
Research Article
Light-Weight and Versatile Monitor for a Self-Adaptive Software
Framework for IoT Systems

Young-Joo Kim,1 Jong-Soo Seok,1 YungJoon Jung,1 and Ok-Kyoon Ha2

1Electronics and Telecommunications Research Institute, Embedded SW Platform Research Section, Deajeon 34129, Republic of Korea
2Department of Aeronautics & Software Engineering, Kyungwoon University, Gumi 39160, Republic of Korea

Correspondence should be addressed to Ok-Kyoon Ha; okha@ikw.ac.kr

Received 15 April 2016; Accepted 7 November 2016

Academic Editor: Antonio Fernández-Caballero

Copyright © 2016 Young-Joo Kim et al.This is an open access article distributed under theCreative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Today, various Internet of Things (IoT) devices and applications are being developed. Such IoT devices have different hardware
(HW) and software (SW) capabilities; therefore, most applications require customization when IoT devices are changed or new
applications are created.However, the applications executed on these devices are not optimized for power and performance because
IoT device systems do not provide suitable static and dynamic information about fast-changing system resources and applications.
Therefore, this paper proposes a light-weight and versatile monitor for a self-adaptive software framework to automatically control
system resources according to the system status. The monitor helps running applications guarantee low power consumption and
high performance for an optimal environment. The proposed monitor has two components: a monitoring component, which
provides real-time static and dynamic information about system resources and applications, and a controlling component, which
supports real-time control of system resources. For the experimental verification, we created a video transport system based on
IoT devices and measured the CPU utilization by dynamic voltage and frequency scaling (DVFS) for the monitor. The results
demonstrate that, for up to 50 monitored processes, the monitor shows an average CPU utilization of approximately 4% in the
three DVFS modes and demonstrates maximum optimization in the Performance mode of DVFS.

1. Introduction

Rapid growth in information and communications tech-
nology (ICT) has resulted in the development of various
types of Internet of Things (IoT) devices and applications for
the industry, home, and other sectors. However, such IoT
devices have different hardware (HW) and software (SW)
capabilities. The HW capability is mainly influenced by the
number of CPU cores or the CPU clock speed. Further,
battery capacity is important because IoT devices do not
generally use external power. Therefore, many researchers
have considered the relation between performance and
power. For example, if a system allocates many CPU cores
to a program, the program has high performance but its
power consumption is not efficient. The SW capability of
an IoT device is mainly determined by the number of
running applications because running applications can affect
system performance, power, and so forth. Hence, these
running applications must be customized when the devices

are changed or new applications are executed on the device.
However, the applications are not optimized with respect to
performance, power, and so forth because IoT device systems
do not suitably provide static/dynamic information for fast-
changing system resources and applications.

Therefore, in this manuscript, we propose a light-weight
and versatile monitor for a self-adaptive software framework;
the proposed monitor and the framework can automatically
control system resources according to the system status. The
proposed monitor can function with small-scale systems
(e.g., IoT devices and embedded devices) and large-scale
systems (e.g., PC and rich systems); the monitor has a
light-weight design. In order to support the self-adaptive
software framework, the monitor helps running applications
to guarantee low power and high performance, thus creating
an optimal environment. The proposed monitor has two
components: a monitoring component and a controlling
component. The monitoring component provides static and
dynamic information about the systems and applications

Hindawi Publishing Corporation
Journal of Sensors
Volume 2016, Article ID 8085407, 8 pages
http://dx.doi.org/10.1155/2016/8085407



2 Journal of Sensors

Self-
adaptive 

app.

Self-
adaptive 

app.

