
ETRI Journal, Volume 25, Number 6, December 2003 Seong-Min Kim et al. 489

This paper presents an MPEG-4 video codec, called
MoVa, for video coding applications that adopts 3G-324M.
We designed MoVa to be optimal by embedding a cost-
effective ARM7TDMI core and partitioning it into
hardwired blocks and firmware blocks to provide a
reasonable tradeoff between computational requirements,
power consumption, and programmability. Typical
hardwired blocks are motion estimation and motion
compensation, discrete cosine transform and quantization,
and variable length coding and decoding, while intra
refresh, rate control, error resilience, error concealment,
etc. are implemented by software. MoVa has a pipeline
structure and its operation is performed in four stages at
encoding and in three stages at decoding. It meets the
requirements of MPEG-4 SP@L2 and can perform either
30 frames/s (fps) of QCIF or SQCIF, or 7.5 fps (in codec
mode) to 15 fps (in encode/decode mode) of CIF at a
maximum clock rate of 27 MHz for 128 kbps or 144 kbps.
MoVa can be applied to many video systems requiring a
high bit rate and various video formats, such as
videophone, videoconferencing, surveillance, news, and
entertainment.

Keywords: MPEG-4, ARM7TDMI, MoVa, 3G-324M.

Manuscript received Oct. 1, 2002; revised Sept. 29, 2003.
This work has been supported by the Korea Ministry of Information and Communication.
Seong-Min Kim (phone: +82 42 860 5347, email: smkim@etri.re.kr), Seong-Mo Park

(email: smpark@etri.re.kr), Bon-Tae Koo (email: koobt@etri.re.kr), Kyoung-Seon Shin
(email: shinks@etri.re.kr), Ig-Kyun Kim (email: ikkim@etri.re.kr), Nak-Woong Eum (email:
nweum@etri.re.kr), and Kyung-Soo Kim (email: kimks@etri.re.kr) are with Basic Research
Laboratory, ETRI, Daejeon, Korea.

Ju-Hyun Park (email: pjhyun@mamurian.com) is with Mamurian Design Inc., Seoul, Korea.
Ki-Bum Suh (email: kbsuh@lion.woosong.ac.kr) is with Woosong University, Daejeon,

Korea.

I. Introduction

Third generation terminals and mobile networks will be
available within the next few years. Increasing attention has
been drawn especially to the processing of digital video
sequences over the last few years.

As VLSI technologies have advanced, the processing power
of general-purpose processors has increased dramatically.
Realtime video processing applications tend to be implemented
nowadays by software design with the help of a powerful
processor. However, this is not a complete solution to fully
fulfilling the realtime requirement. Consequently, a powerful
instruction set and parallel processing are generally adopted to
enhance the computing power for realtime applications.

However, there is a trade-off between hardware and software
implementation. Various factors, such as processing speed,
flexibility, power consumption, and development cost, should
be taken into account. In general, hardware implementation is
better than software implementation in power consumption and
processing speed [1], [2]. In contrast, software can give a more
flexible design solution and also be more suitable for various
multimedia applications, such as adding a pre-processing block for
handling the input noise components [3], [4].

In order to take full advantage of both hardware and software
implementation, we designed the video codec so that each
functional module is partitioned in a way appropriate for
hardware-software partitioning. The salient feature of codesign
is the cooperation of hardware and software modules. In MoVa,
the hardware modules are designed to obtain macroblock-
based operations. The designed hardware modules work
concurrently with ARM7TDMI, an embedded microprocessor
core, which performs the software modules. The modules

Hardware-Software Implementation of
MPEG-4 Video Codec

Seong-Min Kim, Ju-Hyun Park, Seong-Mo Park, Bon-Tae Koo, Kyoung-Seon Shin,
Ki-Bum Suh, Ig-Kyun Kim, Nak-Woong Eum, and Kyung-Soo Kim

490 Seong-Min Kim et al. ETRI Journal, Volume 25, Number 6, December 2003

communicate with the controller via interrupts and parameter
passing, and they work together on a simple scheduling and
sequencing policy.

MoVa integrates most of the functionality of the simple
MPEG-4 profile, ready to support new services with increased
performance and reliability and with low power consumption
and cost. The ARM7TDMI embedded microprocessor core,
the Advanced Microcontroller Bus Architecture (AMBA) [5],
and hardwired modules, including the intellectual properties
(IPs), are used in the selected solution, because they are useful
in coping with tight schedule constraints, in facing competition,
and in providing enhanced services.

Section II describes the hardware-software partitioning in
MoVa, and section III discusses hardware-software
optimization. Section IV covers the pipeline and scheduling,
section V the hardware verification, and section VI the
implementation. Our results and conclusions are given in
sections VII and VIII.

II. Hardware-Software Partitioning

References [6] and [7] described the MPEG-4 video coding
flow and functional partition. In the full software
implementation of the MPEG-4 video codec, 200 MHz MMX
Pentium processors are required for a target bit rate of 128 kbps
at 15 frames/s (fps) of quarter common intermediate format
(QCIF) sequences [8]. For hardware-software codesign, the
codec is first programmed in C and the bottleneck of the
processing speed is detoured by embedded hardware modules
[9]. Parts of the algorithm are modeled in programming
language C for generating a test vector and referring to
simulation results after integrating all the hardware modules.
Data types are defined as 32-bit, 16-bit, or 8-bit signed or
unsigned integers depending on the size hareware elements like
registers.

To reduce design time and also increase confidence in the
final results, we applied design reuse using hard and soft IP
cores. The Hynix ARM7TDMI cell and some generated
memories belong to the hard cores. ARM provided the soft
cores with register transfer language code, which can be
simulated [10], synthesized, and even modified. In addition, we
developed AMBA-compliant custom modules for specific
video functions.

At first, in order to evaluate the hardware implementation of
motion estimation (ME) and motion compensation (MC), we
considered the following observations. First, the percentage of
the computing power of ME and MC in the MPEG-4 codec is
over 80% of the given computing power [11]. Hence, they
were better to use in designing hardware to meet the realtime
requirement. Second, the discrete cosine transform and

quantization (DCTQ) and the inverse quantization and inverse
discrete cosine transform (IQIDCT) make up another major
complex part with a high computing power requirement.
Therefore, we made choice hardware implementation as in
most of the dedicated video codec solutions.

We analyzed several hybrid-coding algorithms according to
performance requirements. Each function was allocated to
suitable hardwired logic or software functions. Functions
higher than the macroblock layer were allocated to software
functions. Functions lower than the macroblock layer, such as
variable length coding (VLC) and variable length decoding
(VLD), were implemented in hardwired logic. We then
performed algorithm optimization for requirements to consider
the tradeoff between the amount of hardware and performance.

