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RSA signature algorithms using the Chinese remainder 
theorem (CRT-RSA) are approximately four-times faster 
than straightforward implementations of an RSA 
cryptosystem. However, the CRT-RSA is known to be 
vulnerable to fault attacks; even one execution of the 
algorithm is sufficient to reveal the secret keys. Over the 
past few years, several countermeasures against CRT-RSA 
fault attacks have tended to involve additional 
exponentiations or inversions, and in most cases, they are 
also vulnerable to new variants of fault attacks. In this 
paper, we review how Shamir’s countermeasure can be 
broken by fault attacks and improve the countermeasure 
to prevent future fault attacks, with the added benefit of 
low additional costs. In our experiment, we use the side-
channel analysis resistance framework system, a fault 
injection testing and verification system, which enables us 
to inject a fault into the right position, even to within 1 μs. 
We also explain how to find the exact timing of the target 
operation using an Atmega128 software board. 
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I. Introduction 

The RSA algorithm has been used as an important 
cryptographic tool for authentication, signature generation, and 
verification. This is based on the presumed difficulty of 
factoring large integers—that is, the factoring problem. Despite 
the reliability of RSA, however, improvements in its 
performance remain a challenging research topic owing to its 
large size modulus. One solution is to adopt the Chinese 
remainder theorem (CRT) to RSA, which provides 
approximately a four-fold increase in performance. Additional 
savings in memory space is also possible owing to the reduced 
size of the modulus. These are the main reasons why CRT has 
been used with RSA (CRT-RSA) in smart cards with limited 
resources. However, injecting a fault (or faults), such as a clock 
glitch, power glitch, or light, during the computation of CRT-
RSA and observing its faulty output gives the attacker 
information about secret keys [1]; such attacks are known as 
fault attacks. In contrast to power analysis attacks or brute force 
attacks against cryptographic algorithms, fault attacks require 
only one (or a few) fault injections and post-processing 
algorithms to find the secret keys. Among various fault attacks, 
some are practical, while others are only theoretically possible. 
Researchers have also studied countermeasures against fault 
attacks. As expected, the simplest way is to re-compute the 
signature and compare the two outputs, but this is not an 
efficient method. A challenging research topic is how to 
provide a secure and computationally efficient CRT-RSA 
algorithm. However, practical and secure solutions are hard to 
find; most of the countermeasures involve additional 
exponentiations or inversions [2]–[7], and the majority of those 
are themselves also susceptible to fault attacks [4], [8]–[11]. 

We revisit Shamir’s countermeasure and show what types of 
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fault attacks can be applied to this algorithm in practice. We 
then propose an improved countermeasure against fault 
attacks without involving additional heavyweight operations 
such as exponentiations or inversions. The remainder of this 
paper is organized as follows: we first introduce some basic 
concepts, including Shamir’s countermeasure, and then look 
at fault attacks that can be practically applied to Shamir’s 
countermeasure in section II. We next propose a new CRT-
RSA algorithm in section III, and then we demonstrate its 
security against fault attacks in section IV. We describe the 
experiments used to verify the security of the proposed 
countermeasure and show the experimental results in section 
V. Finally, we conclude the paper in section VI. 

II. Preliminaries 

In this section, we introduce some basic concepts and 
notations that will be used throughout the paper and briefly 
explain the RSA algorithm. Also included in the explanation is 
the CRT, which is used to speed up RSA. 

1. The RSA Algorithm 

RSA, which is named after its inventors, Rivest, Shamir and 
Adleman, is the first public-key cryptosystem known to be 
suitable for both digital signatures and encryption. The details 
of the parameters, including the public and private key pairs, 
are as follows: 

Generating two large primes, p and q, in equal size so that 
their product N = p · q has the bit length required by the 
cryptosystem. 

Compute N = p · q and φ (p · q), where φ denotes Euler’s 
totient function. 

Choose a number e, 1 < e < φ (p · q), such that gcd (e, φ (p · 
q)) = 1. 

Find another number d, 1 < d < φ (p · q), such that (e · d) – 1 
is divisible by φ (p · q). 

The two numbers e and d, are called public and private 
exponents, respectively, and a public key is a pair of (N, e); a 
private key is (N, d). The factors p and q, may be destroyed or 
kept secret. It is currently intractable to find the private key d 
from the public key (N, e). If it is possible to factorize N into p 
and q, one can obtain the private key d. For this reason, the 
security of the RSA algorithm is based on the difficulty of 
factoring large numbers. Algorithm 1 shows the process used 
for making digital signatures using RSA. Exponentiations and 
modulo computations are the main operations used in the 
algorithm and are sometimes too heavyweight to be used in 
resource-limited devices. 

