
ETRI Journal, Volume 26, Number 2, April 2004 Dong-Han Ham et al. 167

As component-based development (CBD) rapidly
spread throughout the software industry, a comprehensive
methodology is needed to apply it more systematically. For
this purpose, a new CBD methodology named Magic &
Robust Methodology Integrated III (MaRMI-III) has
been developed. The purpose of this paper is to present
MaRMI-III by its constituent processes and claim that it
can be used to support system developers conduct CBD in
a consistent manner. First, we review the CBD approach
to system development and the role of CBD methodology,
and then we explain the several characteristics of
MaRMI-III which are considered necessary to the CBD
environment. Next, we explain a process model of
MaRMI-III which separates the development process
from the project management process and prescribes well-
ordered activities and tasks that the developer should
conduct. Each phase forming the Process Model is
explained in terms of its objectives and main constituent
activities. Some techniques and workproducts related to
each phase are also explained. Finally, to examine the
usefulness of MaRMI-III, an analytical comparison with
other CBD methodologies and the results of a
questionnaire survey are described.

Keywords: Component-based development (CBD),
software component, and systems development
methodology.

Manuscript received Mar. 25, 2003; revised Nov. 4, 2003.
This work was supported by the Korea Ministry of Information and Communication.
Dong-Han Ham (phone: +82 42 860 1658, email: dhham@etri.re.kr), Jin-Sam Kim (email:

jinsam@etri.re.kr), Jin-Hee Cho (email: chojh@etri.re.kr), and Su-Jung Ha (email:
hsj@etri.re.kr) are with Basic Research Laboratory, ETRI, Daejon, Korea.

I. Introduction

Component-based development (CBD) has been considered
the most viable approach for realizing software reuse and thus
for efficiently developing high-quality software-based systems
[1], [2]. CBD aims to develop software systems by assembling
reusable software components and modifying them if
necessary [3]. Such an approach is expected to bring about
several advantages. One primary benefit is that it significantly
enhances software reusability, reliability, and maintainability, as
well as reducing time-to-market, thereby increasing the
productivity of the software development process [3], [4].
Additionally, a component platform framework or architecture
provides components with various services such as transaction,
security, and persistency, so that a high level of quality and
reliability is guaranteed to component-based systems [5].
Finally, several management activities, including quality
assurance and maintenance, potentially become easier by
taking a component as the unit of management and,
consequently, diminishing managing complexity [6].

A software component can be defined in various ways
according to its abstraction level or range of use [2], [4].
However, the most generally accepted definition is that of
D’Souza et al.: “An independently deliverable unit of software
that encapsulates its design and implementation and offers
interfaces to the outside, by which it may be composed with
other components to form a larger whole” [7]. Another
frequently quoted definition is that of Szyperski, which points
out the important characteristics of a component: “A unit of
composition with contractually specified interfaces and explicit
dependencies only. A component can be deployed
independently and is subject to third-party composition” [8].

MaRMI-III: A Methodology for
Component-Based Development

 Dong-Han Ham, Jin-Sam Kim, Jin-Hee Cho, and Su-Jung Ha

168 Dong-Han Ham et al. ETRI Journal, Volume 26, Number 2, April 2004

CBD is divided into two processes: component development
(CD) and component-based software development (CBSD) [9].
CD focuses on how to build highly reusable independent
software modules (design for reuse), whereas CBSD mainly
strives to construct a system by composing the available
components that best meet the users’ requirements and
technological constraints (design with reuse).

In general, when a new development paradigm emerges and
there is a lack of experience, a development methodology is
needed. A methodology is defined as a collection of processes
specifying activities to develop a system and techniques to be
used for the activities throughout the life cycle [10]. From the
developers’ cognitive perspective, the most significant value of
a methodology is that it allows them to “do the right things” as
well as to “do the things right.”

ETRI conducted a questionnaire survey of scores of Korean
software companies about the actual practices of development
methodology in 2001 [11]. The survey results indicated that
97% have a strong need for methodology in constructing
software-based systems. In particular, 66.3% answered that
they were willing to introduce a CBD methodology, whereas
12.6% of the respondents were interested in a structured and
information-engineering methodology and 19% were
interested in an object-oriented methodology. These results
indicate the evident need and importance of a CBD
methodology. Moreover, the lessons learned from conducting
CBD demonstrated that a CBD methodology providing a well-
organized process and various techniques is indispensable for
the success of a CBD project [12].

Currently, well-known CBD methodologies include the
Rational Unified Process (RUP) [13], Catalysis [7], Select
Perspective [14], UML Component [15], Compuware’s
Uniface [16], and Castek CBD [17]. Of these, RUP and
Catalysis are the most widely used in real industry. RUP is a
well-defined software engineering process and provides a
customizable process framework. Though it is not a
methodology specific to a CBD project, one of its essential
principles is to build systems with components, and thus RUP
can be used or customized to support CBD projects. The most
remarkable feature of RUP is that it has two dimensions, a time
dimension showing a life cycle and a discipline dimension
indicating certain activities to be primarily conducted along the
life cycle. The main advantage of using RUP is that the various
tools provided from Rational Software support activities
specified in RUP, enabling iterative and incremental
development. Catalysis provides a very comprehensive process
from business modeling to code and process patterns adopting
various development requirements. However, it is not a
thorough methodology, rather a semi-structured set of design
principles, advice, and patterns throughout the life cycle. Such

a characteristic makes it difficult for the developer to view the
big picture when using it. Additionally, the lack of management
activities is a crucial shortcoming of Catalysis.