CPU NetworkMemory

Application layer

Monitoring

System layer

Application and
system monitoring

Application and
system manager

Controlling

Analysis and
policy decision

Large-scale devices Small-scale devices

Self-adaptive SW
framework layer

High qualityLow quality

Figure 1: Concept of self-adaptive software framework.

in real-time. Static information is meaningful data that are
already fixed in systems and applications, and dynamic infor-
mation is meaningful data that change during the execution
of systems and applications.The controlling component helps
in the control of system resources (e.g., CPU, memory,
network, etc.) in real-time. The control functions defined are
CPU on/off, CPU frequency control, and network bandwidth
control. For the experimental verification of the proposed
monitor, we created a video transport system based on IoT
devices and measured the CPU utilization for the monitor.
The results showed that, for up to 50 monitored processes,
the average CPU utilization of the monitor is approximately
4% in the three DVFS modes. Further, we observed that the
monitor shows maximum optimization in the performance
DVFS.

The remainder of this manuscript is structured as follows:
In Section 2, we introduce the concept of a self-adaptive
software framework. In Section 3, we describe the light-
weight and versatile monitor for the self-adaptive software
framework. In Section 4, we demonstrate the potential of
the monitor through a self-developed QoS guarantee system.
Finally, we state our conclusion and outline our directions for
future research.

2. Self-Adaptive Software Framework

A self-adaptive software framework [1, 2], which is a middle-
ware to guarantee optimal QoS for each application executing

in a system, can manage and control running applications
during their life cycle in a real-time and dynamic manner.
In order to manage and control these applications, the
framework provides monitoring functions. These functions
are typically called adaptive applications. These adaptive
applications include at least two modules: a QoS generator
such as heartbeat [3] and a performance container with
various algorithms. The QoS generator is inserted into a
monitoring point of an application before the execution of the
application; then, during the execution of the application, the
QoS generator periodically reports the QoS for the applica-
tion. The performance container uses one of two approaches:
the first approach is to change the input parameters that
influence the performance of the application, and the second
approach is to create one or more algorithms that can change
according to the performance. The self-adaptive software
framework examines the reported QoS and then controls
the adaptive applications. The framework uses the static and
dynamic information about the application and the system
resources to adjust the optimal QoS performance.

Generally, the self-adaptive software framework is com-
posed of modules that monitor application or system infor-
mation and control system resources. Figure 1 shows the
overall structure of the self-adaptive software framework. As
shown in this figure, the self-adaptive software framework
layer is located between the application layer and the system
layer. The framework consists of three modules: an applica-
tion and systemmonitoringmodule, an application and system



Journal of Sensors 3

Running application

Application 1

Application 2

Application n

Operating system

Monitoring component
Program
register

Program

receiver

Data
Third-party

modules
System info.

gatherer

App .info Sys .info

coordinator
info.

DB DB

Controlling component

CPU control

Memory control

Network control

System observation

Control
execution

/proc /sys. . .

Figure 2: Block diagram of the light-weight and versatile monitor consisting of monitoring component.

managermodule, and an analysis and policy decisionmodule.
In the application layer, when a self-adaptive application
is running with low quality and the user requirement for
the application is high quality, it is not easy for a general
operating system to change the low-quality service to a
high-quality service. However, the self-adaptive software
framework can adjust the service quality by using the three
modules. The application and system monitoring module
gathers information from the system layer through monitor-
ing, the application and systemmanagermodule provides the
gathered information to the other modules, and the analysis
and policy decision module controls the system resources or
the flow of the application with the assistance of the manager.
Our proposed monitor corresponds to the application and
system monitoring module and the application and system
manager module.

3. Self-Adaptive System Observation

In this manuscript, we present the light-weight and versa-
tile monitor, which consists of the monitoring component
and the controlling component. First, the monitor gath-
ers static/dynamic information about the applications and
systems; this information is required for the self-adaptive
decision. Then, this information is provided to external
modules and external devices.The proposedmonitor is light-
weight with respect to CPU utilization; therefore, it can be
ported to diverse IoT devices such as embedded systems.

Figure 2 shows the block diagram of the light-weight
and versatile monitor. In this figure, when applications are
executed on a system, themonitor observes the status of these
applications and the system in real-time and records this
information in the “application information DB” and “system
information DB,” respectively. The recorded information will
be utilized to determine the optimization of the application
to obtain high performance and low power consumption.