Algorithm 1: RSA digital signing 

Input: message msg, private key (N, d). 
Output: signature S = md mod N. 
1  begin 
2     Create a message digest to be sent. 
3     Represent the digest as an integer m, 

0 < m < N–1. 
4     S  md mod N. 
5     Return S. 
6  end 

 
2. CRT-RSA 

For better computation speed and efficiency, RSA can use 
the CRT. CRT-RSA provides approximately a four-fold faster 
computation than directly computing S = md mod (p · q). The 
additional benefit is that the two modular exponentiations in 
CRT-RSA use smaller exponents and smaller moduli, thereby 
reducing resource consumption. 

The following explains the basic concept of CRT. Suppose 
n1, n2, … , nk are positive integers that are pairwise coprime. 
Then, for any given set of integers a1, a2, … , ak, there exists an 
integer x satisfying the following simultaneous congruences: 

x ≡ a1 (mod n1), 
x ≡ a2 (mod n2), 

  
x ≡ ak (mod nk). 

In addition, all solutions x are congruent modulo to the 
product N = n1×n2×···×nk. Thus, x ≡ y (mod ni), for 1 < i < k, if 
and only if, x ≡ y (mod N). 

This theorem provides a way to improve the performance of 
RSA. Unlike RSA, CRT-RSA uses p and q, and three 
additional secrets dp, dq, and iq —where dp and dq are known as 
CRT exponents and iq as a CRT coefficient. These values are 
obtained by computing the following: 

dp = d mod (p – 1), 
dq = d mod (q – 1), 

  iq  q · iq mod p = 1. 
Given the quintuple (p, q, dp, dq, iq), CRT-RSA can be 
represented as shown in Algorithm 2. 

 
Algorithm 2: CRT-RSA 

Input: message digest m, private key p, q, dp, dq, iq. 
Output: signature S. 
1  begin 
2     Sp  mdp mod p. 
3     Sq  mdq mod q. 
4    Combine two Sp and Sq using Garner’s recombination 

algorithm as follows: 
S = (((Sp – Sq) mod p)  iq mod p)  q + Sq. 

5     Return S. 
6  end 
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We note that Gauss’ recombination, described below, 
consumes more memory space than Garner’s recombination 

S = (Sp · q · (iq mod p) + Sq · p ·  (ip mod q)) mod N. 

Owing to the reduced size of the modulus, CRT-RSA provides 
two noticeable enhancements: a faster computation speed, and 
less required memory space. As a cryptographic algorithm, 
however, CRT-RSA has a critical drawback as it is known to be 
susceptible to a simple fault attack called a Bellcore attack, 
which reveals the secret prime factors by inserting a single fault. 
Simply speaking, fault attacks refer to malicious behaviors 
used to change the normal executions of a chip by inducing an 
exploitable fault. In doing so, an attacker can then obtain useful 
information that will assist them in the revealing of secrets 
from such hardware devices. A Bellcore attack [12], the most 
well-known fault attack on CRT-RSA, enables an attacker to 
reveal the secret prime factors by inducing a single fault on a 
chip. Suppose that by some event, a fault occurs only during 

the computation of Sp. We let  pS and S  denote a faulty Sp 

and a faulty signature, respectively. We then know the 

following: 

S ≢ Ŝ mod p, but S ≡ Ŝ mod q, 

which gives us 

gcd ((S – Ŝ ) mod N, N)  gcd ((m – ˆeS ) mod N, N) = q. 

Thus, the attacker can easily factorize N. There are a variety 
of countermeasures for protecting against a Bellcore attack. In 
the next section, we introduce Shamir’s countermeasure [13] 
and several fault attacks that can be practically applied to this 
countermeasure. 

3. Shamir’s Countermeasure and Fault Attacks 

To protect against the fault attack described in the previous 
section, Shamir proposed a CRT-RSA algorithm, shown     
in Algorithm 3. Unlike recently published CRT-RSA 
countermeasures, this countermeasure requires d as an input. 
Thus, this can be a burden for the overall computation. 