However, in spite of their strong points, none of these
methodologies give a complete solution to CBD [10], [18].
This is because the CBD approach is fairly new and has a
greater complexity in both the development and project
management processes compared to the prior development
paradigms. One of their shortcomings is that they handle
problems mainly in the implementation and deployment
phases, instead of within the full-system life cycle [19]. Also,
the use of some methodologies is dependent on specific
software tools or organizations, resulting in a lack of generality
[10]. A third shortcoming is that most of CBD methodologies
are weak in supporting architecture modeling and software
reuse [20]. Finally, from our experience, we notice that there is
a lack of a detailed process enabling developers to work in a
procedural way, regardless of their level of expertise in CBD.
From the cognitive perspective of developers, procedural task
is more effective and less cognitively burdensome in most
situations of problem-solving such as design activity [21].
These shortcomings highlight the need for a new methodology
that will achieve the claimed CBD benefits.

To effectually support developers in conducting a CBD
project, a methodology should be comprehensive, user-friendly,
and customizable. In other words, it should address all kinds of
development and management activities, providing specific
guidance on those activities as well as allowing developers to
customize it to their projects. Another point to consider is that it
should address design problems specific to a broadly used
component technology platform such as Java 2 Platform,
Enterprise Edition (J2EE) or .NET. In addition, new concepts
such as component, interface, and architecture should be
clearly defined and represented [20]. With this view in mind,
we have developed a new CBD methodology named Magic &
Robust Methodology Integrated III (MaRMI-III)1).

The purpose of this paper is to present MaRMI-III and claim
that it can be used to support system developers in conducting
CBD. First, this paper describes the characteristics of
MaRMI-III, and then it explains the detailed process in
connection with its other constituent elements. Lastly,
evaluation studies to validate the usefulness of MaRMI-III are
described.

1) MaRMI is a series of development methodologies. MaRMI-I, the first methodology, was
developed on the basis of a structured development and information engineering concept in
1997. Afterwards, MaRMI-II, which is an object-oriented methodology particularly aimed at
the information and communication industry, was developed in 1998. The phonetic spelling of
MaRMI means cutting out in Korean [22].

ETRI Journal, Volume 26, Number 2, April 2004 Dong-Han Ham et al. 169

II. Outline of the Methodology

When developing MaRMI-III, we collaborated with six
active software companies that have a lot of experience in
CBD projects. Also, we made reference to the previous CBD
methodologies introduced in section I and attempted to draw
useful contents from them, with consideration of our
experience. Thus, our methodology is the result of
combining our CBD experience with the quality practices of
previous CBD methodologies and with other CBD-related
literature.

In this section, we discuss the several characteristics of
MaRMI-III. Firstly, MaRMI-III makes use of Unified
Modeling Language (UML) as a modeling notation. UML,
which most system developers are accustomed to using, is
regarded as a de facto standard notation for object-oriented
modeling [23], [24]. For this practical reason, in MaRMI-III,
system analysis and design activities are conducted by using
UML diagrams. In particular, MaRMI-III takes a use-case
driven approach. Use-case can be effective for identifying user
requirements and specifying components. It is also a basic unit
for incremental development.

Secondly, MaRMI-III is architecture-centric and thus lays
emphasis on system architecture design in the early phase of
the development process. A system architecture designed to be
stable and extensible in the early phase guarantees high
reusability of software components. In MaRMI-III,
architecture is organized into three layers: technical
architecture, software architecture, and component
architecture. In general, technical architecture provides the
technical environment that developers should understand and
consider. As will be explained in detail later, MaRMI-III deals
with designing a software architecture that is a collection of
software components, and a component architecture that is a
collection of business components concerned with specific
business processes or functions.

Thirdly, MaRMI-III addresses both the development of
systems from components and the development of a
component itself. To realize such systems, developers should
not only use off-the-shelf components but also build
components for themselves if there are no relevant components
in the off-the-shelf market [25]. Regarding this, what is
noteworthy is a mini-project that uses a time box as a
management method for realizing use cases. A mini-project is a
small-scale work unit that develops one component or more in
a sequential or concurrent way. It enables system developers to
take a stepwise and incremental approach. This results in
several benefits: minimizing project risk, managing
requirements with the participation of users, giving developers
continuous motivation, and so on.

Fig. 1. Metamodel of MaRMI-III.

apply

perform use

refer
produce

support

compose

General element of methodology
Element specific to MaRMI-III

compose

Phase

Path Project

compose Mini project Activity

compose

Role Task

compose

Procedure WorkProduct

support Technique Tool

Fig. 2. Underlying concept of the overall process.

Project management process
Development process

N iterations

Project
plan

Requirements

Architecture

Incremental
 development

Transfer

Project control

Project
end

Fourthly, the metamodel of MaRMI-III, as shown in Fig. 1,
is reasonably compatible with the Software Process
Engineering Metamodel, specified by the Object Management
Group [26]. It gives a description of what elements constitute
methodology and how they are related to each other. The
definition of each element is given in Appendix A.

Fifthly, Fig. 2 shows the underlying concept of the process of
MaRMI-III. What is noted here is the division of the
development and project management processes. This reflects
the view that the management of a CBD process is so complex
that it needs to be dealt with separately. The project
management process is comprised of three phases: Plan,
Control, and End. The development process consists of four
phases: Requirements, Architecture, Incremental Development,
and Transfer. Each of these four phases goes with the Control
phase from its beginning to end. In the phase of Incremental
Development, an iterative approach through mini-projects is
taken to implement the system in a step-wise way. Figure 3
details the overall process to the level of activity. For example,
the Requirements phase is made up of three activities:
requirements understanding, requirements definition, and
development strategy set-up.

170 Dong-Han Ham et al. ETRI Journal, Volume 26, Number 2, April 2004

Fig. 3. Detailed process to the level of activity.