3.1. Monitoring Component. The monitoring component
consists of five modules: program register, program informa-
tion receiver, system information gatherer, data coordinator,
and third-party modules. The program register and the

Table 1: Application information (static/dynamic).

Static information Dynamic information
Program ID Allocated core
Program name The number of threads
Program path Thread list
Max QoS Program status
Min QoS Program time
Target QoS Program/memory Utilization
Application sampling time Network information (Tx, Rx)
Log file Heartbeat rate

program information receiver are responsible for collecting
information about the application. During the execution of
an application, two modules are connected to applications in
TCP/IP. For example, when an adaptive application executes
on a system, the application is registered in the light-
weight and versatile monitor of the self-adaptive software
framework by the program register; then, the program infor-
mation receiver gathers static/dynamic information about the
registered application. Table 1 provides a summary of the
static/dynamic information for a running application.

The system information gatherer collects static/dynamic
information about the system resources in real-time. Further,
the third-party modules receive information such as power,
program characteristics, and internal kernel information
from external modules or external devices. For example,
system power and application power must be measured by
external power equipment, and the measured power is trans-
ferred to the third-party modules of the self-adaptive system
observation monitor. System static information represents
the fixed values corresponding to the HW resources (e.g.,
CPU, memory, and network), and it is configured only once
when a system functions. Generally, system static informa-
tion has a unique value for the system when HW specifics
remain unchanged.The value is determined by one-time data
collection. System dynamic information represents values
that change according to the system status. Most of these
values can vary according to the system overhead, and they
are updated periodically during the setup for information



4 Journal of Sensors

Table 2: System information (static/dynamic).

Static information Dynamic information
The number of cores Core activity status
Max freq. of core Core current freq.
Min freq. of core The number of threads
Core MIPS The number of processes
Available frequency Core utilization
System memory System memory

Network interface
DVFS

Network packet (Tx, Rx)
Power (CPU, GPU, and
memory)

collection. The system static information shown in Table 2
includes CPU core, CPU frequency, memory, network, and
DVFS.The system static information is the fixed information
of the HW. If the HW capability is changed, the system static
information is also updated. For this information, a data
structure corresponding to each HW system is maintained
separately.The system static information is updated only once
when the light-weight and versatile monitor is executed. The
system dynamic information shown in Table 2 includes the
current state of the CPU core, CPU utilization, memory, net-
work, and power. The dynamic information can be changed
according to the current state of the system; further, users can
change the resource values of the system, and thus, dynamic
information is changed in real-time.

The data coordinator reorganizes the information col-
lected from the program information receiver, the system
information gatherer, and the third-party modules; then, this
information is saved in the application information DB and
the system information DB. The dynamic information about
the application and systems is categorized into two data struc-
tures: instant data and calculation data. The instant data (e.g.,
CPU activity) can be used immediately in other modules,
whereas the calculation data (e.g., utilization) cannot be used
immediately owing to the need for additional operations. The
static information about the applications and systems has
a single data structure, which corresponds to instant data.
These data are classified in real-time as application, system,
or third-party data.

3.2. Controlling Component. The controlling component
consists of four modules: cpu control, memory control, net-
work control, and control execution. This component provides
an environment to control system resources such as CPU,
memory, and network. The various parameters of these
system resources are as follows:

(i) CPU: core on/off, core frequency, thread affinity,
DVFS (dynamic voltage frequency scaling) [4]

(ii) Memory: cache drop, minimum memory set
(iii) Network: bandwidth, packet drop

Control execution controls the CPU and memory by
interacting with the proc file system. Control execution
controls the network by using network control commands

Table 3: Monitoring interfaces and controlling interfaces.

Monitoring interface Controlling interface
The number of cores Core activity status
Max freq. of core Core current freq.
Min freq. of core The number of threads
Core MIPS The number of processes
Available frequency Core utilization
Systemmemory System memory
Network interface Network packet

(e.g., tc command) or kernel model programs (e.g., network
stack). Further, the controlling component provides moni-
toring interfaces and controlling interfaces such as libraries.
Table 3 shows the monitoring interfaces and controlling
interfaces. Thus, self-adaptive system observation uses the
static/dynamic information about the applications and sys-
tems to enable optimal execution of applications.