Algorithm 3: Shamir’s countermeasure 
Input: message digest m, private key p, q, d, iq. 
Output: signature S = md mod N. 
1  begin 
2     Generate a random prime r. 
3     Spr  md mod (p r) mod p  r. 
4     Sqr  md mod (q r) mod q  r. 
5     if Spr ≢ Sqr mod r then  
6        Return error. 
7     end 
8 Sp  Spr mod p and Sq  Sqr mod q. 

9     Recombine Sp and Sq as explained previously. 

10     Return S. 

11  end 

Since p, q, and r are prime numbers, we know that 

Spr ≡ Sqr mod r, 

provided that faults are never injected. As it is, noting ˆ
prS as 

the faulty value of Spr and |r| as the bit size of r, we have the 

following: 

Pr [ ˆ
prS ≡ Sqr mod r] ≈ 2–(| r | –1)ln 2. 

Based on this probability, if any fault is injected during the 
computation of Spr or Sqr, an error message must be returned 
with a probability of about 1 – (2– ( | r | –1) ln 2).  

However, this countermeasure has several drawbacks. First, 
a fault induced while p (or q) is accessed to compute p · r (or q · 
r, respectively) is not detected. This is based on the assumption 
that p is likely to be reloaded when needed owing to the limited 
amount of registers in smart cards. With a faulty p (or a faulty 
q), a Bellcore attack reveals the secrets. Second, the 
computations below are not protected 

Sp ← Spr mod p and Sq ← Sqr mod q. 
This reveals the same security hole of the straightforward CRT-
RSA on a Bellcore attack. Similarly, the recombination of Sp 
and Sq is never protected; and as a result, it is possible to inject 
a fault to iq without being noticed. Let q̂i denote a faulty value 
of iq, we then have the following: 

Ŝ = (((Sp – Sq) mod p) · q̂i mod p) ·q + Sq 

and 

S ≢ Ŝ mod p, but S ≡ Ŝ mod q. 

This enables an attacker to perform a Bellcore attack.  
We do not take into account an attack on the security 

comparison. For these kinds of attacks, the attacker has to 
disturb two precise parts of the computation to bypass the 
checking procedure: a) a temporary value or an operation to be 
disturbed and b) the coherence test to bypass. The latter will be 
possible if the attacker modifies the zero flag of the status 
register so as to bypass the security comparison. However, it is 
strongly assumed that sensitive registers are unprotected by 
redundancy mechanisms such as hardwired checksums or 
error-correcting codes. In addition, we set aside zero-value 
attacks in which the attacker is supposed to set one of the target 
buffers to zero during the execution of the exponentiation. To 
the best of our knowledge, it is not possible in practice to set a 
large buffer to zero [14]. 

Thus far, several variants of Shamir’s countermeasure have 
been proposed. In most cases, they tend to involve additional 
exponentiations or inversions; thus, resulting in performance 
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degradation. Furthermore, most of them are still susceptible to 
fault attacks. 

III. New CRT-RSA Algorithm Based on Modulus 
Chaining for Protecting against Fault Attacks 

In this section, we propose a new CRT-RSA algorithm 
withstandable to fault attacks. Our algorithm, based on 
Shamir’s countermeasure, performs additional security-
purpose operations; thus, making up for the vulnerabilities of 
Shamir’s countermeasure. From the practical standpoint of 
smart cards, it is a noticeable aspect that our algorithm does not 
need additional exponentiations or inversions from Shamir’s 
algorithm, which results in acceptable performance and 
resource requirement. We exclusively focus on how to offer a 
fault-infective CRT-RSA [15], thereby preventing a Bellcore 
attack. To that end, an error induced by a fault attack must lead 
to a fault-infective CRT computation on both Sp and Sq, or on 
the overall computation of S. Consequently, any kind of fault is 
expected to result in  

S ≢ Ŝ mod p and S ≢ Ŝ mod q. 

In particular, we aim to use a special purpose fault-infective 
computation on a secret modulus such that a fault induced 
while a secret prime is being loaded spreads throughout the 
other secret primes. For this purpose, we constructed a 
modulus chaining where all of the secret primes are tangled up 
together. This modulus chaining consists of two main concepts: 
PUSH and POP. In Algorithm 4, PUSH is a procedure adding 
input values to the target variable sum, where the addition is 
performed by XORing. In Algorithm 5, POP, on the other hand, 
outputs the value of a specific variable as follows. Given sum = 
    , for example, [POP ] performs the following: 

1) Loads  and  from memory. 
2) Computes Tsum=   . 
3) Computes value= sum  Tsum. 
4) Updates sum using Tsum and value, that is, 

sum = Tsum  value. 
5) Returns value. 

