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This paper presents an MPEG-4 video codec, called 
MoVa, for video coding applications that adopts 3G-324M. 
We designed MoVa to be optimal by embedding a cost-
effective ARM7TDMI core and partitioning it into 
hardwired blocks and firmware blocks to provide a 
reasonable tradeoff between computational requirements, 
power consumption, and programmability. Typical 
hardwired blocks are motion estimation and motion 
compensation, discrete cosine transform and quantization, 
and variable length coding and decoding, while intra 
refresh, rate control, error resilience, error concealment, 
etc. are implemented by software. MoVa has a pipeline 
structure and its operation is performed in four stages at 
encoding and in three stages at decoding. It meets the 
requirements of MPEG-4 SP@L2 and can perform either 
30 frames/s (fps) of QCIF or SQCIF, or 7.5 fps (in codec 
mode) to 15 fps (in encode/decode mode) of CIF at a 
maximum clock rate of 27 MHz for 128 kbps or 144 kbps. 
MoVa can be applied to many video systems requiring a 
high bit rate and various video formats, such as 
videophone, videoconferencing, surveillance, news, and 
entertainment. 
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I. Introduction 

Third generation terminals and mobile networks will be 
available within the next few years. Increasing attention has 
been drawn especially to the processing of digital video 
sequences over the last few years. 

As VLSI technologies have advanced, the processing power 
of general-purpose processors has increased dramatically. 
Realtime video processing applications tend to be implemented 
nowadays by software design with the help of a powerful 
processor. However, this is not a complete solution to fully 
fulfilling the realtime requirement. Consequently, a powerful 
instruction set and parallel processing are generally adopted to 
enhance the computing power for realtime applications. 

However, there is a trade-off between hardware and software 
implementation. Various factors, such as processing speed, 
flexibility, power consumption, and development cost, should 
be taken into account. In general, hardware implementation is 
better than software implementation in power consumption and 
processing speed [1], [2]. In contrast, software can give a more 
flexible design solution and also be more suitable for various 
multimedia applications, such as adding a pre-processing block for 
handling the input noise components [3], [4]. 

In order to take full advantage of both hardware and software 
implementation, we designed the video codec so that each 
functional module is partitioned in a way appropriate for 
hardware-software partitioning. The salient feature of codesign 
is the cooperation of hardware and software modules. In MoVa, 
the hardware modules are designed to obtain macroblock-
based operations. The designed hardware modules work 
concurrently with ARM7TDMI, an embedded microprocessor 
core, which performs the software modules. The modules 
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communicate with the controller via interrupts and parameter 
passing, and they work together on a simple scheduling and 
sequencing policy. 

MoVa integrates most of the functionality of the simple 
MPEG-4 profile, ready to support new services with increased 
performance and reliability and with low power consumption 
and cost. The ARM7TDMI embedded microprocessor core, 
the Advanced Microcontroller Bus Architecture (AMBA) [5], 
and hardwired modules, including the intellectual properties 
(IPs), are used in the selected solution, because they are useful 
in coping with tight schedule constraints, in facing competition, 
and in providing enhanced services. 

Section II describes the hardware-software partitioning in 
MoVa, and section III discusses hardware-software 
optimization. Section IV covers the pipeline and scheduling, 
section V the hardware verification, and section VI the 
implementation. Our results and conclusions are given in 
sections VII and VIII. 

II. Hardware-Software Partitioning 

References [6] and [7] described the MPEG-4 video coding 
flow and functional partition. In the full software 
implementation of the MPEG-4 video codec, 200 MHz MMX 
Pentium processors are required for a target bit rate of 128 kbps 
at 15 frames/s (fps) of quarter common intermediate format 
(QCIF) sequences [8]. For hardware-software codesign, the 
codec is first programmed in C and the bottleneck of the 
processing speed is detoured by embedded hardware modules 
[9]. Parts of the algorithm are modeled in programming 
language C for generating a test vector and referring to 
simulation results after integrating all the hardware modules. 
Data types are defined as 32-bit, 16-bit, or 8-bit signed or 
unsigned integers depending on the size hareware elements like 
registers. 

To reduce design time and also increase confidence in the 
final results, we applied design reuse using hard and soft IP 
cores. The Hynix ARM7TDMI cell and some generated 
memories belong to the hard cores. ARM provided the soft 
cores with register transfer language code, which can be 
simulated [10], synthesized, and even modified. In addition, we 
developed AMBA-compliant custom modules for specific 
video functions. 

At first, in order to evaluate the hardware implementation of 
motion estimation (ME) and motion compensation (MC), we 
considered the following observations. First, the percentage of 
the computing power of ME and MC in the MPEG-4 codec is 
over 80% of the given computing power [11]. Hence, they 
were better to use in designing hardware to meet the realtime 
requirement. Second, the discrete cosine transform and 

quantization (DCTQ) and the inverse quantization and inverse 
discrete cosine transform (IQIDCT) make up another major 
complex part with a high computing power requirement. 
Therefore, we made choice hardware implementation as in 
most of the dedicated video codec solutions. 

