

(a)

ARM
SW board

SCARF,
side-channel analysis

system

Oscilloscope

(b)

Fig. 2. Parameters for fault injection.

Synchronizing duration with control devices

WAIT_TIME ACTIVE_TIME

Fig. 3. Clock variances for fault injection: (a) normal case and (b)
- (d) clock glitches for fault. Blue line indicates normal
clocks, but red line indicates abnormal ones.

1.25

5.00

VDD

1.25

5.00

VDD

t t

1.25

5.00

VDD

t

1.25

5.00

VDD

t

(a) (b)

(c) (d)

ETRI Journal, Volume 36, Number 3, June 2014 Seungkwang Lee et al. 475
http://dx.doi.org/10.4218/etrij.14.0113.0317

Fig. 4. Variance of power supply for fault injection: (a) normal
case and (b) - (d) abnormal power supply for fault.

1.25

5.00

VDD

t
(a)

1.25

5.00

VDD

t
(c)

1.25

5.00

VDD

1.25

5.00

VDD

t
(b)

t
(d)

Fig. 5. Combinations of clock glitch and abnormal power supply
for fault injection.

5

25

VDD

t
(a)

5

25

VDD

t
(b)

5

25

VDD

t
(c)

5

25

VDD

t
(d)

combination of the two (Fig. 5). In our experiments, we use an
abnormal power supply as a fault.

The Atmega 128 [20] is a high-performance, low-power
AVR 8-bit microcontroller, providing an advanced RISC
architecture with 133 instructions and up to a 16 MIPS
throughput at 16 MHz. It contains 128 KB of in-system
reprogrammable flash, 4 KB of EEPROM/internal SRAM,
and up to 64 KB of optional external memory space. Its
operating voltages are from 4.5 V to 5.5 V. It may not be
acceptable for an 8-bit processor to execute CRT-RSA with a
modulus size of more than 1,024 bits.

Owing to this fact, we implement both Shamir’s
countermeasure and our algorithm with |p| = |q| = 32 bits,
which is reasonable for an Atmega 128. More specifically, the
public exponent and secret primes we used are:
 e: 0x03.
P: 0xD0 67 8A 45.
Q: 0xE8 09 85 7B.

 2. Performed Experiment and Results

Both Shamir’s countermeasure and our algorithm are

Fig. 6. Waveform of Shamir’s countermeasure: blue color is
power trace of countermeasure; yellow color indicates
trigger signals at rising edge: a represents prime loading,
b represents computation of Spr and Sqr, c represents Sp

 Spr mod p and Sq Sqr mod q, and d represents CRT
recombination. Barrett reduction for five modular
operations spent most of time. Oscilloscope settings:
500 ms/div and 2.5 MS/s.

designed to return an error code in the presence of faults.
However, if faults are injected without being detected, a
meaningful output will be returned; thus, enabling a Bellcore
attack. In the following experiments, we intentionally injected
faults at the vulnerable points where Shamir’s countermeasure
is susceptible and injected the same type of faults on the
proposed scheme. The results show that Shamir’s
countermeasure returns a faulty signature, while our algorithm
returns a meaningless error code; 0x00.

Experiment 1 (Shamir’s countermeasure): We initiate
communication between the Atmega 128 software board and
the SCARF system, introduced previously, as defined in the
ISO/IEC 7816-4 standard, which specifies the organization,
security, and commands for an interchange. Shamir’s
countermeasure is executed at the command from SCARF, and
this command also defines the fault parameters, which include
timing information and fault types. It is not possible to extract a
trigger signal from a smart card, and for this reason, we used a
software board. We set trigger signals generated when
particular operations begin so that we can find a part of the
specific operation(s) in the waveform of CRT-RSA (Fig. 6).
The SCARF system provided us with a user interface
controlling the fault-injection timing in the unit of μs. After
finding the exact position of the target operations using the
trigger signal, we can inject a fault at the right position. We note
that a fault-injection environment should support parameters in
the unit of μs, and we therefore inject a fault at a fairly
lightweight operation such as the loading of a secret prime.

We reduce the 3.3 V power supply to 2.2 V, while (a) the

476 Seungkwang Lee et al. ETRI Journal, Volume 36, Number 3, June 2014
http://dx.doi.org/10.4218/etrij.14.0113.0317

Fig. 7. Fault injection into Shamir’s countermeasure. Prime
loading and CRT recombination are performed at rising
edge in yellow color. Green box shows a power drop.
Oscilloscope setting for (a) fault injection at loading of
secret primes: 50 MB/s and 5 μs/div and (b) fault
injection at CRT recombination: 5 MS/s and 2 ms/div.