Project end

Project plan

Project preparation

Project planning

Project control

Project management process

Phase preparation

Phase inspection

Phase control

Project completion

Project operation support

Incremental development

Requirements

Transfer

Development process

Req’s understanding Req’s definition Dev’t strategy set up

Req’s analysis

Architecture

Arch. definition Arch. prototyping Test & transition plan

Refinement of req’s & architecture Basic design of component

Detailed design of component Implementation of
component & system

Development of manual Component test Integration test
System

test

User training System install Acceptance test System transfer

Sixthly, MaRMI-III is made up of three major elements: a

Process Model, a Set of Techniques, and a Set of
WorkProducts. The Process Model prescribes what activities
and tasks constitute the development and project management
processes and how they should be conducted and in what order.
As an example, Fig. 4 shows the configuration diagram of the
Incremental Development phase. The Set of Techniques helps
developers conduct tasks specified in the Process Model in an
efficient way. Examples of Techniques include object modeling,
cost and benefit analysis, design pattern, architecture style, and
the Architecture Tradeoff Analysis Method. A workproduct is a
description of a piece of information or physical entity used or
produced by the tasks. To aid developers in writing the
prescribed workproducts, MaRMI-III provides a Set of
WorkProducts that predefine its format and some contents. The
content of these workproducts are interrelated. Figure 5
illustrates such an example in the phase of Incremental
Development. Additionally, MaRMI-III provides two example
case studies: the bidding management system in e-commerce
and the external cooperation system in the banking industry,
which will be used as references for its application.

Finally, MaRMI-III has two versions, each of which
addresses the different component technologies, platform-J2EE
and .NET. Currently, both of them are the most extensively
used platforms in the software component industry. The main
difference between the two versions exists mainly in the task of
detailed component design and implementation of the

component and system.
In the next section, each phase forming the overall process is

explained in terms of objective, constituent activities, and
associated main-techniques and workproducts.

III. Development Process

The Requirements phase is the first step of the development
process. This phase aims at collecting and identifying users’
requirements in consideration of the system vision. If necessary,
a business model is created so that the system background can
be understood more accurately. The boundary of the system to
be developed is clarified with a use-case diagram and
conceptual model. Designers verify the adequacy of the
requirements by developing a user interface (UI) prototype and
testing it with the participation of users. An initial draft of the
system architecture is defined on the basis of the requirements,
use-case diagram, and conceptual model. Reusable
components addressing some parts of the requirements are
examined to enhance the productivity of the development
process. As is widely acknowledged, identification of the
correct requirements becomes increasingly important to the
success of system development, not to mention CBD. For this,
MaRMI-III emphasizes the utilization of the use-case diagram,
which represents the system’s functionality and can be served
as a basic unit for requirements identification, management,
and testing. Additionally, several techniques for user-centered

ETRI Journal, Volume 26, Number 2, April 2004 Dong-Han Ham et al. 171

 Fig. 4. Configuration diagram of incremental development phase (J2EE version).

Assess Integration Test

Prepare for Integration
Test D0702

Execute Integration Test
D0704

Mini project

Component Test

Assess Component Test
D0606

Prepare for Component
Test D0602

Execute Component Test
D0604

System Test

Execute System Test
D0804

Prepare for System Test
D0802

Implement Server Component
D0402

Refinement of Requirements
and Architecture

Basic Design of Component

Design Class Structure D0202

Development of Manual

Develop User Guideline
Manual D0502

Create Online Help
D0504

Implement UI
D0404

Prepare for Data Conversion
D0408

Integration Test

Construct DB
D0406

Refine Requirements D0102

Assess integration test
D0706

Prepare for integration
test D0702

Execute integration test
D0704

Mini project

Component test

Assess component test
D0606

Prepare for component
test D0602

Execute component test
D0604

System test

Execute system test
D0804

Assess system test
D0806

Prepare for system test
D0802

Implementation of component
and system

Implement server component
D0402

Refinement of requirements
and architecture

Basic design of component

Design class structure D0202

Development of manual

Develop user guideline
manual D0502

Prepare for data conversion
D0408

Refine architecture D0104

Integration test

Refine requirements D0102

Design interaction D0204

Design variability D0206

Design pattern application
D0208

Design DB D0210

Detailed design for UI
D0302

Define package D0304

Detailed design of
component

Design EJB mapping D0306

EJB message mapping
D0308

Design persistence D0310

Design
transaction
D0312

Design deployment D0316

Design
security
D0314

Implement UI
D0404

Construct DB
D0406

Create online help
D0504

Fig. 5. Relation between workproducts of incremental development phase (J2EE version).

- Use case model
- Object model
- Mechanism description
- System architecture

description
- Data model design

Test design

Test report

System test

Test results User manuals
online help

Component/ integration test

Basic design of component Detailed design of component

Detailed UI design
- Package description(web)
- JavaBeans list
- HTML/JSP list
- Web controller description
- Web implementation class

diagram
- Deployment description

(web)

Package description (server)

Implementation class diagram
enterprise bean description

QL description
security description

deployment description
(server)

Component

DB

Implementation of component

UI

Conversion program

Component design
- Internal component class

diagram
- Internal component sequence

/collaboration diagram
- Transaction description
- Variability design

Design pattern description

DataBase description

Test design

Test report

Test results

172 Dong-Han Ham et al. ETRI Journal, Volume 26, Number 2, April 2004

design, such as brainstorming, structured interview, and
questionnaires are used for capturing the right user’s
requirements. In this phase, the main workproducts include a
vision description, requirements collection, business use-case
model, use-case model, and UI prototype.