We analyzed several hybrid-coding algorithms according to 
performance requirements. Each function was allocated to 
suitable hardwired logic or software functions. Functions 
higher than the macroblock layer were allocated to software 
functions. Functions lower than the macroblock layer, such as 
variable length coding (VLC) and variable length decoding 
(VLD), were implemented in hardwired logic. We then 
performed algorithm optimization for requirements to consider 
the tradeoff between the amount of hardware and performance. 

In contrast, for the software approach, we designed intra 
refresh (IR), rate control (RC), error resilience (ER) and error 
concealment (EC), header VLC (HVLC), and header VLD 
(HVLD), because they have various forms depending on video 
compression standards and have an irregular structure not 
suitable for implementation in hardware. This increased the 
flexibility of the coding flow. HVLC and HVLD performed 
the header packing and the header parsing in VLC and VLD, 
respectively. 

1. Hardware Modules 

To satisfy both performance and flexibility requirements, we 
included in the architecture an ARM7TDMI processor core, 
AMBA, and several hardware modules. AMBA specifies the 
32-bit Advanced System Bus (ASB) and the 32-bit Advanced 
Peripheral Bus (APB). However in MoVa, we used a pseudo-
AMBA for more optimization. Because the typical data width 
of video algorithms is from 16 to 8 bits [11], we modified the 
ASB to 16 bits and the APB to 8 bits. 

Figure 1 shows the MoVa architecture. The codec consists of 
ARM7TDMI and a wrapper, peripherals for main control, and 
special purpose modules that support operations required for 
video picture coding. The special purpose modules perform 
ME Coarse, ME Fine and MC, DCTQ, VLC, VLD, etc. In 
addition, there is an on-chip direct memory access controller 
(DMAC), an external memory interface, peripherals including 
timers, an interrupt controller, etc. All the modules 
communicate with each other using the main bus. The VLD 
buffer memory, the video input/output memory, and the input 
stream memory interface to the main bus through individual 
FIFOs to buffer the synchronous dynamic RAM (SDRAM) 
data traffic. This is strengthened by the fact that loads and 
stores are performed in parallel with the data computations, 
involving only small extra times. 

The controller ARM7TDMI can be programmed to process 
various video algorithms, e.g., MPEG-4 and H.263. Instructions 



ETRI Journal, Volume 25, Number 6, December 2003  Seong-Min Kim et al.   491 

 

Fig. 1. Video codec architecture. 
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are executed from an on-chip program memory. An on-chip 
data memory is used by the controller to interface between 
hardware and software modules with parameter passing. 

The AMBA wrapper, an arbiter, a decoder, and a bridge 
control the bus master arbitration, module selection signal 
generation with addressing decoding, and the bridge between 
two modules. The arbiter determines which masters have 
access to the bus: an ARM or a DMAC. The decoder runs on a 
centralized address-decoding module, which generates a select 
signal for each slave on the ASB bus. The bridge is the only 
bus master on the APB. 

The DMAC arbitrates and schedules all SDRAM accesses 
concurrent with the controller. The external memory interface 
provides a 16-bit data bus interface with an SDRAM. An 
external wrapper provides an 8-bit data bus interface with an 
ROM whose programs are downloaded into an internal SRAM 
for program and data memory. 

 
The VLC module reorders DCT coefficients, counts runs of 

zeros, and performs encoding of the run-value pairs. The VLD 
module is a decoder that decodes the encoded input bitstream 
with header parameters received from the controller. 

Motion-offset blocks of pixels are fetched from SDRAM in 
the fast page mode with minimal RAS cycles by the two-
dimensional address generator of the DMAC. 

For compact performance, we reduce both the number of 
operations and the number of frame memory accesses. Thus, 
all hardware modules have minimum-size internal buffers 
sufficient for parallel operation. The internal buffers also reduce 
access to the external memory, and therefore reduce power 
consumption and performance degradation. Hence, we reduce 
the number of cycles needed for access to below the allowable 
cycles per macroblock in a 27 MHz operating condition. 

A bus watcher provides test and monitoring functions for 
macroblock signals. In the test mode, AMBA signals, which 



492   Seong-Min Kim et al. ETRI Journal, Volume 25, Number 6, December 2003 

can handle each ASB module except the controller, are 
inputted or outputted through external pins. In the monitor 
mode, when MoVa is operating normally, internal AMBA 
signals are monitored through the bus watcher externally. A 
reset controller indicates the current reset status of MoVa. 
During reset, the arbiter grants the bus to the default bus master 
and holds all other grant signals inactive. When MoVa is in a 
download state, all modules including the controller are 
inactive. 

A clock generator generates the clocks for internal modules 
to use as follows: 27 MHz, 13.5 MHz, 27 MHz delayed by 1/4 
of the period, and 13.5 MHz delayed by 1/4 of the period. 

The APB is a secondary bus to the ASB, connected by the 
bridge. Data access is controlled by a select signal and a strobe 
signal only. The APB provides an 8-bit data bus interface and 
includes timers, an interrupt controller, a remap and pause 
controller, a host interface, a VLC, and a stream producer. 