4. Experimental Verification

In this section, we present the experimental verification of
the proposedmonitor.We introduce a video transport system
based on IoT devices; the monitor is applied to this system
and the experimental results for the proposed light-weight
monitor are presented.

4.1. Implementation. Figure 3 shows a video transport system
with a self-adaptive SW framework including the light-weight
and versatile monitor. The system consists of a three-tier
structure (IoT devices↔ set-top box (STB)↔ host system).
The IoT device that performs video capture and encode
consists of an Intel Edison Board [5–8] with CAM; the STB,
which performs video streaming, consists of an Embedded
Board with Exynos 5422 [9] and contains the proposed
monitor and a self-adaptive policy manager. This manuscript
does not focus on the policy manager. The host system,
which includes a user interface, consists of a mobile device
with wireless communication such asWi-Fi.The functioning
of this system can be described as follows: video sources
are generated from the Intel Edison Board with CAM in
real-time; the generated sources are transferred to the STB
through Wi-Fi; a video streaming server on the STB receives
these video sources and decodes them in real-time; finally, the
decoded sources are transferred to the mobile device through
Wi-Fi.

In Figure 3, if a self-adaptive SW framework is not present
in the STB, the STB cannot guarantee the transfer of a high
bitrate video generated in the Intel Edison Board to the
host system because the STB may convert the video into a
low bitrate video owing to overhead. In typical systems, this
behavior is observed. However, even in the presence of a self-
adaptive SW framework in the STB, the high bitrate generated
from the Intel Edison Board may not reach the IoT devices
and the host system. For example, if the number of video
sources increases steadily, it is not easy for a typical video
transport system to provide the high bitrate videos generated



Journal of Sensors 5

STB

Video source #n
Video source #2

Video
streaming

server
UI

Video

Video source #1
Middleware

(self-adaptive 
SW framework)

STB

UI

(A) Video source
(i) Intel Edison Board with CAM
(ii) Video capture and encode

(A) Video streaming
(i) Embedded board with Exynos 5422
(ii) Light-weight & versatile monitor
(iii) Self-adaptive policy manager

(A) UI display

Video QoS-MPEG video

Our system

Typical system

Middleware
(self-adaptive SW framework)

High bitrate video Low bitrate video

High bitrate High bitrate
video video 

Figure 3: Video transport system with self-adaptive SW framework including light-weight and versatile monitor.

Monitor the board

Edison Board
Embedded board

Mobile device

Figure 4: The screenshot of the implementation of the system in
Figure 3.

in the Edison Board to the mobile device. The reason is
that system resources (e.g., the number of cores, memory,
and network bandwidth) allocated in the streaming server
are insufficient; hence, the STB assigns low performance to
running applications in a fairmanner. However, the proposed
video transport system can provide the high bitrate videos to
the mobile device because our system has a middleware—
the self-adaptive SW framework including the light-weight
and versatile monitor. This middleware can handle system
resources by using the application and system information
collected by the monitor. Therefore, the proposed system
always maintains the QoS defined by the user even in the case
of many overheads.

Figure 4 demonstrates a system based on the implemen-
tation of Figure 3. In Figure 4, two Edison boards capture
and encode video images.The embedded board receives these
images and processes them. The light-weight and versatile
monitor is ported to the board. The tool that runs in the

notebook shows the information collected by the monitor
in real-time; this information represents the static/dynamic
information about the video streaming server and embedded
board.Themobile device is provided with the original images
of the target systems without loss of images. The tool and
UI (user interface) show a regular QoS, indicated by the red
color, in the graph.