Next is the Architecture phase, of which the objective is to
define a stable system architecture accommodating efficient
software reuse. As previously explained, system architecture is
defined by three architectures: technical architecture, software
architecture, and component architecture, as shown in Fig. 6.
Technical architecture means the given technical environment
for component execution, which includes hardware and a
network. Developers seldom consider this architecture as a
design item, but they must understand it as such to effectively
use it. Therefore, the primary concern of developers is how to
design software architecture and component architecture.
Software architecture is a set of software components. Its
design focuses on the reusability of software components and
stability against a change of users’ needs. A use-case model can
be effectively used to understand the design requirements of
software architecture. Component architecture is a set of
business components that deals with certain kinds of business
tasks in the work domain. It is designed so that business
components can reflect users’ needs flexibly and quickly.
Comparing software architecture with component architecture
again, the former is related to an implementation perspective,
whereas the latter relates to the business process and tasks. To
design the system architecture, the user’s requirements are first
refined by structuring a use-case diagram and creating a
system-object model. Using the refined use-case model,
designers define the software architecture, satisfying all kinds
of requirements as well as the identified quality attributes. A
detailed design mechanism and strategy to implement the
defined software architecture are derived, and a logical data
model is designed at this time. On the basis of the logical data
model, developers identify the interface in consideration of the
cohesion of business tasks and refine the reference relations
between interfaces in consideration of the software architecture
and technical architecture. Next, they derive the final business
components and detailed component operations during the
process of refining the interface and prepare the component
specifications by component unit. The derived components are
then structuralized to create a component architecture model.
After the software architecture and component architecture are
created, the components are packaged and structuralized, and
the initial system architecture made out in the Requirements
phase is then refined and finally defined.

Examination and obtainment of reusable components is done
after the final system architecture is built. The design pattern

Fig. 6. System architecture of three layers.

Component
architecture

Business
component

· Group of business components
· Addresses a specific business process

in a domain
· Supports business components of a unit

which reflects the customer’s requirements
and can be sold in a component market

Software
architecture

Software
component

· Group of software components
· Designed centering on component reuse

and stability to the change of requirements
· Supports business components of a unit

which reflect the customer’s requirements
and can be sold in a component market

Technical
architecture

J2EE .NET

· Architecture including hardware and network
· Technical environment in which

components are executed

S
ys

te
m

 a
rc

hi
te

ct
ur

e

and several diagrams of UML, such as a collaboration diagram,
class diagram, and sequence diagram, are mainly used as
techniques for architectural design. As constructing a system
architecture may involve unpredictable risk factors, designers
should strive to get rid of such probable risk factors through the
architecture prototype. The workproducts that should be
necessarily produced from this phase include a software
architecture specification, mechanism description, component
specification, system architecture description, and an
architecture prototype.

As described above, MaRMI-III suggests that software
architecture be designed first, and component architecture be
designed later. However, in the early phases of component-
based system development, business components of
component architecture are implicitly considered for designing
software architecture. As a design progresses, developers can
identify refined business components independent of software
architecture. Here, designing software architecture requires a
top-down approach because developers should decompose
system functions, referring to mainly use-case models, as well
as a bottom-up approach because the software components
ought to be designed in consideration of implementation issues
and the technical architecture. The design of the component
architecture also needs a hybrid approach since developers
should keep in mind the overall purpose and process of the
needed systems as well as software components implementing
business components.

In the phase of Incremental Development, the component-
based system is implemented through a mini-project based on
the use-cases and a system architecture created in previous
phases, as shown in Fig. 5. In general, though it is not
mandatory, it is suggested that one mini-project should aim at

ETRI Journal, Volume 26, Number 2, April 2004 Dong-Han Ham et al. 173

developing one component using two to five designers. The
mini-project allows developers to implement a system in a
repeatable and incremental way, thereby minimizing the risk of
project failure. Through conducting mini-projects, use-cases
and the system architecture are refined from the
implementation viewpoint. Classes and components are
designed using various diagrams of UML, such as class,
sequence, and activity diagrams. Then, components are
designed in detail, together with a database and a UI, taking the
component technology platform into consideration. After
integrating the designed components, an integration and system
test is executed to verify whether the system runs as designed.
The important workproducts produced from this phase are the
UI-detailed design description, component-detailed design
description, database design description, refined system-
architecture description, component code, and user’s manual.
In the case of the J2EE version, the component-detailed design
description includes a package description (server),
implementation class-model description, enterprise JavaBeans
description, transaction design description, Query Language
definition description, security definition description, and a
deployment description (server-J2EE). Contrastingly, the .NET
version involves a namespace definition description,
application definition description, service-component definition
description, Structured Query Language definition description,
DLL definition description, and deployment description
(server-.NET).

Finally, the Transfer phase is conducted to store the
developed components into a component repository or to
install the developed system into a user’s environment. If a
repository or system is already being used, it is converted into a
new one for smooth operation. The final acceptance should be
gained, checking if the developed component or system is
compatible with the users requirements. Then, all kinds of
developed outputs are delivered to the users. The system
installation report, acceptance test report, user’s training report,
and system observation report are the main workproducts in
this phase.

IV. Project Management Process

In general, the project management process is made up of
various activities to accomplish the purpose of the project,
meeting the goals of delivery time, cost, and quality. Its
activities and their focus are dependent on the technological
environment and the specific characteristics of the system
development process. Additionally, as a system development
process becomes more complex, its management should
accordingly become more systematic and comprehensive.
With this view in mind, MaRMI-III provides a project

management process separated from the development process,
which reflects several typical features of a CBD-based project
and gives special emphasis on quality assurance and time
management in the mini-project.

As the first step of the project management process, the Plan
phase has the objective of obtaining the acknowledgement of
conducting a project and preparing the many things needed for
system development. When necessary, a contract is made on
the service agreement. This phase addresses the activities of
both a project sponsor and a project performer and their
interactions to make a project contract. Additionally in this
phase, a detailed plan for developing the system is also made
out on the basis of the project contract. The workproducts
created after conducting this phase include the project draw-up,
document requesting proposal, project proposal, project
contract-document, project-working plan, and quality control
plan.