MoVa contains three timers that control the timing of 
encoding, decoding, and video input. They support maskable 
interrupt on time-out. The interrupt controller has seven 
interrupt sources, which are generated by Timer0, Timer1, 
Timer2, external interrupt, and three soft interrupts. A fast 
interrupt request [10] is not supported. The remap and pause 
controller output causes MoVa to enter a “wait for interrupt” 
state on reset or interrupt, set HIGH on write. For an external 
host interface, there are bi-directional data transfers between 
the controller and the external host processor. The external host 
interface provides a Philips I2C serial bus interface [12] and an 
Intel and Motorola parallel interface. Video coding resulting 
from the VLC is stored in the stream producer (SP) local buffer. 
The SP outputs bit streams to an off-chip stream buffer. 

2. Software Modules 

The main controller operates several software modules: a 
kernel, an initializer, a boot loader, a sequencer, and a scheduler. 

The kernel manages how to control its own minimal, 
standalone, run-time support system for code compiled by an 
ARM C compiler. It can be assembled using an ARM 
assembler. In fact, this code depends hardly at all on our target 
environment and is designed to be easily adapted to any 
particular ARM-based system. Much of the code is generic to 
the ARM processor and is completely independent of our 
ARM-based hardware. This includes i) setting up the initial 
stack and heap, ii) calling the main function, and iii) program 
termination. The initializer provides vector and interrupt 
handlers. The boot loader calls the main function found in the 
kernel module. The sequencer calls the function of the module 
interface and executes the function of scheduling and sequence 
control along with enforcing synchronizing conditions. 

The scheduler executes macroblock-based pipeline controls 

and calls the functions of the module interface for parameter 
passing. Certain hardware modules consume a fixed time to 
process input data. These modules are assigned to a fixed delay 
time based on estimates of their computation times. Examples 
of these are the DCTQ, the motion estimation coarse (MEC), 
and the reconstruction (REC). Other modules, such as the VLC, 
the VLD, the input stream controller (ISC), and the SP, exhibit 
parameter-dependent behavior. 

The main control, the hardware module control, and a few 
functions, such as header parsing, rate control, error 
concealment and resilience, motion vector computation, and 
calculating a frame memory’s address for DMAC are 
implemented by software. The software is simulated with a 
C/assembly on an ARM toolkit. We identified the time critical 
modules of the program and hand-coded them into the ARM 
assembly. We could hand-code the modules programmed by C 
but we did not hand-code all the modules, using instead some 
default software coding. We did it this way because the default 
software had some advantages: it was more readable and made 
it easier to maintain and document. 

ARM7TDMI can make a good microcontroller executing 
most instructions in a single cycle. Unfortunately, the 32-bit 
ARM7TDMI microprocessor has a disadvantage: using 
Thumb code only or using ARM code and Thumb code 
together causes some implementation problems. We could not 
implement all functions using Thumb code only. Since the 
main concern of MPEG-4 target applications is real time, we 
regard timing optimization more important than code size 
optimization. There are two phases: the use of C syntax 
effective for ARM code [13] and scheduling optimization, 
which has the minimum memory bandwidth. The key to 
scheduling is to perform hardware and software jobs 
concurrently. MoVa has two ASB masters, ARM7TDMI and 
the DMAC. In the AMBA specification, the bus protocol 
includes pipelined arbitration to ensure that only one master is 
active on the bus at one time. Every system must have a default 
bus master, which is granted use of the bus during reset. It is 
impossible to have more than one master simultaneously 
operating in AMBA, because it degrades the system 
performance. For efficient use of an AMBA bus, the wrapper 
provides an interface between the internal SRAM and the 
ARM7TDMI, not through AMBA. This makes it possible that 
two masters may be active simultaneously during an internal 
mode [5] of the ARM7TDMI master. 

The RC is a program-based rate controller for constant bit 
rate encoding. We present an efficient two-level rate control 
algorithm that keeps the spatial quality of each frame in a 
tolerable range. It can be separated into a two-level algorithm, 
namely the frame-layer and macroblock-layer. 

The ER has four major functions: data partition (DP), 
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reversible VLC (RVLC), resynchronization marker (RM), and 
intra refresh (IR) [13]. The IR is a method for coping with data 
loss. This involves sending a fixed number of intra 
macroblocks in each frame. Annex E of the MPEG-4 standard 
[13] describes an IR scheme where macroblocks are selected 
from a motion map. Generation of the motion map is achieved 
by marking the positions of macroblocks with motion. If the 
number of macroblocks marked for intra coding exceeds the 
number of macroblocks encoded, for the next frame, the 
encoder starts in the same position and begins encoding intra 
macroblocks, including those marked for intra coding in the 
previous frame. 

The EC resynchronizes the bitstream after the error at the 
macroblock-level and slice-level and conceals the lost 
macroblocks. After a macroblock error occurs, the rest of the 
slice is invoked with default parameters and correctly 
resynchronized. In case of a packet error, the information of the 
rest is discarded and correct resynchronization is achieved at 
the next slice, where all information is reset, so that the next 
macroblocks will be received correctly. 