In contrast, for the software approach, we designed intra
refresh (IR), rate control (RC), error resilience (ER) and error
concealment (EC), header VLC (HVLC), and header VLD
(HVLD), because they have various forms depending on video
compression standards and have an irregular structure not
suitable for implementation in hardware. This increased the
flexibility of the coding flow. HVLC and HVLD performed
the header packing and the header parsing in VLC and VLD,
respectively.

1. Hardware Modules

To satisfy both performance and flexibility requirements, we
included in the architecture an ARM7TDMI processor core,
AMBA, and several hardware modules. AMBA specifies the
32-bit Advanced System Bus (ASB) and the 32-bit Advanced
Peripheral Bus (APB). However in MoVa, we used a pseudo-
AMBA for more optimization. Because the typical data width
of video algorithms is from 16 to 8 bits [11], we modified the
ASB to 16 bits and the APB to 8 bits.

Figure 1 shows the MoVa architecture. The codec consists of
ARM7TDMI and a wrapper, peripherals for main control, and
special purpose modules that support operations required for
video picture coding. The special purpose modules perform
ME Coarse, ME Fine and MC, DCTQ, VLC, VLD, etc. In
addition, there is an on-chip direct memory access controller
(DMAC), an external memory interface, peripherals including
timers, an interrupt controller, etc. All the modules
communicate with each other using the main bus. The VLD
buffer memory, the video input/output memory, and the input
stream memory interface to the main bus through individual
FIFOs to buffer the synchronous dynamic RAM (SDRAM)
data traffic. This is strengthened by the fact that loads and
stores are performed in parallel with the data computations,
involving only small extra times.

The controller ARM7TDMI can be programmed to process
various video algorithms, e.g., MPEG-4 and H.263. Instructions

ETRI Journal, Volume 25, Number 6, December 2003 Seong-Min Kim et al. 491

Fig. 1. Video codec architecture.

External
wrapper

Internal
SRAM

ARM7TDMI

ROM interface JTAG interface

AMBA wrapper

AMBA monitor/
test control

Bus
watcher

Main clock nPOReset

Input
stream

controller

Stream input

BUF

Video
input

module
BUF

Y/UV

Video
output
module

YUV/RGB

BUF
DMAC

External
memory
interface

SDRAM
interface

Decoder Arbiter

MEC

BUF

MEFMC

BUF

DCTQ

BUF

VLD

BUF

DB

BUF

REC

BUF

VLC

Stream
producer

BUF

Host
interface

RPC INTC Timer

APB

ASB

Stream output I2C bus Parallel interface

Bridge

Clock
control

Reset
control

AMBA
APB
ASB
DB
DCTQ
DMAC
EMI
HIF

Advanced Microcontroller Bus Architecture
Advanced Peripheral Bus
Advanced System Bus
Deblocking
Discrete cosine transform (DCT) & quantization
Direct memory access (DMA) controller
External memory interface
Host interface

INTC
ISC
MEC
MEFMC
VLC
VLD
REC
RPC
SP

Interrupt controller
Input stream controller
Motion estimation (ME) coarse
ME fine & motion compensation (MC)
Variable length coding
Variable length decoding
Reconstruction
Remap & pause controller
Stream producer

MoVa

are executed from an on-chip program memory. An on-chip
data memory is used by the controller to interface between
hardware and software modules with parameter passing.

The AMBA wrapper, an arbiter, a decoder, and a bridge
control the bus master arbitration, module selection signal
generation with addressing decoding, and the bridge between
two modules. The arbiter determines which masters have
access to the bus: an ARM or a DMAC. The decoder runs on a
centralized address-decoding module, which generates a select
signal for each slave on the ASB bus. The bridge is the only
bus master on the APB.

The DMAC arbitrates and schedules all SDRAM accesses
concurrent with the controller. The external memory interface
provides a 16-bit data bus interface with an SDRAM. An
external wrapper provides an 8-bit data bus interface with an
ROM whose programs are downloaded into an internal SRAM
for program and data memory.

The VLC module reorders DCT coefficients, counts runs of

zeros, and performs encoding of the run-value pairs. The VLD
module is a decoder that decodes the encoded input bitstream
with header parameters received from the controller.

Motion-offset blocks of pixels are fetched from SDRAM in
the fast page mode with minimal RAS cycles by the two-
dimensional address generator of the DMAC.

For compact performance, we reduce both the number of
operations and the number of frame memory accesses. Thus,
all hardware modules have minimum-size internal buffers
sufficient for parallel operation. The internal buffers also reduce
access to the external memory, and therefore reduce power
consumption and performance degradation. Hence, we reduce
the number of cycles needed for access to below the allowable
cycles per macroblock in a 27 MHz operating condition.

A bus watcher provides test and monitoring functions for
macroblock signals. In the test mode, AMBA signals, which

492 Seong-Min Kim et al. ETRI Journal, Volume 25, Number 6, December 2003

can handle each ASB module except the controller, are
inputted or outputted through external pins. In the monitor
mode, when MoVa is operating normally, internal AMBA
signals are monitored through the bus watcher externally. A
reset controller indicates the current reset status of MoVa.
During reset, the arbiter grants the bus to the default bus master
and holds all other grant signals inactive. When MoVa is in a
download state, all modules including the controller are
inactive.

A clock generator generates the clocks for internal modules
to use as follows: 27 MHz, 13.5 MHz, 27 MHz delayed by 1/4
of the period, and 13.5 MHz delayed by 1/4 of the period.

The APB is a secondary bus to the ASB, connected by the
bridge. Data access is controlled by a select signal and a strobe
signal only. The APB provides an 8-bit data bus interface and
includes timers, an interrupt controller, a remap and pause
controller, a host interface, a VLC, and a stream producer.

MoVa contains three timers that control the timing of
encoding, decoding, and video input. They support maskable
interrupt on time-out. The interrupt controller has seven
interrupt sources, which are generated by Timer0, Timer1,
Timer2, external interrupt, and three soft interrupts. A fast
interrupt request [10] is not supported. The remap and pause
controller output causes MoVa to enter a “wait for interrupt”
state on reset or interrupt, set HIGH on write. For an external
host interface, there are bi-directional data transfers between
the controller and the external host processor. The external host
interface provides a Philips I2C serial bus interface [12] and an
Intel and Motorola parallel interface. Video coding resulting
from the VLC is stored in the stream producer (SP) local buffer.
The SP outputs bit streams to an off-chip stream buffer.

2. Software Modules

The main controller operates several software modules: a
kernel, an initializer, a boot loader, a sequencer, and a scheduler.

