
Fine-Grained Mobile Application Clustering Model

Using Retrofitted Document Embedding

Yeo-Chan Yoon, Junwoo Lee, So-Young Park, and Changki Lee

In this paper, we propose a fine-grained mobile
application clustering model using retrofitted
document embedding. To automatically determine the
clusters and their numbers with no predefined
categories, the proposed model initializes the clusters
based on title keywords and then merges similar
clusters. For improved clustering performance, the
proposed model distinguishes between an accurate
clustering step with titles and an expansive clustering
step with descriptions. During the accurate clustering
step, an automatically tagged set is constructed as a
result. This set is utilized to learn a high-performance
document vector. During the expansive clustering step,
more applications are then classified using this
document vector. Experimental results showed that the
purity of the proposed model increased by 0.19, and
the entropy decreased by 1.18, compared with the K-
means algorithm. In addition, the mean average
precision improved by more than 0.09 in a comparison
with a support vector machine classifier.

Keywords: Document embedding, Text clustering,
Deep learning.

I. Introduction

Smartphones have achieved considerable success with
an average penetration rate of 70% in 50 countries around
the world. In addition, more than two million mobile
applications have been registered in both the Google Play
Store and the Apple App Store [1]. In these stores, mobile
apps are classified in a coarse-grain fashion into four to 50
different categories. However, the number of categories is
too small to classify the millions of applications available,
and the classification criteria are often ambiguous. For
example, both scanning and job-search applications are
generally classified into the business category, whereas
real-estate applications providing similar functions are
classified into lifestyle, finance, or business categories
according to the developer’s determination.
Certain approaches have recently been proposed to

automatically classify mobile applications by analyzing
their user logs and metadata. Some of them classify
mobile applications into dozens of predefined categories
with a good level of performance [2]–[6]. For fine-grained
classification, the authors in [7] classify mobile
applications into 250 clusters. However, for such
approaches, dozens of predefined categories cannot be
sufficient. Even for fine-grained classification, 250 clusters
cannot be deemed a reasonable number for preparing a
personalized, referral, or analysis service.
In this paper, we propose a fine-grained mobile application

clustering model for automatically determining clusters and
their numbers without any predefined categories.
Considering that mobile application titles precisely identify
their characteristics—for example, job search applications
are identified as “job search - snag ***” and “** free
jobs”—the proposed model initializes clusters based on the
title keywords. The initialized clusters are used as a training
set to classify applications without any title keywords.

Manuscript received Dec. 21, 2016; revised Apr. 19, 2017; accepted May 8,
2017. This work was supported by Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea government (MSIP)
(R0118-16-1005, Digital Contents In-House R&D).
Yeo-Chan Yoon (ycyoon@etri.re.kr) and Junwoo Lee (leejw@etri.re.kr) are

with the SW & Content Research Laboratory, ETRI, Daejeon, Rep. of Korea.
So-Young Park (corresponding author, ssoya@smu.ac.kr) is with the

Department of Game Design and Development, Sangmyung University, Seoul,
Rep. of Korea.
Changki Lee (leeck@kangwon.ac.kr) is with the Department of Computer

Science, Kangwon National University, Chuncheon, Rep. of Korea.

This is an Open Access article distributed under the term of Korea Open
Government License (KOGL) Type 4: Source Indication + Commercial Use
Prohibition + Change Prohibition (http://www.kogl.or.kr/news/dataView.do?data
Idx=97).

https://doi.org/10.4218/etrij.17.0116.0936 © 2017 pISSN: 1225-6463, eISSN: 2233-7326

443ETRI Journal, Volume 39, Number 4, August, 2017

http://etrij.etri.re.kr

http://www.kogl.or.kr/news/dataView.do?dataIdx=97
http://www.kogl.or.kr/news/dataView.do?dataIdx=97
http://etrij.etri.re.kr

To classify applications with an automatically
constructed training set, we propose a method for learning
document vector representations. Unlike conventional
methods for predicting the words in a document from the
input document, the proposed model learns how to predict
the documents within the same cluster with distance
constraints between the input document and the output
documents on the object function. Because synonyms with
different keywords have mutually separated clusters, it
then merges certain similar clusters. For improved
performance, the proposed model uses word embedding
and retrofitted document embedding.
The major contributions of this paper are summarized as

follows. First, we propose a fine-grained and semi-
supervised clustering method for a very large mobile
application set. Second, we propose a method for learning
a document vector using an automatically constructed
training set. Finally, we exploit both word embedding and
document embedding to merge similar clusters.