III. Hardware-Software Optimization 

1. Hardware Optimization 

The type of ME method and search range significantly 
affects power consumption and image quality. Therefore, 
reducing the image pixels from the original image size affects 
the effective memory bandwidth and the number of 
computations. In this method the image pixels are subsampled 
at intervals of two pixels for the horizontal pixels of the input 
video data, and the subsampling is applied to luminance and 
chrominance data. 

In MoVa, a hierarchical block matching method is used 
because the full-search block-matching method needs a huge 
amount of computation. The ME consists of a three-step 
hierarchical approach, which sequentially operates with search 
windows of (–14, +14), (–1, +1), and (–0.5, +0.5). The MEC 
executes the first-step ME which coarsely searches the motion 
with the subsampled 8×8 current macroblock data in an actual 
range of +/–14 horizontally or vertically, additionally performs 
the functions of the MEF skip decision and the inter/intra 
decision as well as in the unrestricted mode. The MEFMC 
executes the second- and the third-step ME by the full-search 
block-matching method for a full MPEG-4 mode, including 
the advanced prediction mode [14], and searches the fine 
motion vector up to a half pixel resolution. 

The proposed architecture [15] is based on a systolic array. In 
array architecture, the number of processing elements is 
dependent on the search range and the calculations per unit 

time determined by the overall codec performance and power 
considerations. We implemented the MEC with 8 processing 
elements and the MEF with 3 processing elements by applying 
a three-step hierarchical method in MoVa. 

MoVa especially incorporates the ME skip scheme, which 
lowers the power consumption without degrading its 
performance. The three-step ME operation is skipped only if 
the predicted sum of the absolute difference (SAD) value of 
any macroblock currently being processed is not greater than 
the maximum value of three SAD candidates that correspond 
to the left, the upper, and the upper-right macroblocks. 

When an image is compressed with a low bit rate, there are 
many not-coded blocks in the video bitstream. In MoVa, since 
the DCTQ has to be processed prior to the VLC, all blocks 
must be transformed and quantized even though the DCTQ 
does not have not-coded blocks. In order to improve the 
processing speed, the current DCTQ skip is adopted in the 
inter-frame. In inter-macroblocks, we can predict a not-coded 
block by comparing the minimum SAD value with a threshold 
value related to the quantization parameter. Block-based SAD 
values are obtained from the MEFMC. The smaller the 
minimum SAD value, the higher the possibility that the inter-
macroblock will be designated a not-coded block. 

The post filter performs the deblocking operation for only 
luminance because it has a stronger influence on the luminance 
boundary than on the chrominance’s. 

The APB is intended for use with peripherals and modules 
containing memory-mapped registers only for control without 
memory dump. APB modules use an 8-bit bus. Using an 8-bit 
bus instead of a 16-bit bus may result in greater cost and area 
optimization, but if any modules do not have to dump memory 
and have few parameter interfaces to request bus bandwidth, 
the 8-bit bus is sufficient. 

2. Software Optimization 

There are two categories in software optimization: time and 
space (memory size). Since the main concern of 3G-324M is 
for realtime applications, we regard time optimization more 
important than space optimization. 

To increase time and space optimization, we designed freely 
mixed routines with ARM and Thumb code. At first, we 
divided all C functions into two uses, time optimization and 
space optimization, and then compiled them with respective 
optimization options and compilers. When the functions were 
optimized for time, they were compiled with an ARM 
compiler (ARMCC) and time optimization options. However, 
for space, they were compiled with a Thumb compiler (TCC) 
and space optimization. 

Table 1 shows the size of the code in space optimization for 
each type of revision we worked on. Most commercial ARM7 
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series cores have 4 kB or 8 kB embedded memory [16]. In 
MoVa, the areas of ROM data memory, stack memory, and 
data memory for module interfaces are about 0.7 kB, 0.3 kB, 
and 0.5 kB, respectively. Therefore, when another embedded 
core replaces the ARM7TDMI as a main controller, the 
program memory of MoVa should be optimized to fit within 
the size of 6.5 kB. 
 

Table 1. Space optimization. 

         Compiler 
Optimization 

ARMCC 
(bytes) 

ARMCC + TCC 
(bytes) 

Time 8,615 - 

Space 8,275 - 

Time + Space 8,520 7,624 

Data - 7,304 

Function - 6,861 

Instruction-level - 6,837 

DMA interface - 6,854 

Final - 6,467 

 

 
The original code was too large as it occupied about 125% of 

the targeted maximum size of 6.5 kB. The details of each 
optimization type, namely, data, function, instruction-level, and 
DMA interface optimizations, are presented below. 