The kernel manages how to control its own minimal,
standalone, run-time support system for code compiled by an
ARM C compiler. It can be assembled using an ARM
assembler. In fact, this code depends hardly at all on our target
environment and is designed to be easily adapted to any
particular ARM-based system. Much of the code is generic to
the ARM processor and is completely independent of our
ARM-based hardware. This includes i) setting up the initial
stack and heap, ii) calling the main function, and iii) program
termination. The initializer provides vector and interrupt
handlers. The boot loader calls the main function found in the
kernel module. The sequencer calls the function of the module
interface and executes the function of scheduling and sequence
control along with enforcing synchronizing conditions.

The scheduler executes macroblock-based pipeline controls

and calls the functions of the module interface for parameter
passing. Certain hardware modules consume a fixed time to
process input data. These modules are assigned to a fixed delay
time based on estimates of their computation times. Examples
of these are the DCTQ, the motion estimation coarse (MEC),
and the reconstruction (REC). Other modules, such as the VLC,
the VLD, the input stream controller (ISC), and the SP, exhibit
parameter-dependent behavior.

The main control, the hardware module control, and a few
functions, such as header parsing, rate control, error
concealment and resilience, motion vector computation, and
calculating a frame memory’s address for DMAC are
implemented by software. The software is simulated with a
C/assembly on an ARM toolkit. We identified the time critical
modules of the program and hand-coded them into the ARM
assembly. We could hand-code the modules programmed by C
but we did not hand-code all the modules, using instead some
default software coding. We did it this way because the default
software had some advantages: it was more readable and made
it easier to maintain and document.

ARM7TDMI can make a good microcontroller executing
most instructions in a single cycle. Unfortunately, the 32-bit
ARM7TDMI microprocessor has a disadvantage: using
Thumb code only or using ARM code and Thumb code
together causes some implementation problems. We could not
implement all functions using Thumb code only. Since the
main concern of MPEG-4 target applications is real time, we
regard timing optimization more important than code size
optimization. There are two phases: the use of C syntax
effective for ARM code [13] and scheduling optimization,
which has the minimum memory bandwidth. The key to
scheduling is to perform hardware and software jobs
concurrently. MoVa has two ASB masters, ARM7TDMI and
the DMAC. In the AMBA specification, the bus protocol
includes pipelined arbitration to ensure that only one master is
active on the bus at one time. Every system must have a default
bus master, which is granted use of the bus during reset. It is
impossible to have more than one master simultaneously
operating in AMBA, because it degrades the system
performance. For efficient use of an AMBA bus, the wrapper
provides an interface between the internal SRAM and the
ARM7TDMI, not through AMBA. This makes it possible that
two masters may be active simultaneously during an internal
mode [5] of the ARM7TDMI master.

The RC is a program-based rate controller for constant bit
rate encoding. We present an efficient two-level rate control
algorithm that keeps the spatial quality of each frame in a
tolerable range. It can be separated into a two-level algorithm,
namely the frame-layer and macroblock-layer.

The ER has four major functions: data partition (DP),

ETRI Journal, Volume 25, Number 6, December 2003 Seong-Min Kim et al. 493

reversible VLC (RVLC), resynchronization marker (RM), and
intra refresh (IR) [13]. The IR is a method for coping with data
loss. This involves sending a fixed number of intra
macroblocks in each frame. Annex E of the MPEG-4 standard
[13] describes an IR scheme where macroblocks are selected
from a motion map. Generation of the motion map is achieved
by marking the positions of macroblocks with motion. If the
number of macroblocks marked for intra coding exceeds the
number of macroblocks encoded, for the next frame, the
encoder starts in the same position and begins encoding intra
macroblocks, including those marked for intra coding in the
previous frame.

The EC resynchronizes the bitstream after the error at the
macroblock-level and slice-level and conceals the lost
macroblocks. After a macroblock error occurs, the rest of the
slice is invoked with default parameters and correctly
resynchronized. In case of a packet error, the information of the
rest is discarded and correct resynchronization is achieved at
the next slice, where all information is reset, so that the next
macroblocks will be received correctly.

III. Hardware-Software Optimization

1. Hardware Optimization

The type of ME method and search range significantly
affects power consumption and image quality. Therefore,
reducing the image pixels from the original image size affects
the effective memory bandwidth and the number of
computations. In this method the image pixels are subsampled
at intervals of two pixels for the horizontal pixels of the input
video data, and the subsampling is applied to luminance and
chrominance data.

In MoVa, a hierarchical block matching method is used
because the full-search block-matching method needs a huge
amount of computation. The ME consists of a three-step
hierarchical approach, which sequentially operates with search
windows of (–14, +14), (–1, +1), and (–0.5, +0.5). The MEC
executes the first-step ME which coarsely searches the motion
with the subsampled 8×8 current macroblock data in an actual
range of +/–14 horizontally or vertically, additionally performs
the functions of the MEF skip decision and the inter/intra
decision as well as in the unrestricted mode. The MEFMC
executes the second- and the third-step ME by the full-search
block-matching method for a full MPEG-4 mode, including
the advanced prediction mode [14], and searches the fine
motion vector up to a half pixel resolution.

The proposed architecture [15] is based on a systolic array. In
array architecture, the number of processing elements is
dependent on the search range and the calculations per unit

time determined by the overall codec performance and power
considerations. We implemented the MEC with 8 processing
elements and the MEF with 3 processing elements by applying
a three-step hierarchical method in MoVa.

MoVa especially incorporates the ME skip scheme, which
lowers the power consumption without degrading its
performance. The three-step ME operation is skipped only if
the predicted sum of the absolute difference (SAD) value of
any macroblock currently being processed is not greater than
the maximum value of three SAD candidates that correspond
to the left, the upper, and the upper-right macroblocks.

When an image is compressed with a low bit rate, there are
many not-coded blocks in the video bitstream. In MoVa, since
the DCTQ has to be processed prior to the VLC, all blocks
must be transformed and quantized even though the DCTQ
does not have not-coded blocks. In order to improve the
processing speed, the current DCTQ skip is adopted in the
inter-frame. In inter-macroblocks, we can predict a not-coded
block by comparing the minimum SAD value with a threshold
value related to the quantization parameter. Block-based SAD
values are obtained from the MEFMC. The smaller the
minimum SAD value, the higher the possibility that the inter-
macroblock will be designated a not-coded block.

The post filter performs the deblocking operation for only
luminance because it has a stronger influence on the luminance
boundary than on the chrominance’s.