What is important here is that [POP ] does not load  from 
memory but instead loads  and , and then it computes value 

from sum. In addition, [POP ] updates sum = value    . 
These contribute to the following facts. First, if any fault is 
induced while  or  is accessed, or while Tsum is computed, it 
results in a faulty ŝumT and consequently produces faulty ˆsum  
and faulty ˆ .value  Consequently, subsequent POPs performed 
on this faulty ˆsum  result in faulty outputs. Moreover, we 
verify the integrity of sum in the later part of the algorithm so 
that the faulty ˆsum  returns an error code. Second, injecting 
faults while value or sum is computed has the same result as  

Algorithm 4: PUSH x, y, ···. 

Input: variable x, y, ···. 
1  begin 
2     sum  x  y  ···. 
3     W  W  {x, y, ···}. 
4  end 

 
Algorithm 5: POP x 

Input: variable x,  
Output: the value of x. 
1  begin 
2     T W– {x}. 
3     Tsum  .

t T
t


  

4     valuex  sum  Tsum. 
5     sum  Tsum  valuex. 
6     return valuex. 
7  end 

 

Algorithm 6: Proposed algorithm 
Input: message digest m, private key p, q, d, iq. 
Output: signature S = md mod N. 
1  begin 
2     Generate a random prime r. 
3     [PUSH p, q, and r]. 
4 dpr  d mod ([POP p][POP r]). 
5 dqr  d mod ([POP q][POP r]). 
6 p  ([POP p][POP r]. 
7 q  ([POP q][POP r]. 
8 Spr  mdpr mod .p  
9 Sqr  mdqr mod .q  

10     if Spr ≢ Sqr mod [POP r] then 
11        Return error. 
12     end 
13     Sp  Spr mod [POP p]. 
14     Sq  Sqr mod [POP q]. 
15     S  (((Sp  Sq) mod p)  iq mod p) q + Sq. 
16     if (S ≢ Spr mod [POP p] or 
17     (S ≢ Sqr mod [POP q]) then 
18       Return error. 
19     end 
20     check  sum .

w W
w


  

21     if check ≠ 0 then 
22       Return error. 
23     end 
24     Return S. 
25  end 

 
the previous case. This has an influence on not only value but 
also on the subsequent outputs of POPs. Owing to these 
properties, the attacker is unable to succeed in a Bellcore attack if 
faults are injected while PUSHs or POPs are executed. The 
details of the proposed algorithm are represented in Algorithm 6. 
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Table 1. Comparison of previous countermeasures and our own.

 Time complexity [16] 

Aummuler el al. [4] 4(k+l)3+2k2+4kl 

Boscher el al. [17] 4k3+11k2 

Ciet and Joye [18] (4k+1)(k+l)2+4l3+k2+l2+3kl+inversion 

Giraud [14] 4k(k+l)2+5k2+2kl 

Our CRT-RSA 2(k+l)3+2k2+2kl 

 

 
On the assumption that each prime used in the algorithm is 

reloaded every time—owing to the limited number of registers 
in smart cards—we perform PUSH p, q, and r in the beginning 
and obtain the value of each prime through POP instead of 
accessing the primes directly. As previously pointed out, 
Shamir’s countermeasure does not protect computations from 
obtaining Sp, Sq, or the CRT recombination. For this reason, we 
check the congruence relations on S, Spr, and p as well as on S, 
Sqr and q after finishing the CRT recombination. The value of 
check must be confirmed as an integrity check to make sure the 
POPs have been performed without disturbance by faults. 
Based on Shamir’s countermeasure, we place the following 
additional operations in the algorithm. 
Two congruence modulo operations. 
One simple comparison between check and 0. 
Modulus chaining: 1 PUSH and 13 POPs. 
It is worth noting that PUSH consists of two XORs, POP, 

and four XORs. Hence, PUSH/POP impose 54 XORs in total. 
It is also important to note that no inversions or exponentiations 
are additionally used from Shamir’s countermeasure. Table 1 
compares the computational cost of previous countermeasures 
and our own countermeasure for CRT-RSA, where k is the bit 
length of secret primes, and l is the bit length of a random 
prime. Our CRT-RSA algorithm requires two exponentiations 
of a (k + l)-bit modulus with a (k + l)-bit exponent, one CRT 
recombination with two multiplications of two k-bit numbers 
and two multiplications of k-bit and l-bit numbers. Therefore, 
the final time complexity of CRT-RSA with our 
countermeasure is 2(k + l)3+ 2k2+ 2kl, excluding the cost for 
extra operations (that is, addition and logical operations). We 
note that our CRT-RSA has almost the same level of 
complexity with Shamir’s countermeasure; the additional 
operations stated earlier do not impose a noticeable increase in 
the computational cost. 