4.2. Results and Analysis. In order to verify the light-weight
characteristic of the proposed monitor, which functions on
the Exynos 5422 embedded system, we measure the CPU
utilization of the monitor by using our homebrew exper-
imental application. The application automatically creates
processes according to the input values and then initiates the
execution of the processes. The input values are 1, 7, 15, 30,
50, 80, 100, 130, 170, and 200. CPU utilization is measured by
DVFS governor (Interactive, Performance, and Ondemand).
Figures 5, 6, and 7 show the CPU utilization corresponding
to the number of running processes in the monitor for
Interactive, Performance, and Ondemand modes of DVFS,
respectively. The top graphs in each figure show the results
corresponding to the conversion of CPU utilization into a
percentage for 200 running processes. The CPU utilization
is measured 500 times while the processes are executing.
The bottom graphs in these figures show the average and
error range of CPU utilization according to the number of
monitored processes.

For the Interactive mode, themeasured CPUutilization is
shown as a percentage in the top graph of Figure 5. As shown
in the dotted red rectangle of this graph, the percentage is
approximately 20% for up to 50 processes. However, more
than 80 processes exceed 30%, so that the suggested monitor
can affect an embedded system (e.g., Exynos 5422) due to



6 Journal of Sensors

0
10
20
30
40
50
60
70
80
90

100
CPU utilization in Interactive mode

Pe
rc

en
ta

ge
 o

f C
PU

 u
til

iz
at

io
n 

(%
)

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

20
1

20
9

21
7

22
5

23
3

24
1

24
9

25
7

26
5

27
3

28
1

28
9

29
7

30
5

31
3

32
1

32
9

33
7

34
5

35
3

36
1

36
9

37
7

38
5

39
3

40
1

40
9

41
7

42
5

43
3

44
1

44
9

45
7

46
5

47
3

48
1

48
9

49
7

Time (sec)

0
2
4
6
8

10
12
14
16

#1 #7 #15 #30 #50 #80 #100 #130 #150 #170 #200

CP
U

 u
til

iz
at

io
n

The number of processes 

Average CPU utilization in Interactive mode 

y = 1.2662x − 0.6052

R2 = 0.9658

#1
#7
#15
#30

#50
#80
#100
#130

#150
#170
#200

Figure 5: CPU utilization in Interactive mode.

#1 #7 #15 #30 #50 #80 #100 #130 #150 #170 #200
The number of processes

0
10
20
30
40
50
60
70
80
90

100

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

20
1

20
9

21
7

22
5

23
3

24
1

24
9

25
7

26
5

27
3

28
1

28
9

29
7

30
5

31
3

32
1

32
9

33
7

34
5

35
3

36
1

36
9

37
7

38
5

39
3

40
1

40
9

41
7

42
5

43
3

44
1

44
9

45
7

46
5

47
3

48
1

48
9

49
7

Time (sec)

CPU utilization in Performance mode

#1
#7
#15
#30

#50
#80
#100
#130

#150
#170
#200

Pe
rc

en
ta

ge
 o

f C
PU

 u
til

iza
tio

n 
(%

)

0
2
4
6
8

10
12
14

CP
U

 u
til

iza
tio

n

y = 1.1602x − 1.2507

R2 = 0.9923

Average CPU utilization in Performance mode 

Figure 6: CPU utilization in Performance mode.

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f C
PU

 u
til

iz
at

io
n 

(%
) CPU utilization in Ondemand mode 

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

20
1

20
9

21
7

22
5

23
3

24
1

24
9

25
7

26
5

27
3

28
1

28
9

29
7

30
5

31
3

32
1

32
9

33
7

34
5

35
3

36
1

36
9

37
7

38
5

39
3

40
1

40
9

41
7

42
5

43
3

44
1

44
9

45
7

46
5

47
3

48
1

48
9

49
7

Time (sec)

#1
#7
#15
#30

#50
#80
#100
#130

#150
#170
#200

0
2
4
6
8

10
12
14
16
18
20

#1 #7 #15 #30 #50 #80 #100 #130 #150 #170 #200

CP
U

 u
til

iz
at

io
n

The number of processes

Average CPU utilization in Ondemand mode 

y = 1.6026x − 0.2901

R2 = 0.9905

Figure 7: CPU utilization in Ondemand mode.