The APB is intended for use with peripherals and modules
containing memory-mapped registers only for control without
memory dump. APB modules use an 8-bit bus. Using an 8-bit
bus instead of a 16-bit bus may result in greater cost and area
optimization, but if any modules do not have to dump memory
and have few parameter interfaces to request bus bandwidth,
the 8-bit bus is sufficient.

2. Software Optimization

There are two categories in software optimization: time and
space (memory size). Since the main concern of 3G-324M is
for realtime applications, we regard time optimization more
important than space optimization.

To increase time and space optimization, we designed freely
mixed routines with ARM and Thumb code. At first, we
divided all C functions into two uses, time optimization and
space optimization, and then compiled them with respective
optimization options and compilers. When the functions were
optimized for time, they were compiled with an ARM
compiler (ARMCC) and time optimization options. However,
for space, they were compiled with a Thumb compiler (TCC)
and space optimization.

Table 1 shows the size of the code in space optimization for
each type of revision we worked on. Most commercial ARM7

494 Seong-Min Kim et al. ETRI Journal, Volume 25, Number 6, December 2003

series cores have 4 kB or 8 kB embedded memory [16]. In
MoVa, the areas of ROM data memory, stack memory, and
data memory for module interfaces are about 0.7 kB, 0.3 kB,
and 0.5 kB, respectively. Therefore, when another embedded
core replaces the ARM7TDMI as a main controller, the
program memory of MoVa should be optimized to fit within
the size of 6.5 kB.

Table 1. Space optimization.

 Compiler
Optimization

ARMCC
(bytes)

ARMCC + TCC
(bytes)

Time 8,615 -

Space 8,275 -

Time + Space 8,520 7,624

Data - 7,304

Function - 6,861

Instruction-level - 6,837

DMA interface - 6,854

Final - 6,467

The original code was too large as it occupied about 125% of

the targeted maximum size of 6.5 kB. The details of each
optimization type, namely, data, function, instruction-level, and
DMA interface optimizations, are presented below.

We optimized space by changing the type of data
manipulated by the algorithms. The main objective was to
decrease the memory size of the target architecture. In MoVa,
variables are based on a 32-bit integer to keep high
performance under control. However, the main bus is
configured with a 16-bit ASB and an 8-bit APB. If all variables
are defined by integer, the most significant 16-bit area is filled
with “0x0000.” From the point of view of space area, this is not
effective. Therefore, if any routine is not critical, it is designed
to support computation with 16-bit or 8-bit integers with
efficiency. These data types are supported by the ARM
compiler through the definition of short and char integer types.
Computing with short or char is less efficient than using integer,
but the space size is optimized.

For the function optimization type, the pattern of memory
dump or parameter passing to each module is similar.
Therefore, the functions operating by similar patterns are
combined into one function.

The instruction-level optimization is extensively applied in the
software for significant time and space optimization. We do not
describe these optimizations in detail because they are common
knowledge [17]. However, we performed most optimizations

manually due to lack of support by the ARM compiler.
A simple example of this transformation is the use of the

multiple load and store. In many modules, multiple parameter
passings contain memory-mapped registers that can be
implemented efficiently with multiple loads and stores. In this
case, we force the ARM compiler to use the LDMIA and
STMIA instruction by inlining it in assembly.

Since video coding involves massive data, there is a need for
global planning and optimization in data storage, traffic, and
processing. Data should be defined just with sufficient lengths
to save memory space and computation power. Because it is
impossible to keep all data in on-chip memory, the most
frequently referenced constants, variables, stacks, tables, and
working space can be placed in on-chip memory to maximize
the effect of fast memory access. Static memory allocation
should be adopted for efficiency.

The data transfer method through the ARM bus can be
classified into three modes: the internal mode, the sequential
mode, and the nonsequential mode. Register-free operation in
an internal mode and register access operation in a sequence
or a non-sequence mode occurs. A hardware module and a
software functional block are operable at the same time by
armbreak control in a sequential or non-sequential mode. By
using the sequential or non-sequential transfer mode, the space
efficiency is lower, but scheduling time is optimized because
hardware and software jobs are performed concurrently.

IV. Pipeline and Scheduling

The codec architecture could be realized by accurately
calculating memory bus loading and properly scheduling
operations of control tasks. For simplifying the design of the
timing control of the codec, we adopt a “macroblock-based
pipeline” encoding and decoding control method. The
pipeline scheduling takes into account solving resource
conflicts due to software, hardware, and memory and
interface delays.

1. Timing Chart

Figure 2 is a timing chart of the codec for QCIF at 30 fps.
MoVa adopts the structure of a fixed time slot for video
processing. It has the advantage of simplifying the memory
interface because it is necessary not to arbitrate memory
access but to control it sequentially. There are two
hierarchies, a frame-level and a macroblock-level. At the
frame-level, the controller is triggered by a video
synchronous interrupt signal to start codec processing with
the hardware modules.

The clock frequency in the image sensor’s specification [18]
for MoVa’s application is under 4.5 MHz, which is one sixth

ETRI Journal, Volume 25, Number 6, December 2003 Seong-Min Kim et al. 495

nRESET

Encoding
frame start

Decoding
frame start

Encoding
MB start

Vsync

Decoding
MB start

27,000,000T

472,500T 428,400T

0 1 2 103 104

4,500T

900,900T

0 2 01

0 1 2 117 118

3,600T

0 1

29

Fig. 2. Timing chart for QCIF at 30 fps.

of MoVa’s operating frequency, 27 MHz. In the QCIF format,
because the speed of the video encoding is faster than that of
the video input and the encoding is impossible to be just
operated after the video input of one slice, the encoding for
QCIF must be started after downloading the pixel data of more
than one frames. The sub-QCIF (SQCIF) is the same as the
QCIF in the video data input scheme. The CIF type is similar
to QCIF’s except for the difference in the number of
macroblocks in a frame and the encoding macroblock start
time. However, for CIF, the encoding can be done after more
than only one slice because the encoding speed is even faster
than that of the video input.

2. Pipeline

Figure 3 shows the macroblock-level pipeline flow
scheduled by the controller in MoVa. The pipeline stage
consists of four stages in encoding and three in decoding. Each
stage must be less than 4,500 cycles in encoding and 3,600
cycles in decoding to code 2,970 macroblocks in one second.

The MoVa encoding section sequentially performs the
pipeline operation to the MEC, the MEFMC, the MVMVD,
the DCTQ, and the VLC, and at every macroblock, the REC
and the SP. On the other hand, the decoding section
sequentially performs the VLD, the MC, and the IQIDCT, and
at every macroblock, the REC and the DB. A feature of this
architecture is that internal processing is all executed in parallel.
Especially the DCTQ module, VLC module, and VLD module
operate at a block (8×8 pixels) base and repeat six times per
macroblock. The output data processed at any module is
immediately stored at the local memory in the subsequent
module. Each local memory is implemented to the fast static
RAMs as BUF boxes shown in Fig. 1.