IV. Security Analysis 

We now analyze the security of the proposed algorithm 
against the fault attacks described in section II. Our analysis 

does not include all kinds of fault attacks like permanent faults, 
where some parameters may be permanently corrupted or 
damaged by some serious environmental factors. The first type 
of fault is induced while a prime is accessed. As shown in 
Algorithm 4, there are three primes in the algorithm: p, q, and r. 
They are loaded at PUSH or POP, except for the CRT 
recombination. If a fault is injected while a specific prime, say 
p for example, is accessed, then the following analysis shows 
the reason why the algorithm is resistant to a fault attack: 
except for the recombination, p is loaded at PUSH (p, q, r), 
POP q, and POP r. Let p̂  denote a faulty p. If a fault is 
injected during the execution of PUSH, we then have 

ˆsum = p̂  q  r. The faulty ˆsum has dependency upon 
subsequent POPs as follows: 

POP p  ˆsum q  r. 

 p̂ q  r  q  r = ˆ.p  

POP q  ˆsum p  r, 

 p̂ q  r  p  r = p̂ p  q. 

POP r  ˆsum p  q, 

 p̂ q  r  p  q = p̂ p  r. 

(We omit the case of disturbing access to q or r, because it 
causes a similar result). 
This shows that a fault injection leads to a fault-infective 
computation because the faulty sum propagates through the 
subsequent POPs. For this reason, sum must be intact for an 
attacker to succeed. It is also possible to inject faults while 
accessing primes in the execution of POPs. More specifically, 
fault injection, making the faulty Tsum, outputs the faulty ˆ ,sum  
which results in a faulty infective computation (see line 5 in 
Algorithm 5). The primes can also be accessed at the CRT 
recombination. To protect the recombination from fault attacks, 
we place a security comparison right after the recombination. 
Thus, if a fault makes a faulty p̂ , for example, another fault 
should be injected during the computation of Spr mod [POP p] 
such that Ŝ ≢ Spr mod [POP p] becomes false, which enables 
an attacker to pass the security comparison. However, the 
probability for an attacker to succeed in injecting faults at two 
precise parts of the computation is negligible [14].  

The second type of fault is those that could be injected in a 
transient manner during any computation. Our algorithm 
performs a total of three security comparisons. The first is to 
detect either a faulty Spr or Sqr. To that end, Spr ≡ Sqr mod [POP 
r] is checked at line 10 in Algorithm 6. Since we have       
Pr [ ˆ

prS ≡ Sqr mod r] ≈ 2–( | r | –1)ln 2, the bit length of r 
determines the security level of the algorithm. The second is to 
mainly detect faults that are possibly injected during the 
computation of Sp ← Spr mod [POP p] and Sq ← Spr mod 
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[POP q] or during the CRT recombination. Since the bit length 
of p and q is |S|/2, faulty outputs are unlikely to pass this 
comparison. The last one, is to verify the integrity of sum, 
which might be distorted during the last execution of POP; 
[POP q]. For this purpose, all primes are newly loaded from the 
storage and XORed with sum; the result must be 0 if all 
operations have been normally performed without faults. 
Consistency checks at lines 10 and 16, and the use of POP and 
PUSH to guarantee the integrity of p, q and r, are closely 
correlated with each other so that they verify that no error 
occurred during the computation of Sp or Sq and the CRT 
recombination. 

V. Experimental Setup and Results 

In this section, we first describe our fault-injection setup. We 
then detail the experiment we performed and present the results. 
We first show the vulnerabilities of Shamir’s countermeasure 
and show the security of our proposed CRT-RSA against fault 
attacks using the SCARF system. 