(a)

(b)

Fig. 8. First ten results of faulty signatures from Shamir’s
countermeasure. Red-colored bytes are faulty. By using
a Bellcore attack and one of these faulty signatures,
attacker can reveal the secret primes.

secret primes are being loaded and (b) the operations including
the CRT recombination are being performed. We ran procedure
(a) 100 times and attack procedure (b) 500 times, trying to
inject faults into various points of operations. We set the trigger
signals for (a) and (b), and adjusted the timing for a fault
injection using the SCARF system, the results of which are
shown in Fig. 7. We noticed that a fault injection is not always
successful; a software board (or a smart card) often totally
crashes or sometimes a fault injection has no effect. As a result,
we only succeeded in injecting 60 faults out of a total of 600
((a) 4 times and (b) 56 times); the faulty outputs are shown

Fig. 9. First ten return values from our countermeasure. All are
pre-defined error code 0x00.

in Fig. 8. The SCARF system first runs the algorithm without
faults and stores its original output. Every time faults are
injected into the algorithm, the system compares the output of
the algorithm to the original output and shows faulty bytes in
red if they are different from the original output. By using one
of any fault signature shown in Fig. 8, the attacker can reveal
the secret primes p and q, and compute then d, because the
public exponent e is known.

Experiment 2 (The proposed algorithm): In this
experiment, we testify the security of our algorithm. As in
Experiment 1, we gave the same type of fault at every point
where Shamir’s countermeasure fails to protect from faults. For
a stronger verification of the security of the proposed algorithm,
more faults are injected than had been for Experiment 1. We
intensively injected faults when loading secret primes and
operations around where the CRT recombination is executed.
As pointed out previously, fault injection does not show a fixed
success rate even though basic operations are the same. In this
experiment, the microcontroller crashed more often than in the
previous experiment, and more faults failed to be injected. As a
result, only 21 of 1,000 faults are successfully injected and are
represented in red in Fig. 9 ((a) 5 times and (b) 16 times). As
designed for protection against fault attacks, all faulty
signatures return an error code 0x00 without exception.
Needless to say, error code 0x00 does not enable a Bellcore
attack.

VI. Conclusion

The Bellcore attack on CRT-RSA reveals the secret prime
factors by introducing a single fault on a chip. Although
Shamir’s software countermeasure has attracted a lot of
attention, several drawbacks—from a security point of view—

ETRI Journal, Volume 36, Number 3, June 2014 Seungkwang Lee et al. 477
http://dx.doi.org/10.4218/etrij.14.0113.0317

have limited its widespread use. Many later countermeasures
have depended on additional exponentiations and inversions to
detect fault attacks, resulting in severe performance
degradation. In this paper, we improved Shamir’s
countermeasure to protect against a Bellcore attack with low
additional costs. Unlike previous fault injection experiments,
our experiment environment, the SCARF system, enables us to
inject a fault into the right position, even in the unit of μs. We
implemented Shamir’s countermeasure, as well as our own
countermeasure, on an Atmega 128 software board and
generated trigger signals when specific operations began. The
exact time of the target operations could be calculated using
these trigger signals, and we were able to inject faults wherever
we wanted—even at the loading of the secret primes. Our
security analysis and experiments demonstrate that the
proposed countermeasure provides reliable security.

References

[1] J. Park et al., “Differential Fault Analysis for Round-Reduced

AES by Fault Injection,” ETRI J., vol. 33, no. 3, June 2011, pp.

434–442.

[2] J. Blomer, M. Otto, and J.-P. Seifert, “A New CRT-RSA

Algorithm Secure Against Bellcore Attacks,” Tenth ACM Conf.

Comput. Commun. Security, Washington, DC, USA, Oct. 27–30,

2003, pp. 311–320.

[3] J. Blomer and M. Otto, “Wagner’s Attack on a Secure CRT-RSA

Algorithm Reconsidered,” Third Int. Conf. Fault Diagnosis

Tolerance Cryptography, Yokohama, Japan, 2006, pp. 13–23.

[4] C. Aumuller et al., “Fault Attacks on RSA with CRT: Concrete

Results and Practical Countermeasures,” Cryptographic

Hardware Embedded Syst., Redwood Shores, CA, USA, Aug.

13–15, 2002, pp. 260–275.

[5] A. Boscher, H. Handschuh, and E. Trichina, Fault Resistant RSA

Signatures: Chinese Remaindering in Both Directions. Accessed

Mar. 31, 2014. http://eprint.iacr.org/2010/038

[6] D. Vigilant, “RSA with CRT: A New Cost-Effective Solution to

Thwart Fault Attacks,” Tenth Int. Conf. Cryptographic Hardware

Embedded Syst., Washington, DC, USA, Aug. 10–13, 2008, pp.

130–145.

[7] S.-M. Yen et al., “RSA Speedup with Chinese Remainder

Theorem Immune against Hardware Fault Cryptanalysis,” IEEE

Trans. Comput., vol. 52, no. 4, Apr. 2003, pp. 461–472.

[8] D. Wagner, “Cryptanalysis of a Provably Secure CRT-RSA

Algorithm,” Eleventh ACM Conf. Comput. Commun. Security,

Washington, DC, USA, Oct. 25–29, 2004, pp. 92–97.