We optimized space by changing the type of data 
manipulated by the algorithms. The main objective was to 
decrease the memory size of the target architecture. In MoVa, 
variables are based on a 32-bit integer to keep high 
performance under control. However, the main bus is 
configured with a 16-bit ASB and an 8-bit APB. If all variables 
are defined by integer, the most significant 16-bit area is filled 
with “0x0000.” From the point of view of space area, this is not 
effective. Therefore, if any routine is not critical, it is designed 
to support computation with 16-bit or 8-bit integers with 
efficiency. These data types are supported by the ARM 
compiler through the definition of short and char integer types. 
Computing with short or char is less efficient than using integer, 
but the space size is optimized. 

For the function optimization type, the pattern of memory 
dump or parameter passing to each module is similar. 
Therefore, the functions operating by similar patterns are 
combined into one function. 

The instruction-level optimization is extensively applied in the 
software for significant time and space optimization. We do not 
describe these optimizations in detail because they are common 
knowledge [17]. However, we performed most optimizations 

manually due to lack of support by the ARM compiler. 
A simple example of this transformation is the use of the 

multiple load and store. In many modules, multiple parameter 
passings contain memory-mapped registers that can be 
implemented efficiently with multiple loads and stores. In this 
case, we force the ARM compiler to use the LDMIA and 
STMIA instruction by inlining it in assembly. 

Since video coding involves massive data, there is a need for 
global planning and optimization in data storage, traffic, and 
processing. Data should be defined just with sufficient lengths 
to save memory space and computation power. Because it is 
impossible to keep all data in on-chip memory, the most 
frequently referenced constants, variables, stacks, tables, and 
working space can be placed in on-chip memory to maximize 
the effect of fast memory access. Static memory allocation 
should be adopted for efficiency. 

The data transfer method through the ARM bus can be 
classified into three modes: the internal mode, the sequential 
mode, and the nonsequential mode. Register-free operation in 
an internal mode and register access operation in a sequence 
or a non-sequence mode occurs. A hardware module and a 
software functional block are operable at the same time by 
armbreak control in a sequential or non-sequential mode. By 
using the sequential or non-sequential transfer mode, the space 
efficiency is lower, but scheduling time is optimized because 
hardware and software jobs are performed concurrently. 

IV. Pipeline and Scheduling 

The codec architecture could be realized by accurately 
calculating memory bus loading and properly scheduling 
operations of control tasks. For simplifying the design of the 
timing control of the codec, we adopt a “macroblock-based 
pipeline” encoding and decoding control method. The 
pipeline scheduling takes into account solving resource 
conflicts due to software, hardware, and memory and 
interface delays. 

1. Timing Chart 

Figure 2 is a timing chart of the codec for QCIF at 30 fps. 
MoVa adopts the structure of a fixed time slot for video 
processing. It has the advantage of simplifying the memory 
interface because it is necessary not to arbitrate memory 
access but to control it sequentially. There are two 
hierarchies, a frame-level and a macroblock-level. At the 
frame-level, the controller is triggered by a video 
synchronous interrupt signal to start codec processing with 
the hardware modules. 

The clock frequency in the image sensor’s specification [18] 
for MoVa’s application is under 4.5 MHz, which is one sixth 



ETRI Journal, Volume 25, Number 6, December 2003  Seong-Min Kim et al.   495 

nRESET

Encoding
frame start

Decoding
frame start

Encoding
MB start

Vsync

Decoding
MB start

27,000,000T

472,500T 428,400T

0 1 2 103 104

4,500T

900,900T

0 2 01

0 1 2 117 118

3,600T

0 1

29

Fig. 2. Timing chart for QCIF at 30 fps.  
 
of MoVa’s operating frequency, 27 MHz. In the QCIF format, 
because the speed of the video encoding is faster than that of 
the video input and the encoding is impossible to be just 
operated after the video input of one slice, the encoding for 
QCIF must be started after downloading the pixel data of more 
than one frames. The sub-QCIF (SQCIF) is the same as the 
QCIF in the video data input scheme. The CIF type is similar 
to QCIF’s except for the difference in the number of 
macroblocks in a frame and the encoding macroblock start 
time. However, for CIF, the encoding can be done after more 
than only one slice because the encoding speed is even faster 
than that of the video input. 

2. Pipeline 

Figure 3 shows the macroblock-level pipeline flow 
scheduled by the controller in MoVa. The pipeline stage 
consists of four stages in encoding and three in decoding. Each 
stage must be less than 4,500 cycles in encoding and 3,600 
cycles in decoding to code 2,970 macroblocks in one second. 

The MoVa encoding section sequentially performs the 
pipeline operation to the MEC, the MEFMC, the MVMVD, 
the DCTQ, and the VLC, and at every macroblock, the REC 
and the SP. On the other hand, the decoding section 
sequentially performs the VLD, the MC, and the IQIDCT, and 
at every macroblock, the REC and the DB. A feature of this 
architecture is that internal processing is all executed in parallel. 
Especially the DCTQ module, VLC module, and VLD module 
operate at a block (8×8 pixels) base and repeat six times per 
macroblock. The output data processed at any module is 
immediately stored at the local memory in the subsequent 
module. Each local memory is implemented to the fast static 
RAMs as BUF boxes shown in Fig. 1. 