The objective of the Control phase is to support the
commencing of each phase in the development process,
manage its progress, and conduct quality control on the
workproducts. Specifically, this phase involves the following
activities: preparing for launching upon each phase in the
development process; establishing detailed development
activities and tasks; preparing a standard for managing a
project’s progress; establishing a plan for conducting mini-
projects; monitoring and evaluating the project’s progress,
conducting quality control activities to ensure the quality of
workproducts; and adjusting the project schedule and plan to
optimize the performance of the project by checking the results
of each phase in the development process. The main
workproducts are a phase working plan, mini-project working
plan, project progress report, mini-project inspecting report,
phase inspecting report, and quality control report.

After completing all the development processes, the End
phase evaluates the final results of the project and makes a
report on them. Workproducts produced from the project are
arranged for reuse in the future. In this phase, the project
manager settles accounts for the finished project to do cost
accounting. Finally, project resources, such as personnel and
equipment, are relocated and a maintenance plan is established
to give a satisfactory quality-in-use to users. A project
completion report, system operation plan, and system operation
contract are the main workproducts of this phase.

V. Evaluation of the Methodology

The effectiveness of a new system can be validated in several
ways [27], [28]. In general, evaluation methods can be divided
into three categories: formal experiment, case study, and survey
[28]. In the case of the methodology, formal experiment and

174 Dong-Han Ham et al. ETRI Journal, Volume 26, Number 2, April 2004

full case study seem to be difficult because they require too
much time and cost and show a lack of sound metrics. For this
reason, we compared MaRMI-III with other CBD
methodologies according to some evaluation criteria and
subsequently supplemented the comparison results by
conducting a questionnaire survey of organizations having
experience in using MaRMI-III. In the following, we will
describe the subjective comparison results.

As shown in Table 1, MaRMI-III has attractive advantages
in most of the evaluation criteria. As in the case of the other
methodologies, it uses UML as a notation and stresses an
iterative and incremental approach as well as an early
prototyping. Its primary advantage is that it provides a highly
specific process, task, and procedure covering the full
development and project management life cycle, which
developers can customize to be suitable for their work context.
For example, Fig. 7 illustrates what activities compose the
Control phase and what tasks constitute those activities. The
number at the bottom-right corner of the box indicates the
identification number of each activity and task. In more detail,
Fig. 8 shows the detailed procedure of the task of internally
inspecting the mini-project. From this figure, we can find that
there are three roles involved in this task: the project manager,
quality manager, and component developer. Other information
includes the workproducts that are used for input to this task or
produced from this task. To further understand which input

workproducts are used for which procedure, which procedure
produces which workproducts, which roles are involved in
which procedures, and what specific technique can be used for
this task, developers can consult the contents of the Process
Model which is a main element of MaRMI-III. They can also
use a set of techniques and workproducts that enable them to
do tasks in a more procedural and systematic way, thereby
improving the performance of the development and
management.

In addition to the above, there are other benefits from the use
of MaRMI-III. For instance, it deals well with architectural
design problems which are gradually becoming more critical to
the success of CBD projects. Architectural design and
evaluation problems in CBD are too complex to rely on the
developer’s intuition and experience. The number of factors
comprising the problems and their interrelations form a broad
design space and thus place a high cognitive load on the
developer. The detailed and proved procedures and techniques
of MaRMI-III would be a merit in that they can reduce the
architectural design space appropriately.

As software is increasingly becoming interactive, a user
interface design needs a more systematic process and more
guidance. Compared to the other methodologies, MaRMI-III
gives much more attention to the design process of the user
interface over the development life cycle. However, it does not
provide many of the user interface design and evaluation

Table 1. Comparison of MaRMI-III with other methodologies.

Criteria Catalysis RUP Select perspective MaRMI-III

Availability Book web site training Book web site training Book web site training Book web site training

Tool support

Component development
process

Component-based software
development process

Project management process

Quality management process

Guidance on development
and management

Workproduct template and
guidance

Guidance on identifying
component

Method for component
specification

Guidance on component
technology platform

(: Fully supported, : Partially supported, : Not supported)

ETRI Journal, Volume 26, Number 2, April 2004 Dong-Han Ham et al. 175

 Fig. 7. Configuration diagram of control phase.

Phase control

C0200Beginning phase
C0102

Preparing project environment
C0104

Establishing task plan
C0106

Planning mini project iteration
C0108

Training project team
C0110

Allocating project task
C0202

Motivating project participant
C0204

Conducting quality control
C0208

Monitoring project progress
C0206

Phase inspection

C0300Phase
preparation C0100

Internally inspecting mini project
C0302

Jointly inspecting mini project
C0304

Evaluating mini project
C0306

Internally inspecting phase
C0308

Jointly inspecting phase
C0310

Evaluating phase
C0312

Fig. 8. Procedural diagram of internally inspecting mini
project task.

• Internal inspecting report

Component developer

Project manager

Quality manager Conduct inspection

Reflect inspection results

Organize inspection team

Derive inspection items

• Mini project working plan
• Quality control plan
• Mini project work product

methods that are widely used in the industry.

To investigate the effectiveness and quality of MaRMI-III, its
J2EE version was reviewed and validated by five international
experts. All of them are professors in universities in the USA
and have a lot of experience in research and consulting on
CBD. The review method they used is a combined type of
expert review with heuristic evaluation. Thus, they separately
reviewed MaRMI-III with a short checking criteria and came

together to discuss their review results. The criteria used are as
follows: how well the state-of-the-art J2EE technologies are
reflected, to what degree MaRMI-III is complete and
consistent in its contents and structure, and how practicable and
usable it is for developers to apply. The overall results indicate
that MaRMI-III would be a good map of guidance for
developing software components and component-based
software, though some shortcomings and problems were
identified. The typical problems pointed out include
inconsistency of terms, obscurity in the definition of a few
terms, information redundancy, lack of detailed explanation for
a few activities and tasks, and so on. All of them were reflected
in revising the J2EE version and in making the .NET version.