3. Scheduling

A scheduler that reasonably defines a concurrent operation is
needed to allocate hardware and software jobs properly for
video codec. This scheduler controls the operation of hardware
modules by sending parameters such as start, clock gating, and
software reset through command registers for flexible control.

 Fig. 3. Macroblock-based pipeline.

VOP header
SW loading

MEC

MEFMC MEC

MEC

DCTQ
VLC

MEFMC

MEC

REC/SP

DCTQ
VLC

MEFMC

MEC

REC/SP

DCTQ
VLC

MEFMC

REC/SP

DCTQ
VLC REC/SP

(a) Encoding four-stage pipeline

VOP
parsing MC/IQIDCT VLD

VLD

(b) Decoding three-stage pipeline

REC/DB

MC/IQIDCT

VLD

REC/DB

MC/IQIDCT

VLD

REC/DB

MC/IQIDCT REC/DB

496 Seong-Min Kim et al. ETRI Journal, Volume 25, Number 6, December 2003

For example, if the scheduler writes the ‘MEC start’ parameter
to a command register to start motion estimation, the MEC
module continues during the time allocated to one macroblock
of MEC video data. Figure 4 shows a macroblock-based
scheduling of encoding and decoding.

The height of each block box presents the relative size of
memory or bus bandwidth. We used a 16-bit SDRAM data bus
width to save memory bandwidth and achieve efficient
memory access; thus, all memory dumping for macroblock
coding was performed in a macroblock time slot. The
scheduling sequentially processes along the vertical axis from
“0” value.

When schedule processing is performed, the encoding stage
operations and important mark points are as follows:

Stage 1. The current and reference memory data for the
MEC is first sent to the MEC buffer memory (MEC-BUF) to
perform the coarse motion estimation. After IR for each
macroblock has been decided, the MEC module reads from the
MEC buffer memory and coarsely searches the motion. In case
of the MEC initial latency, the permissible latency set should be
adjusted to store the MEC results (MEC-post). The insertion of
delays in a pipeline may increase the execution time of an
operation; this, in turn will affect dependency. The delay
insertion method is applicable only to cases where there is
either initial or post latencies.

Stage 2. The integer-pel motion vector and intra flag, the
MEC parameters resulting from stage 1, are first stored to data
memory (MEC-post). A motion vector obtained from the MEC
should be computed before the MEFMC buffer memory for
MC of the corresponding macroblock is dumped (the ①

symbol in Fig. 4). After the current data and the reference data
for the MEFMC is dumped into the MEFMC buffer memory
(MEF-BUF) by referencing the motion vector of stage 1, the
MEFMC reads the motion vectors, determines the half-pel
motion vectors, and performs motion compensation to generate
a prediction picture. Video input data, video output data, and
input stream data are dumped into each buffer memory (VIM-
BUF, VOM-BUF, ISC-BUF). Because these aren’t related to
any pipeline stage, they can be located at any stage, but the
time slot should be fixed.

Stage 3. The half-pel motion vectors and SAD values
resulting from the MEFMC at stage 2 are first stored to data
memory (MEF-post). Pre-RC determines the target bit rate
based on the bits available and the last encoded macroblock
bits and computes the quantization parameter (QP) before the
DCTQ. The DCTQ operates the DCT, the Q, the IQ, the IDCT,
and the AC-DC prediction [7]. In the MVMVD, motion
vectors resulting from stage 2 are to be coded differentially.

After the DCT and the Q have been completed, the HVLC and
the VLC are sequentially operated with the transformed texture
data. The parameters of the intra flag, zero motion vector,
Dquant, and packet change are used to code the HVLC.
Therefore the HVLC should be run after the MEC, the
MVMVD, the pre-RC, and the SP (②).

Stage 4. The texture bit number resulting from the VLC is
stored for the RC of the next macroblock (VLC-post). After
encoding model parameters are updated based on the encoding
results of the current macroblock, the post-RC determines
whether the next macroblock is skipped according to the
current buffer status. If post-RC determines that the next
macroblock should be skipped, the reconstructed macroblock
is interpolated by copying the pixel data from the macroblock
of the same position in a previously reconstructed video object
plane (REC-BUF1). If the next macroblock is not skipped, the
REC module operates normally (as REC in Fig. 4(b)). The
reconstructed macroblock data is stored at the reconstructed
SDRAM area (REC-BUF2). Finally, the SP produces a stream
from the parameters of the HVLC and the VLC and stores it in
the stream output buffer. The post-RC and the SP may not be
performed until the result obtained from the VLC is completed
for the texture bit (③). A packet change denoting the
summation result of bits from the SP in the current macroblock
should be produced before the DCTQ, the MVMVD, and the
HVLC modules are performed using the parameter (④).

Decoding the pipeline for MoVa is classified into three
stages as follows:

Stage 1. The VLD retrieves each VLC stream data stored in
the VLD buffer memory (VLD-BUF, VLD). The VLD
module cannot be performed until the IQIDCT is completed
with data in a buffer between the IQIDCT and the VLD (⑤).

Stage 2. The parsed VLD parameters, such as coded block
pattern for luminance (CBPY), coded block pattern for
chrominance (CBPC), de-quantization parameter (DP), and
not_coded [13], resulting from stage 1 are first stored to data
memory (VLD-post). Next, the IQIDCT, the MVMVD, and
the MC operate sequentially. The ISC-BUF is the same in stage
2 for encoding. The MC should be completed before the REC
is performed at the next pipeline stage, because the REC uses
the result data of the MC (⑥).

Stage 3. The VIM_BUF, the VOM_BUF, the REC, and the
REC_BUF are the same as in stage 2 and stage 4 for encoding.
The DB is a post-filter module and performs along the 8×8
block edges of luminance at the decoder. Each macroblock of
luminance is first stored to the DB_BUF to perform the
deblocking filtering (DB-BUF1). After the filtering has been

ETRI Journal, Volume 25, Number 6, December 2003 Seong-Min Kim et al. 497

completed (DB), the results are dumped to the SDRAM (DB-
BUF2). Finally, the filtered DB data is shifted in the DB buffer
memory for the next DB (Post-DB). The REC is performed
before the result of the IQIDCT is written on a buffer to inhibit
data overflow (⑦).