[9] S.-K. Kim et al., “An Efficient CRT-RSA Algorithm Secure

against Power and Fault Attacks,” J. Syst. Software, vol. 84, no.

10, Oct. 2011, pp. 1660–1669.

[10] S.-M. Yen, D. Kim, and S.J. Moon, “Cryptanalysis of Two

Protocols for RSA with CRT Based on Fault Infection,” Third Int.

Conf. Fault Diagnosis Tolerance Cryptography, Yokohama,

Japan, vol. 4236, 2006, pp. 53–61.

[11] J.-S. Coron et al., “Fault Attacks and Countermeasures on

Vigilant’s RSA-CRT Algorithm,” Seventh Int. Conf. Fault

Diagnosis Tolerance Cryptography, Santa Babara, CA, USA,

Aug. 21, 2010, pp. 89–96.

[12] D. Boneh, R.A. DeMillo, and R.J. Lipton, “On the Importance of

Checking Cryptographic Protocols for Faults,” Advances in

Cryptology Sixteenth Annual Int. Conf. Theory Appl.

Cryptographic Tech., Konstanz, Germany, May 11–15, 1997, pp.

37–51.

[13] A. Shamir, Improved Method and Apparatus for Protecting

Public Key Schemes from Timing and Fault Attacks, US Patent

5,991,415, filed May 12, 1997, issued Nov. 23, 1999.

[14] C. Giraud, “An RSA Implementation Resistant to Fault Attacks

and to Simple Power Analysis,” IEEE Trans. Comput., vol. 55,

no. 9, Sept. 2006, pp. 1116–1120.

[15] S.-M. Yen et al., “RSA Speedup with Residue Number System

Immune against Hardware Fault Cryptanalysis,” Fourth Int. Conf.

Info. Security Cryptology, Seoul, Rep. of Korea, Dec. 6–7, 2001,

pp. 397–413.

[16] S.-K. Kim et al., “An Efficient CRT-RSA Algorithm Secure

against Power and Fault Attacks,” J. Syst. Softw., vol. 84, no. 10,

Oct. 2011, pp. 1660–1669.

[17] A. Boscher, R. Naciri, and E. Prouff, “CRT RSA Algorithm

Protected against Fault Attacks,” First Workshop Info. Security

Theory Practice, Crete, Greece, May 9–11, 2007, pp. 229–243.

[18] M. Ciet and M. Joye, “Practical Fault Countermeasures for

Chinese Remaindering Based RSA,” Second Int. Conf. Fault

Diagnosis Tolerance Cryptography, Scotland, UK, Sept. 2, 2005,

pp. 124–131.

[19] ISO 7816, “Identification Cards Integrated Circuit(s) Cards with

Contacts,” Geneva, Switzerland, Created in 1989, amended in

1992.

[20] Atmega 128 specification. Accessed Mar. 31, 2014. http://www.

atmel.com/Images/doc2467.pdf

Seungkwang Lee received his BS in computer

science and electronic engineering from

Handong University, Pohang, Rep. of Korea in

2009, and his MS degree in computer science

from Pohang University of Science and

Technology (POSTECH) Pohang, Rep. of

Korea in 2011. He is currently working as a

researcher with ETRI, Daejeon, Rep. of Korea. His research interests

include side-channel attacks, fault attacks, and software/hardware

implementation.

478 Seungkwang Lee et al. ETRI Journal, Volume 36, Number 3, June 2014
http://dx.doi.org/10.4218/etrij.14.0113.0317

Dooho Choi received his BS degree in

mathematics from Sungkyunkwan University,

Seoul, Rep. of Korea in 1994 and his MS and

PhD in mathematics from Korea Advanced

Institute of Science and Technology (KAIST),

Daejeon, Rep. of Korea in 1996 and 2002,

respectively. Since Jan. 2002, he has been a

senior researcher in Electronics and Telecommunications Research

Institute (ETRI), Daejeon, Rep. of Korea. His current research interests

are side-channel analysis and its resistant crypto design, security

technologies of RFID and wireless sensor networks, lightweight

cryptographic protocol/module design, and cryptography based on

non-commutativity. He was the editor of the ITU-T Rec. X.1171.

Yongje Choi received his BSEE and MS from

Chonnam National University, Gwangju, Rep.

of Korea, in 1996 and 1999, respectively. He is

currently a senior member of technical staff at

the Electronics and Telecommunications

Research Institute (ETRI), Daejeon, Rep. of

Korea. His research interests include VLSI

design, crypto processor design, side-channel analysis, and information

security.

	I. Introduction
	II. Preliminaries
	III. New CRT-RSA Algorithm Based on ModulusChaining for Protecting against Fault Attacks
	IV. Security Analysis
	V. Experimental Setup and Results
	VI. Conclusion
	References