There are several software process standards such as
ISO/IEC 12207 [29], ISO/IEC 15504 [30], CMMI [31], and so
forth. They are classified into two groups by their main purpose.
One group is concerned with a common framework for a
software life-cycle process (e.g., ISO/IEC 12207), and the
other group provides a framework to assess and improve the
software process (e.g., ISO/IEC 15504 and CMMI). To
examine the coverage of the processes provided by MaRMI-III,
we compared them to those of ISO/IEC 12207 and ISO/IEC
15504. To summarize the comparison, MaRMI-III addresses
most of the processes prescribed in those standards except the
following: the operation process (5.4, CUS 4)2), maintenance
process (5.5, ENG 2), audit process (6.7, SUP 7), and
improvement process (7.3, ORG 2). However, software

2) The first item in the parentheses indicates the process of ISO/IEC 12207 and the second
is for ISO/IEC 15504

176 Dong-Han Ham et al. ETRI Journal, Volume 26, Number 2, April 2004

process standards only prescribe the requisite processes and
their workproducts. They do not define the detailed procedure,
guidance and technique used to execute the processes. In this
regard, MaRMI-III can be used as a concrete and practical
methodology to support adopting and conforming to the
software process standards.

From the analytical evaluation, we can also identify the weak
points of MaRMI-III. First, specific guidance on testing related
activities is insufficient. For example, the problem of how to
use component testing results in integration, and system testing
needs to be supplemented. Second, MaRMI-III does not
suggest an adequate number of iterations in the phase of
Incremental Development according to the characteristics of
the project context. Third, although a metamodel is provided, a
more comprehensive metal-level framework specifying the
roles of the methodology elements and concepts, as well as
how their relations are specified, needs to be developed. Such
kind of framework would be a good map for guiding the
customization of the methodology.

Although subjective assessment has its own merit, it is
necessary to collect empirical data on the actual use for a better
guarantee of the benefits of MaRMI-III. In the current situation,
a survey is regarded as the most desirable empirical method,
taking into consideration our available resources. Thus, we
conducted a questionnaire survey of organizations having
experienced using MaRMI-III. So far, twenty-seven
organizations have used MaRMI-III and they were asked to
respond to our questionnaire survey by email. The
questionnaire includes 63 questions, some of which are sub-
categorized or similar to others. The type of question is either
open or closed, according to its characteristics. In the closed
question, requiring only one choice, responses were measured
on a 5-point semantic-difference scale, which ranges from
“very good” to “very poor”. Eleven responses were obtained,
resulting in a response rate of about 41%. This rate can be
considered above average in survey research, though our
sample size is not large [32]. However, one response was
considered insufficient for the analysis, so ten responses were
analyzed. Appendix B illustrates the profile of the organizations
and the main results.

The survey results are summarized as follows. The profiles
of the respondents vary in their organization type and size, and
the purpose of using MaRMI-III is dependent on their working
purposes, as shown in Table B-1. The period of their
experience in CBD and use of MaRMI-III also varies, as
shown in Table B-2. First, the perceived overall quality of
MaRMI-III was questioned on two points: on content and
organization, and on its completeness. Most of the respondents
selected the “above-average” level on both points, as illustrated
in Table B-3. As to the advantages and shortcomings, several

features were evenly selected, and can be viewed in Tables B-4
and B-5. Detailed procedures and workproduct templates are
comparatively pointed out as the main advantages of MaRMI-
III. However, the detailed procedures result in a large-volume
working manual, and this can be troublesome to some people.
This is supported from the data which shows that such a large
volume was selected most as the main shortcoming. Table B-6
shows that the process model was generally considered the best
element of MaRMI-III, and of all of the elements of MaRMI-
III was also chosen as the worst element one or more times.
The completeness and detailedness of the process model
ranked in the level, “above average” shown in Table B-7. But,
regarding the component identification and specification, we
didn’t get a favorable answer, as can be seen in Table B-8.
These seem to be the weak points of MaRMI-III, and should
be revised and improved in the future. Next, we asked about
the usefulness of three points featuring MaRMI-III, which are
included in Tables B-9 thru B-11. Seventy percent of the
respondents graded the usefulness of contents on specific
platform technologies in the level “good”. All of them gave a
favorable score on the usefulness of the separation of
development and project management. However, the project
management part nearly scored in the “average” level. Finally,
all of the respondents rated as “above average” the
effectiveness of MaRMI-III on their work. To sum up the
survey results, MaRMI-III has a potential to aid CBD
developers in conducting their projects.

VI. Conclusion

MaRMI-III has been developed to support software
developers taking a CBD approach by providing a coherent
streamlined Process Model and a Set of Techniques and
WorkProducts. Specifically, it provides a well-defined
development process that is compatible to Software Process
Engineering Metamodel at a meta-level and a project
management process that emphasizes quality and risk aspects.
Its users are also aided by specific techniques informing
procedural ways to deal with certain tasks or problems
specified in the Process Model, as well as workproduct
collections providing a workproduct template and guidelines
for writing them. Both English and Korean versions of
MaRMI-III are available. MaRMI-III deals with the design
problems related to J2EE and .NET, both of which are widely
used for a CBD-technology platform. Evaluation studies for
the effectiveness of MaRMI-III showed that it could usefully
support the work of CBD developers.