As mentioned above, the operation queue between modules
causes a delay in the total schedule cycles by adding interface
cycles. Therefore, a module that receives parameters from only
another module passes the parameters by bypassing. Number ⑥
in Fig. 4 exemplifies this case. The input parameters of the MC
are passed from the MVMVD output registers by bypassing.

This means that bypassing of parameters cannot start until
these parameters are available.

V. Verification

After setting up the detailed architecture specification, we
completed the design of the video codec using an approach of
segmenting the codec design into many relatively small
functional modules that we designed and simulated independently.
For this reason, having a detailed interface and function
specification of the modules before implementation was crucial.
Therefore, adopting the AMBA interface was a great advantage.

stage 4

ba
nd

w
itd

h
(c

yc
le

s)

3600

0

stage 1 stage 2 stage 3

VLD

Init

IQIDCT

Init

VLD-post

MC

Init

Init

MVMVD
Init

RECInit

Init

DB

Init

Post-DB

MEF-post

ba
nd

w
id

th
 (

cy
cl

es
)

stage 1 stage 2 stage 3

0

4500

Init

MEC

IR

MEFMC

Init

Init

Init

Init

DCTQ

IQIDCT

Pre-RC

VLC

MVMVD

HVLC
Init

Post-RC

SP

post, Init
Init

Init

Init

Init
Init

Init

Init

Init

Init

Init

Interface operationS/W operation H/W module operationMemory dump

Init: Module & DMAC initialization
xxx_Post: Module operation result storage
xxx_BUF: Buffer memory dump
Pre-RC: Previous RC
Post-RC: Post RC

VIM: Video input module
VOM: Video output module
REC: Reconstruction module
ISC: Input stream control
DB: Deblocking module
SP: Stream producer module

IR: Intra refresh
RC: Rate control
MVMVD: Motion vector & motion
 vector differential
HVLC: Header VLC
HVLD: Header VLD

MEC: Motion estimation coarse module
MEFMC: Motion estimation fine &
 motion compensation module
DCTQ: Discrete cosine transform &
 quantization module
VLC: Variable length coding module
VLD: Variable length decoding module

(a) Encoding (b) Decoding

VLC-post

6

5

7 Init

3

4

2

VLD-BUF

ISC-BUF

MC-BUF

REC-BUF

VIM-BUF

VOM-BUF

DB-BUF1

DB-BUF2

MEC-BUF

MEF-BUF

VIM-BUF

MEC-post

ISC-BUF

VOM-BUF

REC-BUF2

REC-BUF1

Init

1

Fig. 4. Macroblock-based pipeline schedule for QCIF.

498 Seong-Min Kim et al. ETRI Journal, Volume 25, Number 6, December 2003

The hardware design follows the standard application
specific integrated circuit (ASIC) design flow based on HDL
language and logic synthesis. For the hardware modules, we
wrote and simulated the HDL description using the AMBA
compliance test bench suites [19]. Each module of the codec
was simulated on the function-level. After this initial
verification, we connected and tested several modules for
AMBA compliance and simulated them again. Seventy-two
test vectors were generated by a reference C model and
executed in the environment of co-verification. Hardware-
software co-verification involved a simulation of the custom
hardware described with HDL and the simulation of an
ARM7TDMI processor model [20].

For verification, we used test bench models including HDL-
models and C-models [21]. The test bench uses an external
memory model to simulate the running code on the ARM core
in the co-verification environment. In this environment, we
compared results from test vectors generated from the
reference C model of the hardware architecture with results
from the test bench model. Figure 5 illustrates the basic layout
of the test bench.

EPROM

SDRAMHost interface

Input stream
generator

Clock
generator

Test and debug
initializer

Image sensor

Video codec
HDL

Fig. 5. Block diagram of test bench.

An external memory, 64,000×8 EPROM, is a behavioral
Verilog model, and, in general, EPROM loads data from a file
specified in the model file. A 16-Mbit SDRAM is a behavioral
Verilog model; it loads and stores data from or to two specified
bank files. An image sensor [18], an input stream generator,
and a host interface [12] are respectively provided as HDL
models. Input vectors of the image sensor and the input stream
generator are generated from the reference C model of codec.
Therefore, after encoding and decoding using the test bench,
we compared the results with the results of the reference model.
The clock generator makes a video input, a stream input, and a
main clock. The interface between ARM signals and external
controls for test and debug is established at the initialization of

test and debug.
The verification procedure of MoVa becomes increasingly

more important and time consuming; therefore, we also
concluded that using an FPGA prototyping board would be an
efficient verification method. FPGA prototyping offers fast
turn-around time and enables several optional choices to be
evaluated in a short time and high fault-coverage for hardware
and software, which would be impossible using ASIC
implementations because of their long turn-around time and
high cost.

The full test of this prototyping environment is now in
progress. Integrating FPGA prototyping into the design flow of
MoVa exploits the respective strengths of both FPGA and
ASIC implementations.

VI. Implementation

We implemented the video codec on a hardware-software
co-design. The codec can be configured with an arbitrary logic
and the programmable modules. On the codec, we placed an
ARM7TDMI core, memory modules, and several hardware
modules for hardware implementation.

All the hardware modules required a 27 MHz or a 13.5 MHz
clock for the encoding and decoding at a frame rate of 30 Hz.
The MEFMC, DCTQ, DB, and VLC modules together work
at a slow clock speed of 13.5 MHz, so power is saved with
these modules.

In APB modules, the processing time of the software
interfaced to the hardware becomes longer than the ASB’s
because an 8-bit bus width is used. This means that the main
control consumes a relatively large portion of the total
execution time while waiting for the termination of the
hardware modules before starting software modules or
control codes. In that case, the processing time of the
software can be decreased with interfacing between internal
memories or hardware modules and ARM7TDMI without
AMBA.

Power consumption is a key issue in mobile applications.
The codec uses some modes to minimize the overall power
consumption.

During the idle modes, MoVa dissipates considerably less
power than in the normal operation. The idle mode allows a
software application to stop the hardware modules when not in
use. The modules have a power manager register field. The
register is used to allow software invocation of the power-save
mode. During idle mode generated by frame intervals, other
on-chip resources are inactive except the video I/O and input
stream modules.

The sleep mode offers the greatest power savings to the user.
During the sleep mode, MoVa watches for a wake-up event

ETRI Journal, Volume 25, Number 6, December 2003 Seong-Min Kim et al. 499

asserted by an external pin.
The clock-gating scheme typically consumes a large

percentage of the codec power. With clock gating, the registers of
modules are cut off from the clock at idle times. Eight clocks in
the chip were made from three external clocks. Seven of them
were gated clocks and were used to control the power-down
mode of each functional module according to the operating mode.