its monitoring overheads. The bottom graph of Figure 5 is
the detailed experimental results for the aforementioned fact.
The graph shows that the CPU utilization coefficient of the
monitor working in the Interactive mode is 1.2662 (𝑦 =
1.2662𝑥 − 0.6052). The coefficient is calculated by the regres-
sion analysis result for the measured CPU utilization based
on the number of processes. This result is correct because 𝑅2,
the reliability of the measured data, is 0.9658. In the bottom
graph of Figure 5, the CPU utilization is approximately 4%
for up to 50 processes as shown in the dotted red rectangle.
Therefore, we can state that the proposed monitor has the
light-weight characteristic because the monitor based on a
self-adaptive SW framework is not necessary for a large
number of processes (greater than 50).The results in Figures 6
and 7 are similar to the result of Figure 5.The CPU utilization
coefficient is 1.1602 (𝑦 = 1.1602𝑥 − 1.2507) and 𝑅2 is 0.9923.
The CPU utilization is also approximately 4% for up to 50
processes.TheCPUutilization coefficient in Figure 7 is 1.6026
(𝑦 = 1.6026𝑥 − 0.2901) and 𝑅2 is 0.9905. However, the
CPU utilization is approximately 5% for up to 50 processes.
Through experimental results, the proposed monitor shows
the best CPU utilization in the Performance mode and the
second-best CPU utilization in the Interactive mode. The
Ondemand mode has more overhead than the Performance
and Interactive modes because the mode controls CPU
frequency by checking CPU utilization periodically.

Figure 8 shows the CPU utilization corresponding to the
number of processes (1, 7, 15, and 50) for the Interactive,
Performance, and Ondemand modes. In all four graphs,



Journal of Sensors 7

Time (sec)

#Process 1 by DVFS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
CP

U
 u

til
iz

at
io

n

Performance

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

26
5

27
6

28
7

29
8

30
9

32
0

33
1

34
2

35
3

36
4

37
5

38
6

39
7

40
8

41
9

43
0

44
1

45
2

46
3

47
4

48
5

49
6

Interactive

Ondemand

Performance
Interactive

Ondemand

Time (sec)

#Process 7 by DVFS

0

1

2

3

4

5

6

7

8

9

CP
U

 u
til

iz
at

io
n

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

26
5

27
6

28
7

29
8

30
9

32
0

33
1

34
2

35
3

36
4

37
5

38
6

39
7

40
8

41
9

43
0

44
1

45
2

46
3

47
4

48
5

49
6

Time (sec)

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

26
5

27
6

28
7

29
8

30
9

32
0

33
1

34
2

35
3

36
4

37
5

38
6

39
7

40
8

41
9

43
0

44
1

45
2

46
3

47
4

48
5

49
6

Performance
Interactive

Ondemand

0

2

4

6

8

10

12

14

CP
U

 u
til

iz
at

io
n

#Process 15 by DVFS

Time (sec)

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

26
5

27
6

28
7

29
8

30
9

32
0

33
1

34
2

35
3

36
4

37
5

38
6

39
7

40
8

41
9

43
0

44
1

45
2

46
3

47
4

48
5

49
6

Performance
Interactive

Ondemand

#Process 50 by DVFS

0

2

4

6

8

10

12

14

16

18
CP

U
 u

til
iz

at
io

n

Figure 8: CPU utilization by DVFS (number of processes: 1, 7, 15, and 50).

the CPU utilization of the Ondemand mode fluctuates very
widely and the utilization is also higher than that of Inter-
active and Performance modes. As the number of processes
increases, the suggested monitor has much more overhead in
the Ondemand mode. (e.g., “#Process 50 by DVFS” graph of
Figure 8 indicates that the CPU utilization of the Ondemand
mode is over 2 times that of the Interactive and Performance
modes). That is, the monitor efficiently works in the Interac-
tive and Performance modes. Overall, the Ondemand mode
has greater overhead than the Interactive and Performance
modes. Figure 9 explains the aforementioned logical reason
well. In the Performance, the CPUutilization is 0.49 when the
number of process is 1. In this case, the suggested monitor has
the most performance. The CPU utilization is 3.95 when the
number of processes is 50. The increase rate of the utilization
is about 8.06. The increase gap is the largest among the CPU
utilization of DVFS governor. In the Interactive mode, the
CPU utilization is 2.04 when the number of process is 1 and