However, based on the evaluation results, several things
remain as a matter to be further studied in order to make
MaRMI-III more usable. First, it is unreasonable to apply any

ETRI Journal, Volume 26, Number 2, April 2004 Dong-Han Ham et al. 177

kind of processes and activities to any kind of development
project. Thus, it is advisable for developers to discreetly select
processes and activities appropriate to their own work. The
problem of how to selectively apply MaRMI-III according to
the inherent characteristics of the project such as size,
constraints in terms of cost and schedule, and a priority of
quality criteria should be further studied. Second, when using a
heavy-weight methodology like MaRMI-III, users find it
difficult to understand the interrelation between workproducts
and to trace the information flowing through them. To lessen a
user’s cognitive load in such tasks, some types of guidelines or
maps should be devised. Finally, to obtain more practical
results on the strengths and weaknesses of MaRMI-III,
continuous evaluations should be made. Although the
evaluation studies we conducted have their own advantages,
they have limits in revealing the practical matters in using
MaRMI-III. Thus, it will be necessary to use more powerful
and long-term validation techniques, such as project
monitoring, field studies, and a synthetic approach for future
evaluations.

References

[1] A.W. Brown and K.C. Wallnau, “The Current State of CBSE,”
IEEE Software, Sept./Oct. 1998, pp. 37-46.

[2] W. Hasselbring, “Component-Based Software Engineering,” in
S.K. Chang (ed.): Handbook of Software Engineering and
Knowledge Engineering, vol. 2, World Scientific Publishing, New
Jersey, 2002, pp. 289-305.

[3] I. Crnkovic and M. Larsson, Building Reliable Component-Based
Software Systems, Artech House, 2002.

[4] P. Brereton and D. Budgen, “Component-Based Systems: a
Classification of Issues,” IEEE Software, Nov. 2000, pp. 54-62.

[5] L. Brownsword, T. Oberndorf, and C.A. Sledge, “Developing
New Processes for COTS-Based Systems,” IEEE Software,
July/Aug. 2000, pp. 48-55.

[6] L.A. Maciaszek, Requirements Analysis and System Design:
Developing Information Systems with UML, Addison-Wesley,
2001.

[7] D.F. D’Souza and A.C. Willis, Object, Components, and
Frameworks with UML: The Catalysis Approach, Addison-
Wesley, 1998.

[8] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 1998.

[9] W-J. Lee, O-C Kwon, M-J. Kim, and G-S. Shin, “A Method and
Tool Support for Identifying Domain Components Using Object
Usage Information,” ETRI J., vol. 25, no. 2, 2003, pp. 121-132.

[10] Z. Stojanovic, A.N.W. Dahanayake, and H.G. Sol, “A
Methodology Framework for Component-Based System
Development Support,” Proc. of the 6th CaiSE/IFIP8.1 Int’l
Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design EMMSAD'01, 2001.

[11] Project Research Plan Report: Development of Component-based
Development Methodology, ETRI, 2001.

[12] M. Sparling, “Lessons Learned through Six Years of Component-
Based Development,” Comm. of the ACM, vol. 43, no. 10, 2000,
pp. 47-53.

[13] P.B. Kruchten, The Rational Unified Process: An Introduction(2nd
Ed.), Addison-Wesley, 2000.

[14] Select Perspective, URL: http://www.selectbs.com
[15] J. Cheesman and J. Daniels, UML Components: A Simple Process

for Specifying Component-Based Software,” Addison-Wesley,
2001.

[16] Compuware’s Uniface Methodology, URL: http://www.
compuware.com/products/uniface

[17] Castek, URL: http://www.castek.com
[18] N. Boertien, M.W.A. Steen, and H. Jonkers, “Evaluation of

Component-Based Development Methods,” Proc. of the Sixth
Int’l Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design, 2001.

[19] J.Q. Ning, “Component-Based Software Engineering (CBSE),”
Proc. of Fifth Int’l Symp. on Assessment of Software Tools and
Technologies, June 1997.

[20] J.Q. Ning, “A Component-Based Software Development Model,”
Proc. of 20th Int’l Computer Software and Applications Conf.,
Aug. 1996.

[21] Wickens C.D., Eng. Psychology and Human Performance (2nd
Ed.), Harper Collins Publishers, New York.

[22] D-H. Ham, J. S. Kim, J. H. Cho, and S. J. Ha, “Developing a
Methodology for Component-Based Development,” Proc. of
2002 Asia-Pacific Industrial Eng. and Management Science Conf.,
2002

[23] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language: User Guide, Addison-Wesley, 1999.

[24] C. Kobryn, “Modeling Components and Frameworks with
UML,” Comm. of the ACM, vol. 43, no. 10, 2000, pp. 31-38.

[25] I. Crnkovic, “Component-Based Software Engineering-New
Challenge in Software Development,” Software Focus, vol. 2, no. 4,
2002.

[26] Software Eng. Process Metamodel Specification (final adopted
specification), OMG, Dec. 2001.

[27] M.V. Zelkowitz and D.R. Wallace, “Experimental Models for
Validating Technology,” IEEE Computer, May 1998, pp. 23-31.

[28] B.A. Kitchenham, S.G. Linkman, and D.T. Law, “Critical Review
of Quantitative Assessment,” Software Eng. J., March 1994, pp.
43-53.

[29] ISO 12207: Information Technology-Software Life Cycle
Processes, Int’l Organization for Standardization, 1995.

[30] ISO 15504: Information Technology-Software Process Assessment
(Part 1 to 9), Int’l Organization for Standardization. 1998.

[31] CMMI-SE/SW: CMMI for Systems Eng. and Software Eng. V 1.1,
Continuous Representation, Software Eng. Institute, 2001.

[32] B.A. Kitchenham and S.L. Pfleeger, “Principles of Survey
Research-Part 2: Designing a Survey,” Software Eng. Notes, vol.
27, no. 1, 2002, pp. 18-20.

178 Dong-Han Ham et al. ETRI Journal, Volume 26, Number 2, April 2004

Appendix A: Elements of Metamodel

Elements constituting metamodel are defined as follows.

Phase The highest level of work which is a
structured set of Activities.

Activity A structured set of Tasks which are logically
interconnected. Every activity has checkpoints
with which the project manager judges how
well a project progresses.