3. Scheduling 

A scheduler that reasonably defines a concurrent operation is 
needed to allocate hardware and software jobs properly for 
video codec. This scheduler controls the operation of hardware 
modules by sending parameters such as start, clock gating, and 
software reset through command registers for flexible control. 
 

 Fig. 3. Macroblock-based pipeline. 
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For example, if the scheduler writes the ‘MEC start’ parameter 
to a command register to start motion estimation, the MEC 
module continues during the time allocated to one macroblock 
of MEC video data. Figure 4 shows a macroblock-based 
scheduling of encoding and decoding. 

The height of each block box presents the relative size of 
memory or bus bandwidth. We used a 16-bit SDRAM data bus 
width to save memory bandwidth and achieve efficient 
memory access; thus, all memory dumping for macroblock 
coding was performed in a macroblock time slot. The 
scheduling sequentially processes along the vertical axis from 
“0” value. 

When schedule processing is performed, the encoding stage 
operations and important mark points are as follows: 

Stage 1. The current and reference memory data for the 
MEC is first sent to the MEC buffer memory (MEC-BUF) to 
perform the coarse motion estimation. After IR for each 
macroblock has been decided, the MEC module reads from the 
MEC buffer memory and coarsely searches the motion. In case 
of the MEC initial latency, the permissible latency set should be 
adjusted to store the MEC results (MEC-post). The insertion of 
delays in a pipeline may increase the execution time of an 
operation; this, in turn will affect dependency. The delay 
insertion method is applicable only to cases where there is 
either initial or post latencies. 

Stage 2. The integer-pel motion vector and intra flag, the 
MEC parameters resulting from stage 1, are first stored to data 
memory (MEC-post). A motion vector obtained from the MEC 
should be computed before the MEFMC buffer memory for 
MC of the corresponding macroblock is dumped (the ① 

symbol in Fig. 4). After the current data and the reference data 
for the MEFMC is dumped into the MEFMC buffer memory 
(MEF-BUF) by referencing the motion vector of stage 1, the 
MEFMC reads the motion vectors, determines the half-pel 
motion vectors, and performs motion compensation to generate 
a prediction picture. Video input data, video output data, and 
input stream data are dumped into each buffer memory (VIM-
BUF, VOM-BUF, ISC-BUF). Because these aren’t related to 
any pipeline stage, they can be located at any stage, but the 
time slot should be fixed. 

Stage 3. The half-pel motion vectors and SAD values 
resulting from the MEFMC at stage 2 are first stored to data 
memory (MEF-post). Pre-RC determines the target bit rate 
based on the bits available and the last encoded macroblock 
bits and computes the quantization parameter (QP) before the 
DCTQ. The DCTQ operates the DCT, the Q, the IQ, the IDCT, 
and the AC-DC prediction [7]. In the MVMVD, motion 
vectors resulting from stage 2 are to be coded differentially. 

After the DCT and the Q have been completed, the HVLC and 
the VLC are sequentially operated with the transformed texture 
data. The parameters of the intra flag, zero motion vector, 
Dquant, and packet change are used to code the HVLC. 
Therefore the HVLC should be run after the MEC, the 
MVMVD, the pre-RC, and the SP (②). 

Stage 4. The texture bit number resulting from the VLC is 
stored for the RC of the next macroblock (VLC-post). After 
encoding model parameters are updated based on the encoding 
results of the current macroblock, the post-RC determines 
whether the next macroblock is skipped according to the 
current buffer status. If post-RC determines that the next 
macroblock should be skipped, the reconstructed macroblock 
is interpolated by copying the pixel data from the macroblock 
of the same position in a previously reconstructed video object 
plane (REC-BUF1). If the next macroblock is not skipped, the 
REC module operates normally (as REC in Fig. 4(b)). The 
reconstructed macroblock data is stored at the reconstructed 
SDRAM area (REC-BUF2). Finally, the SP produces a stream 
from the parameters of the HVLC and the VLC and stores it in 
the stream output buffer. The post-RC and the SP may not be 
performed until the result obtained from the VLC is completed 
for the texture bit (③). A packet change denoting the 
summation result of bits from the SP in the current macroblock 
should be produced before the DCTQ, the MVMVD, and the 
HVLC modules are performed using the parameter (④). 

Decoding the pipeline for MoVa is classified into three 
stages as follows: 

Stage 1. The VLD retrieves each VLC stream data stored in 
the VLD buffer memory (VLD-BUF, VLD). The VLD 
module cannot be performed until the IQIDCT is completed 
with data in a buffer between the IQIDCT and the VLD (⑤). 

Stage 2. The parsed VLD parameters, such as coded block 
pattern for luminance (CBPY), coded block pattern for 
chrominance (CBPC), de-quantization parameter (DP), and 
not_coded [13], resulting from stage 1 are first stored to data 
memory (VLD-post). Next, the IQIDCT, the MVMVD, and 
the MC operate sequentially. The ISC-BUF is the same in stage 
2 for encoding. The MC should be completed before the REC 
is performed at the next pipeline stage, because the REC uses 
the result data of the MC (⑥). 