the CPU utilization is 4.50 when the number of processes
is 50. The increase rate of the utilization is about 2.21. The
increase gap is the smallest, so that the suggested monitor
has the most stable performance. In the Ondemand mode,
the CPU utilization is 1.99 when the number of process is 1,
and the CPU utilization is 7.03 when the number of processes
is 50. In this case, the suggested monitor has the worst
performance. The increase rate of the utilization is about
3.53.Therefore, the monitor has the light-weight overhead in
the Performance mode and the monitor has the most stable
overhead in the Interactive mode.

5. Conclusion

In this manuscript, we propose a light-weight and versatile
monitor that can be used in a self-adaptive SW framework.
This monitor can be used for large-scale devices (gateway
and STB) and small-scale devices (Intel Edison Board and



8 Journal of Sensors

2.04
2.51

3.04 3.27

4.50

0.49
1.10

1.94

3.53 3.95

1.99

3.23

4.43
5.06

7.03

1 7 15 30 50
The number of processes

CPU utilization by DVFS

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

U
til

iz
at

io
n 

(%
)

Interactive

Ondemand
Performance

Figure 9: Average CPU utilization by number of processes.

IoT devices). The proposed monitor provides static/dynamic
information about system resources and running applica-
tions to users in real-time; thus, the monitor helps a self-
adaptive policy manager of the self-adaptive SW framework
to optimally control system resources or applications. From
our experiments, we determined that the monitor shows
maximum optimization in the Performance mode of DVFS.
The monitor shows 3.95% CPU utilization for up to 50
monitored processes. In future work, we will apply the
proposed monitor to various hardware platforms and will
demonstrate the superiority of the proposed monitor.

Disclosure

This paper is a revised and expanded version of the paper
entitled “Design of Self-Adaptive System Observation over
Internet ofThings” presented at International Conference on
Control and Automation (CA 2015), November 25, 2015, Jeju,
Korea.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Thisworkwas supported by ICTR&DprogramofMSIP/IITP
(B0101-16-0661, the Research and Development of the Self-
adaptive Software Framework for various IoT Devices)
and also was supported by the Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (NRF-
2014R1A1A2060082).

References

[1] C. Bolchini, M. Carminati, A. Miele, and E. Quintarelli, “A
framework to model self-adaptive computing systems,” in
Proceedings of the NASA/ESAConference on Adaptive Hardware
and Systems (AHS ’13), pp. 71–78, Torino, Italy, June 2013.

[2] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and
A. Agarwal, “A generalized software framework for accurate
and efficientmanagement of performance goals,” in Proceedings
of the 13th International Conference on Embedded Software
(EMSOFT ’13), pp. 1–10, IEEE, October 2013.

[3] H. Hoffmann, J. Eastep, and M. D. Santambrogio, “Application
heartbeats: a generic interface for specifying program perfor-
mance and goals in autonomous computing environments,”
in Proceedings of the International Conference on Autonomic
Computing (ICAC ’10), pp. 79–88, June 2010.

[4] H. Hong, J. Lim, H. Lim, and S. Kang, “New thermal-aware
voltage Island formation for 3D many-core processors,” ETRI
Journal, vol. 37, no. 1, pp. 118–127, 2015.

[5] https://www.sparkfun.com/categories/272.
[6] http://www.intel.com/content/www/us/en/do-it-yourself/edison

.html.
[7] Intel Edison Boards, Intel Edison Breakout Board Hardware

Guide, 2015 .
[8] Intel EdisonBoards, Intel EdisonBoard Support Package—User

Guide, Revision 001, 2014.
[9] http://www.samsung.com/semiconductor/minisite/Exynos/w/

solution/mobile ap/5422/.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