1. Experimental Setup 

For injecting faults and analyzing the response during the 
execution of CRT-RSA, we need a parameter-controlling PC, 
an experimental board for fault injection, and an oscilloscope. 
Specifically, implementing CRT-RSA on a software board is 
more recommendable than porting on a smart card, because we 
have to insert an additional trigger for injecting a fault during a 
specific period. Figure 1 shows the hardware setup that we use 
to inject faults into an Atmega 128 software board. We 
implemented both Shamir’s countermeasure and our proposed 
algorithm on an Atmega 128 microcontroller that can operate 
within the standardized smart card communication 
specification [19]. The setup consists of a fault-injection control 
system, named SCARF, our board containing an Atmega 128 
microcontroller, a field programmable gate array (FPGA), a 
triggercontroller, and more. SCARF sends a command 
including operating parameters to the microcontroller, which in 
turn forwards the fault parameters to the FPGA. The FPGA 
then controls the operating environment of the on-board 
algorithm. The parameters we can handle include the clock 
cycle and power supply. To inject a fault during the execution 
of CRT-RSA, we change one of these parameters into 
abnormal values.  

Basically, the parameters consist of timing information and 
fault types. Timing information specifies an offset, 
synchronizing duration with the control devices and fault 
injection duration, as shown in Fig. 2. Fault types can be given 
by an abnormal clock cycle (Fig. 3), power supply (Fig. 4), or a  

 

Fig. 1. Fault-injection setup. Atemga 128 microprocessor, 
connected to PC, forwards fault parameters to FPGA. 
FPGA then controls operating environment. We can see 
power traces and clock signals through oscilloscope (a 
LeCroy WaveRunner 104Mxi-A): (a) experiment 
setting and (b) setting block diagram. 

(a) 

ARM  
SW board 

SCARF, 
side-channel analysis 

system 

Oscilloscope 

(b) 

 
 

 

Fig. 2. Parameters for fault injection. 

Synchronizing duration with control devices 
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Fig. 3. Clock variances for fault injection: (a) normal case and (b) 
- (d) clock glitches for fault. Blue line indicates normal 
clocks, but red line indicates abnormal ones. 
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Fig. 4. Variance of power supply for fault injection: (a) normal 
case and (b) - (d) abnormal power supply for fault. 
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Fig. 5. Combinations of clock glitch and abnormal power supply 
for fault injection. 
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combination of the two (Fig. 5). In our experiments, we use an 
abnormal power supply as a fault. 

The Atmega 128 [20] is a high-performance, low-power 
AVR 8-bit microcontroller, providing an advanced RISC 
architecture with 133 instructions and up to a 16 MIPS 
throughput at 16 MHz. It contains 128 KB of in-system 
reprogrammable flash, 4 KB of EEPROM/internal SRAM, 
and up to 64 KB of optional external memory space. Its 
operating voltages are from 4.5 V to 5.5 V. It may not be 
acceptable for an 8-bit processor to execute CRT-RSA with a 
modulus size of more than 1,024 bits. 

Owing to this fact, we implement both Shamir’s 
countermeasure and our algorithm with |p| = |q| = 32 bits, 
which is reasonable for an Atmega 128. More specifically, the 
public exponent and secret primes we used are: 
 e: 0x03. 
P: 0xD0 67 8A 45. 
Q: 0xE8 09 85 7B. 

 2. Performed Experiment and Results 

Both Shamir’s countermeasure and our algorithm are  

 

Fig. 6. Waveform of Shamir’s countermeasure: blue color is 
power trace of countermeasure; yellow color indicates 
trigger signals at rising edge: a represents prime loading, 
b represents computation of Spr and Sqr, c represents Sp

 Spr mod p and Sq  Sqr mod q, and d represents CRT 
recombination. Barrett reduction for five modular 
operations spent most of time. Oscilloscope settings: 
500 ms/div and 2.5 MS/s.  

 
designed to return an error code in the presence of faults. 
However, if faults are injected without being detected, a 
meaningful output will be returned; thus, enabling a Bellcore 
attack. In the following experiments, we intentionally injected 
faults at the vulnerable points where Shamir’s countermeasure 
is susceptible and injected the same type of faults on the 
proposed scheme. The results show that Shamir’s 
countermeasure returns a faulty signature, while our algorithm 
returns a meaningless error code; 0x00. 