Stage 3. The VIM_BUF, the VOM_BUF, the REC, and the 
REC_BUF are the same as in stage 2 and stage 4 for encoding. 
The DB is a post-filter module and performs along the 8×8 
block edges of luminance at the decoder. Each macroblock of 
luminance is first stored to the DB_BUF to perform the 
deblocking filtering (DB-BUF1). After the filtering has been 
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completed (DB), the results are dumped to the SDRAM (DB-
BUF2). Finally, the filtered DB data is shifted in the DB buffer 
memory for the next DB (Post-DB). The REC is performed 
before the result of the IQIDCT is written on a buffer to inhibit 
data overflow (⑦). 
 

As mentioned above, the operation queue between modules 
causes a delay in the total schedule cycles by adding interface 
cycles. Therefore, a module that receives parameters from only 
another module passes the parameters by bypassing. Number ⑥ 
in Fig. 4 exemplifies this case. The input parameters of the MC 
are passed from the MVMVD output registers by bypassing. 
 

This means that bypassing of parameters cannot start until 
these parameters are available. 

V. Verification 

After setting up the detailed architecture specification, we 
completed the design of the video codec using an approach of 
segmenting the codec design into many relatively small 
functional modules that we designed and simulated independently. 
For this reason, having a detailed interface and function 
specification of the modules before implementation was crucial. 
Therefore, adopting the AMBA interface was a great advantage. 
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The hardware design follows the standard application 
specific integrated circuit (ASIC) design flow based on HDL 
language and logic synthesis. For the hardware modules, we 
wrote and simulated the HDL description using the AMBA 
compliance test bench suites [19]. Each module of the codec 
was simulated on the function-level. After this initial 
verification, we connected and tested several modules for 
AMBA compliance and simulated them again. Seventy-two 
test vectors were generated by a reference C model and 
executed in the environment of co-verification. Hardware-
software co-verification involved a simulation of the custom 
hardware described with HDL and the simulation of an 
ARM7TDMI processor model [20]. 

For verification, we used test bench models including HDL-
models and C-models [21]. The test bench uses an external 
memory model to simulate the running code on the ARM core 
in the co-verification environment. In this environment, we 
compared results from test vectors generated from the 
reference C model of the hardware architecture with results 
from the test bench model. Figure 5 illustrates the basic layout 
of the test bench. 
 

EPROM

SDRAMHost interface

Input stream
generator

Clock
generator

Test and debug
initializer

Image sensor

Video codec
HDL

Fig. 5. Block diagram of test bench.  
 

An external memory, 64,000×8 EPROM, is a behavioral 
Verilog model, and, in general, EPROM loads data from a file 
specified in the model file. A 16-Mbit SDRAM is a behavioral 
Verilog model; it loads and stores data from or to two specified 
bank files. An image sensor [18], an input stream generator, 
and a host interface [12] are respectively provided as HDL 
models. Input vectors of the image sensor and the input stream 
generator are generated from the reference C model of codec. 
Therefore, after encoding and decoding using the test bench, 
we compared the results with the results of the reference model. 
The clock generator makes a video input, a stream input, and a 
main clock. The interface between ARM signals and external 
controls for test and debug is established at the initialization of 

test and debug. 
The verification procedure of MoVa becomes increasingly 

more important and time consuming; therefore, we also 
concluded that using an FPGA prototyping board would be an 
efficient verification method. FPGA prototyping offers fast 
turn-around time and enables several optional choices to be 
evaluated in a short time and high fault-coverage for hardware 
and software, which would be impossible using ASIC 
implementations because of their long turn-around time and 
high cost. 

The full test of this prototyping environment is now in 
progress. Integrating FPGA prototyping into the design flow of 
MoVa exploits the respective strengths of both FPGA and 
ASIC implementations. 

VI. Implementation 

We implemented the video codec on a hardware-software 
co-design. The codec can be configured with an arbitrary logic 
and the programmable modules. On the codec, we placed an 
ARM7TDMI core, memory modules, and several hardware 
modules for hardware implementation. 

All the hardware modules required a 27 MHz or a 13.5 MHz 
clock for the encoding and decoding at a frame rate of 30 Hz. 
The MEFMC, DCTQ, DB, and VLC modules together work 
at a slow clock speed of 13.5 MHz, so power is saved with 
these modules. 

In APB modules, the processing time of the software 
interfaced to the hardware becomes longer than the ASB’s 
because an 8-bit bus width is used. This means that the main 
control consumes a relatively large portion of the total 
execution time while waiting for the termination of the 
hardware modules before starting software modules or 
control codes. In that case, the processing time of the 
software can be decreased with interfacing between internal 
memories or hardware modules and ARM7TDMI without 
AMBA. 

Power consumption is a key issue in mobile applications. 
The codec uses some modes to minimize the overall power 
consumption. 

During the idle modes, MoVa dissipates considerably less 
power than in the normal operation. The idle mode allows a 
software application to stop the hardware modules when not in 
use. The modules have a power manager register field. The 
register is used to allow software invocation of the power-save 
mode. During idle mode generated by frame intervals, other 
on-chip resources are inactive except the video I/O and input 
stream modules. 