Task The smallest unit of work which developers
should accomplish and consists of more than
one Procedure.

Procedure The lowest level of work specifying the order
by which one Task should be conducted.

Mini Project A kind of Activity which produces a reusable
component and system under a limited length
of time.

Technique A method which can be used to accomplish a
Task and is based on a special procedure,
concept, and skill.

Tool A means which can be used to efficiently
accomplish a Task and is usually a type of
computer-based software.

Role Organization or people who conduct a Task
for a project.

WorkProduct All kinds of outputs which are produced as a
result after accomplishing a Task.

Appendix B: Survey Results

Table B-1. The profile of respondents (multiple choices are
possible).

Size
Type

0 ~ 50 50 ~ 100 100 ~ 300 Over 300

S/W development 2 1 0 0
SI and IT consulting 4 1 0 2

University 1 1 0 0
Etc 0 0 0 0

Table B-2. The period of their experience on CBD and MaRMI-III

(for CBD, only applied to the first and second types in
Table B-1).

CBD MaRMI-III
n % n %

Below 1 month 0 0 2 20
1 ~ 3 months 0 0 2 20
3 ~ 6 months 1 10 1 10
6 ~ 12 months 3 30 1 10
12 ~ 24 months 1 10 4 40

Over 2 years 4 40 0 0

Table B-3. The perceived overall-quality of MaRMI-III.

Contents and
organization

Completeness of
CBD methodology

n % n %

Very good 1 10 1 10

Good 6 60 5 50

Average 3 30 1 10

Poor 0 0 3 30

Very poor 0 0 0 0

Table B-4. The perceived advantages of MaRMI-III
(multiple choices are possible).

 n %

Detailed procedures and its logicalness 6 24

A lot of techniques 2 8

Detailed workproduct templates 7 28

Example case studies 3 12

Manual written in Korean 3 12

Separation of development and project
management processes 4 16

Making overall CBD process more easily
understandable 0 0

Table B-5. The perceived shortcomings of MaRMI-III
(multiple choices are possible).

 n %

Large volume due to detailed procedures 4 30

Small number of techniques 1 8

Difficulty of using workproduct templates 1 8

Insufficient example case studies 3 23

Incorrect expression of contents 1 8

Difficulty due to separation of development
and project management process 0 0

Lack of tool support 3 23

Table B-6. The best and worst element of MaRMI-III.

Best element Worst element

n % n %

Process model 6 60 3 30

Set of techniques 2 20 1 10

Set of workproducts 2 20 3 30

Example case studies 0 0 2 20

Nothing 0 0 1 10

ETRI Journal, Volume 26, Number 2, April 2004 Dong-Han Ham et al. 179

Table B-7. The completeness and detailedness of a process model
of MaRMI-III.

Completeness Detailedness
n % n %

Very good 0 0 1 10
Good 6 60 3 30
Average 3 30 5 50
Poor 1 10 1 10
Very poor 0 0 0 0

Table B-8. Contents on component identification and specification.

Identification Specification

n % n %
Very good 0 0 0 0
Good 2 20 3 30
Average 4 40 6 60
Poor 4 40 1 10
Very poor 0 0 0 0

Table B-9. Usefulness of contents on specific platform technologies.

Usefulness
n %

Very good 0 0
Good 7 70
Average 2 20
Poor 1 10
Very poor 0 0

Table B-10. Usefulness of separation of development and project
management processes.

Usefulness of separation
n %

Very good 1 10
Good 9 90
Average 0 0
Poor 0 0
Very poor 0 0

Table B-11. Usefulness of project management.

Usefulness of project management
n %

Very good 0 0
Good 3 30
Average 7 70
Poor 0 0
Very poor 0 0

Table B-12. Overall effectiveness of MaRMI-III on their work.

Usefulness of project management
n %

Very good 2 20
Good 3 30
Average 5 50
Poor 0 0
Very poor 0 0

Dong-Han Ham received the BS in industrial
engineering in 1993 from INHA University, and
the MS and PhD in industrial engineering in
1995 and 2001 from KAIST (Korea Advanced
Institute of Science and Technology). He is a
Senior Researcher in ETRI (Electronics and
Telecommunications Research Institute),

Daejeon, South Korea. His research areas include software engineering
and information systems, human-computer interaction, and cognitive
systems engineering. He has performed several works related to
information display design in complex systems, software user interface,
software quality testing and certification, and component-based
systems development. He is now performing a research project
concerning an embedded systems development framework and
standardization of a software architecture and product line.

Jin-Sam Kim is a Principle Member of the
Engineering Staff at ETRI, Korea. He received
the MS in computer science from Chung-Ang
University, Korea. His research interests include
software process modeling and improvement in
software development. He is now performing a
research project concerning an embedded

systems development framework and the standardization of a software
architecture and product line.

Jin-Hee Cho received the BS and MS in
computer engineering in 1992 and 1996 from
Kyungpook National University. He is a Senior
Researcher in ETRI, Daejeon, South Korea. His
research areas include software engineering and
information systems. He has performed several
works related to object-based systems

development and component-based systems development. He is now
performing a research project concerning an embedded systems
development framework and product line.

180 Dong-Han Ham et al. ETRI Journal, Volume 26, Number 2, April 2004

Su-Jung Ha received the BS in computer
engineering in 1991 from Myeong-Ji University
and the MS in computer science in 2001 from
Korea University. She is a Senior Researcher in
ETRI, Daejeon, South Korea. Her research
areas include software engineering, software
development methodology and software quality.

She has performed several works related to software development
methodology, software quality evaluation and component-based
systems development methodology. She is now performing a research
project concerning an embedded systems development framework.

	I. Introduction
	II. Outline of the Methodology
	III. Development Process
	IV. Project Management Process
	V. Evaluation of the Methodology
	VI. Conclusion
	References