Experiment 1 (Shamir’s countermeasure): We initiate 
communication between the Atmega 128 software board and 
the SCARF system, introduced previously, as defined in the 
ISO/IEC 7816-4 standard, which specifies the organization, 
security, and commands for an interchange. Shamir’s 
countermeasure is executed at the command from SCARF, and 
this command also defines the fault parameters, which include 
timing information and fault types. It is not possible to extract a 
trigger signal from a smart card, and for this reason, we used a 
software board. We set trigger signals generated when 
particular operations begin so that we can find a part of the 
specific operation(s) in the waveform of CRT-RSA (Fig. 6). 
The SCARF system provided us with a user interface 
controlling the fault-injection timing in the unit of μs. After 
finding the exact position of the target operations using the 
trigger signal, we can inject a fault at the right position. We note 
that a fault-injection environment should support parameters in 
the unit of μs, and we therefore inject a fault at a fairly 
lightweight operation such as the loading of a secret prime.  

We reduce the 3.3 V power supply to 2.2 V, while (a) the  
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Fig. 7. Fault injection into Shamir’s countermeasure. Prime 
loading and CRT recombination are performed at rising 
edge in yellow color. Green box shows a power drop. 
Oscilloscope setting for (a) fault injection at loading of 
secret primes: 50 MB/s and 5 μs/div and (b) fault 
injection at CRT recombination: 5 MS/s and 2 ms/div. 

(a)  

(b)  

 

 

Fig. 8. First ten results of faulty signatures from Shamir’s 
countermeasure. Red-colored bytes are faulty. By using 
a Bellcore attack and one of these faulty signatures, 
attacker can reveal the secret primes.  

 
secret primes are being loaded and (b) the operations including 
the CRT recombination are being performed. We ran procedure 
(a) 100 times and attack procedure (b) 500 times, trying to 
inject faults into various points of operations. We set the trigger 
signals for (a) and (b), and adjusted the timing for a fault 
injection using the SCARF system, the results of which are 
shown in Fig. 7. We noticed that a fault injection is not always 
successful; a software board (or a smart card) often totally 
crashes or sometimes a fault injection has no effect. As a result, 
we only succeeded in injecting 60 faults out of a total of 600 
((a) 4 times and (b) 56 times); the faulty outputs are shown 

 

Fig. 9. First ten return values from our countermeasure. All are 
pre-defined error code 0x00.  

 
in Fig. 8. The SCARF system first runs the algorithm without 
faults and stores its original output. Every time faults are 
injected into the algorithm, the system compares the output of 
the algorithm to the original output and shows faulty bytes in 
red if they are different from the original output. By using one 
of any fault signature shown in Fig. 8, the attacker can reveal 
the secret primes p and q, and compute then d, because the 
public exponent e is known. 

Experiment 2 (The proposed algorithm): In this 
experiment, we testify the security of our algorithm. As in 
Experiment 1, we gave the same type of fault at every point 
where Shamir’s countermeasure fails to protect from faults. For 
a stronger verification of the security of the proposed algorithm, 
more faults are injected than had been for Experiment 1. We 
intensively injected faults when loading secret primes and 
operations around where the CRT recombination is executed. 
As pointed out previously, fault injection does not show a fixed 
success rate even though basic operations are the same. In this 
experiment, the microcontroller crashed more often than in the 
previous experiment, and more faults failed to be injected. As a 
result, only 21 of 1,000 faults are successfully injected and are 
represented in red in Fig. 9 ((a) 5 times and (b) 16 times). As 
designed for protection against fault attacks, all faulty 
signatures return an error code 0x00 without exception. 
Needless to say, error code 0x00 does not enable a Bellcore 
attack. 

VI. Conclusion 

The Bellcore attack on CRT-RSA reveals the secret prime 
factors by introducing a single fault on a chip. Although 
Shamir’s software countermeasure has attracted a lot of 
attention, several drawbacks—from a security point of view— 
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have limited its widespread use. Many later countermeasures 
have depended on additional exponentiations and inversions to 
detect fault attacks, resulting in severe performance 
degradation. In this paper, we improved Shamir’s 
countermeasure to protect against a Bellcore attack with low 
additional costs. Unlike previous fault injection experiments, 
our experiment environment, the SCARF system, enables us to 
inject a fault into the right position, even in the unit of μs. We 
implemented Shamir’s countermeasure, as well as our own 
countermeasure, on an Atmega 128 software board and 
generated trigger signals when specific operations began. The 
exact time of the target operations could be calculated using 
these trigger signals, and we were able to inject faults wherever 
we wanted—even at the loading of the secret primes. Our 
security analysis and experiments demonstrate that the 
proposed countermeasure provides reliable security. 
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