The sleep mode offers the greatest power savings to the user. 
During the sleep mode, MoVa watches for a wake-up event 
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asserted by an external pin. 
The clock-gating scheme typically consumes a large 

percentage of the codec power. With clock gating, the registers of 
modules are cut off from the clock at idle times. Eight clocks in 
the chip were made from three external clocks. Seven of them 
were gated clocks and were used to control the power-down 
mode of each functional module according to the operating mode. 

The main control and module interface were implemented in 
C or assembly code to aid in speedy algorithm implementation 
or modification. A side benefit of this approach is that the user 
can view the hardware modules and read and write each 
module register and internal buffer. For example, the software 
allows the user to start a module through parameter passing 
and dump the buffer data. 

When the memory bandwidth exhaustion is the main 
bottleneck of the processing speed in the codec, the speed 
improvement is more closely related to the bus clock 
speed than the processor’s. Therefore, based on the 
experimental results from the SDRAM interface, we 
expect that a 54- Mbyte/s SDRAM burst performance can 
be carried out sufficiently with the total memory 
bandwidth of the codec. 

MoVa has an 8,000-word program/data memory. When the 
program and data memory are accessed, small memories are 
better than the large ones for conserving power. As for the 
memory, the 8,000-word memory is divided into four 2,000- 
word memories, so these can be accessed with 8-bit, 16-bit, or 
32-bit data. 

Figure 6 shows the layout pattern of the MPEG-4 codec 
large scale integrated circuit. Table 2 shows the specifications 
of the MoVa [21]. 

VII. Results 

As Table 3 shows, much work needs to be done in 
developing codecs. The different applications—multimedia, 
broadcast, acquisition—all have different requirements. 
However, it must be emphasized that the complete codec was 
designed, implemented, and tested in less than twelve weeks as 
opposed to several engineer-years for the commercially 
available chips. Furthermore, the physical parameters are 
highly competitive with those of other MPEG designs reported 
in the literature [22], [24], [25]. 

In making direct comparisons with the performance and 
functionality of commercially available MPEG-4 solutions, the 
reader is reminded that overall focus of the research presented 
here has been the development of the clock rate and the 
performance rather than the power consumption. From a 
technology perspective, MoVa consumes less power than the 
current standard. The performance of MoVa is directly 

 Fig. 6. LSI layout pattern.  
 

Table 2. Specifications of MoVa. 

Standard MPEG-4 simple profile @ level 2 

Performance Codec mode: CIF 7.5 fps/QCIF 30 fps 
Decode mode: CIF 15 fps/QCIF 30 fps 

Bit rate 128/144 kbps 

Video format SQCIF/QCIF/CIF 

Technology 0.35-µm 4-metal 

Gate count 1,700,000 gates 

Chip size 110.25 mm2 

Operating frequency 27 MHz 

Supply voltage 3.3 V (I/O) 

Power consumption approximately 0.5 W (estimated) 

Package 240-pin MQFP 

 

 
attributable to the fact that the system clock rate was 
constrained to 27 MHz. 

Codecs like MoVa and emblaze have the DB module; by 
experimenting with the post-filter, we found it to improve the 
video quality. This was approximately 3 dB better than similar 
codecs without the deblocking filter. 

All codecs but MoVa have a maximum performance of 
QCIF 15 fps, but typically it is not easy to support an 
application having a cinema-level video quality. Unlike all 
other reviewed codecs, MoVa supports SQCIF and CIF video 
formats and an AMBA bus interface. This improves the ability 
to extend application areas and easily upgrade performance 
because of the flexible and easy bus interface. 
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Table 3. Performance comparison. 

                  
Item 

Author 
 

Size 
(mm2) 

Process 
technology 

Gate count 
including memories
(million transistors)

Clock rate 
(MHz) 

Power consumption 
(mW) 

Performance 
(fps for QCIF)

MoVa 10.5×10.5 0.35 µm 6.80 27 500 30 

Toshiba [22][23] 10.84×10.84  0.25 µm 20.50 60 240 15 

Matsushita [24] 8.7×8.7  0.18 µm - 54 50 15 

Emblaze [25] - 0.18 µm - - 200 15 

* Toshiba’s chip has on-chip embedded DRAM; thus the chip size and the power consumption are over-estimated. 

 
VIII. Conclusion 

We implemented MoVa using a cell-based method with a 
0.35-µm CMOS process technology. MoVa contains about 1.7 
million gates and is housed in a 240-pin MQFP package. It 
complies with the MPEG-4 SP@L2 standard. It has a 
comparatively low power consumption that is achieved by 
using a low operation frequency. The main contribution of this 
research is to allow the construction of an MPEG-4 codec that 
can represent reasonable economy for the mobile phone and 
the advanced personal digital assistant. Our future research will 
focus on advancing the performance and reducing the 
complexity of MoVa. Moreover, by employing embedded 
DRAM, we will further reduce power consumption. 
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