The main control and module interface were implemented in
C or assembly code to aid in speedy algorithm implementation
or modification. A side benefit of this approach is that the user
can view the hardware modules and read and write each
module register and internal buffer. For example, the software
allows the user to start a module through parameter passing
and dump the buffer data.

When the memory bandwidth exhaustion is the main
bottleneck of the processing speed in the codec, the speed
improvement is more closely related to the bus clock
speed than the processor’s. Therefore, based on the
experimental results from the SDRAM interface, we
expect that a 54- Mbyte/s SDRAM burst performance can
be carried out sufficiently with the total memory
bandwidth of the codec.

MoVa has an 8,000-word program/data memory. When the
program and data memory are accessed, small memories are
better than the large ones for conserving power. As for the
memory, the 8,000-word memory is divided into four 2,000-
word memories, so these can be accessed with 8-bit, 16-bit, or
32-bit data.

Figure 6 shows the layout pattern of the MPEG-4 codec
large scale integrated circuit. Table 2 shows the specifications
of the MoVa [21].

VII. Results

As Table 3 shows, much work needs to be done in
developing codecs. The different applications—multimedia,
broadcast, acquisition—all have different requirements.
However, it must be emphasized that the complete codec was
designed, implemented, and tested in less than twelve weeks as
opposed to several engineer-years for the commercially
available chips. Furthermore, the physical parameters are
highly competitive with those of other MPEG designs reported
in the literature [22], [24], [25].

In making direct comparisons with the performance and
functionality of commercially available MPEG-4 solutions, the
reader is reminded that overall focus of the research presented
here has been the development of the clock rate and the
performance rather than the power consumption. From a
technology perspective, MoVa consumes less power than the
current standard. The performance of MoVa is directly

 Fig. 6. LSI layout pattern.

Table 2. Specifications of MoVa.

Standard MPEG-4 simple profile @ level 2

Performance Codec mode: CIF 7.5 fps/QCIF 30 fps
Decode mode: CIF 15 fps/QCIF 30 fps

Bit rate 128/144 kbps

Video format SQCIF/QCIF/CIF

Technology 0.35-µm 4-metal

Gate count 1,700,000 gates

Chip size 110.25 mm2

Operating frequency 27 MHz

Supply voltage 3.3 V (I/O)

Power consumption approximately 0.5 W (estimated)

Package 240-pin MQFP

attributable to the fact that the system clock rate was
constrained to 27 MHz.

Codecs like MoVa and emblaze have the DB module; by
experimenting with the post-filter, we found it to improve the
video quality. This was approximately 3 dB better than similar
codecs without the deblocking filter.

All codecs but MoVa have a maximum performance of
QCIF 15 fps, but typically it is not easy to support an
application having a cinema-level video quality. Unlike all
other reviewed codecs, MoVa supports SQCIF and CIF video
formats and an AMBA bus interface. This improves the ability
to extend application areas and easily upgrade performance
because of the flexible and easy bus interface.

500 Seong-Min Kim et al. ETRI Journal, Volume 25, Number 6, December 2003

Table 3. Performance comparison.

Item

Author

Size
(mm2)

Process
technology

Gate count
including memories
(million transistors)

Clock rate
(MHz)

Power consumption
(mW)

Performance
(fps for QCIF)

MoVa 10.5×10.5 0.35 µm 6.80 27 500 30

Toshiba [22][23] 10.84×10.84 0.25 µm 20.50 60 240 15

Matsushita [24] 8.7×8.7 0.18 µm - 54 50 15

Emblaze [25] - 0.18 µm - - 200 15

* Toshiba’s chip has on-chip embedded DRAM; thus the chip size and the power consumption are over-estimated.

VIII. Conclusion

We implemented MoVa using a cell-based method with a
0.35-µm CMOS process technology. MoVa contains about 1.7
million gates and is housed in a 240-pin MQFP package. It
complies with the MPEG-4 SP@L2 standard. It has a
comparatively low power consumption that is achieved by
using a low operation frequency. The main contribution of this
research is to allow the construction of an MPEG-4 codec that
can represent reasonable economy for the mobile phone and
the advanced personal digital assistant. Our future research will
focus on advancing the performance and reducing the
complexity of MoVa. Moreover, by employing embedded
DRAM, we will further reduce power consumption.

References

[1] Yil Suk Yang et al., “A Serial Input/Output Circuit with 8 bit and
16 bit Selection Modes,” ETRI J., vol. 24. no. 6, Dec. 2002, pp.
462-464.

[2] Jongdae Kim et al., “A Novel Process for Fabricating a High
Density Trench MOSFETs for DC-DC Converters,” ETRI J., vol.
24. no. 5, Oct. 2002, pp. 333-340.

[3] J. H. Jeng et al., “Multimedia ASIP SoC Codesign Based on
Multicriteria Optimization,” ICCE 2001, June 2001, pp. 342-343.

[4] Kyung Jin Byun et al., “Noise Whitening-Based Pitch Detection
for Speech Highly Corrupted by Colored Noise,” ETRI J., vol. 25.
no. 1, Feb. 2003, pp. 49-51.

[5] ARM, Advanced Microcontroller Bus Architecture (AMBA)
Specification, Doc. Num.: ARM IHI 0001D, 1997.

[6] T. Sjkora, “The MPEG-4 video standard verification model,”
IEEE Trans. Circuits Syst. Video Technol., vol. 7, Feb. 1997, pp.
19-31.

[7] MPEG Video Group, MPEG-4 Video Verification Model,
MPEG96/N1380, Oct. 1996.

[8] Tatsuji Moriyoshi et al., “Real-Time Software Video Codec with a
Fast Adaptive Motion Vector Search,” IEEE Workshop Signal
Processing Syst., SIPS 99, 1999, pp. 44-53.

[9] K. Ramkishor and V. Gunashree, “Real Time Implementation of
MPEG-4 Video Decoder on ARM7TDMI,” Proc. of 2001 Int’l

Symp. Intelligent Multimedia, Video and Speech Processing, May
2001, pp. 522-526.

[10] ARM, Example AMBA System Technical Reference Manual,
Micropack v.1.3, Doc. Num.: ARM DDI 0138A, 1998.

[11] J. Kneip et al., “The MPEG-4 Video Coding Standard–a VLSI
Point of View,” IEEE Workshop Signal Processing Syst., SIPS 98,
1998, pp. 43-52.

[12] Philips, PCF8584 I2C-bus Controller Data Sheet, Oct. 1997.
[13] R. Talluri, “Error-Resilient Video Coding in the ISO MPEG-4

Standard,” IEEE Commun. Mag., June 1998, pp. 112-119.
[14] ISO/IEC FDIS 14496-2, MPEG-4 Visual, Jan. 1999.
[15] S.M. Park et al, “A Low Power Mixed Mode Motion Estimation

for Data Compression,” IEEK 2001 SOC Design Conf., vol. 1,
Nov. 2001, pp. 23-26.

[16] ARM Processor family, http://junitec.ist.utl.pt/chipdir/fam/arm/.
[17] ARM, Writing Efficient C for ARM, Doc. Num.: ARM DAI

0034A, 1998.
[18] Hynix Semiconductor Inc., HB7121B CMOS Image Sensor Data

Sheet, 2001.
[19] ARM, AMBA Compliance Test Suite, Doc. Num.: ARM DUI

0006A, 1998.
[20] T. Hopes, “Hardware/Software Co-verification, an IP Vendors

Viewpoint,” Proc. Int’l Conf. Computer Design: VLSI Computers
and Processors, ICCD’98, Oct. 1998, pp. 242-246.

[21] S.M. Park et al., “A Single-Chip Video/Audio Codec for Low Bit
Rate Application,” ETRI J., vol. 22, no. 1, Mar. 2000, pp. 20-29.

[22] Yamamoto et al., “A Scalable MPEG-4 Video Codec Architecture
For IMT-2000 Multimedia Applications,” ISCAS2000, vol. 2,
May 2000, pp. 188-191.

[23] Takahashi et al., “A 60-MHz 240-MW MPEG-4 Videophone LSI
with 16-Mb Embedded DRAM,” IEEE J. Solid-State Circuits,
vol. 35, no. 11, Nov. 2000, pp. 1713-1721.

[24] Matsushita, http://www.matsushita.co.jp/corp/news/official.data/
ata.dir/ en010206-2/en010206-2.html.

[25] Emblaze, http://www.zapex.co.il/z4520.shtml.

ETRI Journal, Volume 25, Number 6, December 2003 Seong-Min Kim et al. 501

Seong-Min Kim received the BS degree in
electronic engineering from Kyungpook
National University in 1982. In 1983 he joined
the Semiconductor Division, KIET, which was
consolidated to ETRI in 1985. During 1983
through 1995 he was engaged in semiconductor
quality and reliability research. From 1997 he

began developing motion estimation and compensation and
quantization functional blocks for H.263 video codec, and from 1999
to 2001, developed fine motion estimation and compensation blocks
for MPEG-4 video codec. Currently, he is responsible for the time
deinterleaver block hardware implementation for digital audio
broadcasting for the High Speed Telecommunication IC Design Team.

Ju-Hyun Park received his BE, ME, and PhD
from Chonnam National University in 1993,
1995 and 1999. From 1999 to 2002, he was
with ETRI in Daejeon, Korea, where he worked as
a research scientist in the VLSI Architecture Team.
Since 2002, he has been engaged with Mamurian
Design Inc. (http://www.mamurian.com), in Seoul,

Korea and has been involved in the research and development
of MPEG-4/JPEG multimedia silicon chips. His research interests include
digital video compression and video coding for telecommunication.

Seong-Mo Park received the BS and MS
degrees in electronics engineering from
Kyungpook National University in Daegu, Korea,
in 1985 and 1987. From 1987 to 1992, he was
with the LG semiconductor company in Gumi,
Korea, where he worked on ASIC design and
Mask ROM design. In 1992, he joined the

Electronics and Telecommunications Research Institute (ETRI) in
Daejeon, Korea where he worked on the development of ASIC design.
He is working toward the PhD degree in electronics engineering from
Kyungpook National University in Korea. He is currently engaged in
research on SoC design, image compression algorithms and SoC
architecture design. His main research interests are video coding, image
compression, and low power SoC architecture design.

Bon-Tae Koo is a Senior Engineer of the
Electronics and Telecommunications Research
Institute (ETRI). He received a MS from Korea
University in 1991. From 1991, he spent 7 years
at System IC Laboratories of the Hyundai
Electronics Company, where he researched IC
design for communications and multimedia

systems. From 1997 to 1999, he was an IC Design Engineer at Dongbu
Electronics Company. He joined ETRI in 1999 where he is interested in
SoC design for wireless multimedia applications.

Kyoung-Seon Shin received the BS and MS
degrees in electronics engineering from
Chonbuk National University, Jeonju, Korea, in
1989 and 1991. From 1991 to 1999, he was
with the LG semiconductor company in
Cheongju, Korea, where he worked on MCU
design and application. In 1999, he joined

Electronics and Telecommunications Research Institute (ETRI),
Daejeon, Korea, where he currently works in SoC design methodology
development and wireless multimedia SoC design.

Ki-Bum Suh received his BS, MS, PhD degrees
in physics from Hanyang University in Seoul,
Korea in 1989, 1991, and 2000. In 2000, he joined
the Electronics and Telecommunications Research
Institute (ETRI) in Daejeon, Korea. He was
engaged in the development of MPEG-4 ASIC
design, image compression algorithms and VLSI

architecture for video codec. He is currently in the Department of
Electronics at Woosong University in Daejeon, Korea.

Ig-Kyun Kim received the BS and MS degrees
from Kyungbook National University in Daegu,
Korea, in 1978 and 1980. Since joining the
Electronics and Telecommunications Research
Institute (ETRI) in Daejeon, Korea, in 1984, he
has been engaged in the research and
development in the field of VLSIs. His recent

research involves the development of processor systems for video signal
processing including high-speed signal processor architecture.

Nak-Woong Eum received the BS degree in
electronic engineering from Kyungbook
National University in Daegu, Korea, in 1984
and the MS and PhD degrees in electrical
engineering from the Korea Advanced Institute
of Science and Technology (KAIST) in
Daejeon, Korea, in 1987 and 2001. He joined

ETRI in Daejeon, Korea, in 1987, in the area of electronic design
automation responsible for developing physical synthesis tools. His
current research interests include new design methodologies and tools
for high-performance communication ICs. He is a member of IEEE.

502 Seong-Min Kim et al. ETRI Journal, Volume 25, Number 6, December 2003

Kyung-Soo Kim received the BS degree in
electronics engineering from Sogang University
in Seoul, Korea in 1977. He joined ETRI in
1977. He worked mainly on chip testing,
process development and VLSI design. He is
currently the Director of Intergrated Circuits
Department in Semiconductor Division of

ETRI. His research interests include CAD software and ASIC design
for wireless communication and ATM systems.

	
I. Introduction
	II. Hardware-Software Partitioning
	III. Hardware-Software Optimization
	IV. Pipeline and Scheduling
	V. Verification
	VI. Implementation
	VII. Results
	VIII. Conclusion
	References