II. Related Works

1. Fine-Grained Document Clustering

Word and phrase-based clustering approaches utilize
salient words or phrases as keywords for document
clustering [8]–[15]. They have the following advantages.
The label of each cluster can be easily obtained from the
keywords of the clustering results. In addition, these
approaches do not require predefined categories or their
numbers. Moreover, they can choose either the fine-
grained clustering results or the coarse-grained clustering
results by adjusting the keyword selection method applied.
Product-feature-based clustering approaches [12]–[15]
have recently focused on sentences describing the
characteristics of a product, such as its functions. The
product features are recognized from such sentences and
then clustered according to what the sentence describes.
The performance depends on how the feature keywords
are selected from the sentences. An association rule [16] is
widely used for such tasks, and probability-based methods
are used to remove inappropriate words by distinguishing
between words that tend to frequently occur in certain
product fields [12]–[14].
To obtain useful keywords from millions of mobile

applications, the proposed model extracts keywords from
the titles, rather than long descriptions. The proposed
model considers there to be much less noise in a title than
in a description because creators tend to carefully name
their mobile applications.

2. Text Representation through Deep Learning

Word-embedding approaches can change from a high
dimensional discrete vector to a low-dimensional
continuous vector. CBOW and Skipgram have been
proposed as neural-network based word-embedding
models [17]. CBOW learns the weight matrix to predict
the target word from the input context words, whereas
Skipgram learns the weight matrix to predict the context
words from the input word. The learned weight matrix is
used to encode words into a low-dimensional word vector.
Word-embedding approaches have been applied to

various problems, such as text classification, text
clustering, and textual similarity tasks. Text similarity can
be measured through document or word embedding [18],
[19]. Recently, word-embedding approaches have been
mainly used for generating the features of the classifier,
such as the support vector machine (SVM), the
convolutional neural network (CNN), or the recurrent
neural network (RNN) [20]–[23]. To classify texts, the
authors of [20] and [21] use word-embedding as an input
layer of a CNN. The average word vector is used as a
feature [22], [23]. In these approaches, the classification
performance highly depends on the size of the tagged
corpus. However, in a fine-grained clustering problem, it
is difficult to construct an adequately large tagged corpus
per cluster because too many clusters exist. Although the
relationships among many clusters can follow a
hierarchical system for certain tasks, such as mobile
application clustering, these approaches are generally
suitable for a flat classification system, rather than for a
hierarchical system.
On the other hand, some embedding approaches have

been used for sentences, documents, or semantic units
[24]–[29]. A document-embedding method called
doc2vec, which is similar to CBOW and Skipgram, was
proposed [24]. Unlike CBOW and Skipgram, however,
the document-embedding method represents a document
as a vector. For a document similarity task, a document-
embedding-based approach performs better than an n-
gram-based approach or a word-embedding-based
approach [18]. A topic tag can be used to learn the
document vector [27]. However, for untagged data, a
document vector cannot be learned in the same way as the
tagged data.
Some word-embedding approaches have used

knowledge resources for improving the performance.
Similar to the pairwise ranking approach, the authors in
[30] consider the constraints in which the distance
between two antonyms is longer than the distance between

444 ETRI Journal, Vol. 39, No. 4, August 2017

https://doi.org/10.4218/etrij.17.0116.0936

two random words, whereas the distance between two
synonyms is closer to the distance between two random
words. Similarly, the authors in [31] consider the
constraint in which the distance between two antonyms is
longer than the distance between two synonyms according
to WordNet. In addition, the authors of [28] consider the
constraint in which a word vector can be generated by
combining the sense vectors. To fine-tune the learned
weight matrix, the authors in [32] consider the distance
between two related words as being closer to the distance
between random words according to language resources,
such as WordNet and the Paraphrase Database.
For improved performance, the proposed model adopts

semi-supervised learning. The model learns the document
embedding based on a conventional doc2vec algorithm
and then retrofits it using an automatically tagged training
corpus. As a constraint, we use the assumption that the
distance between two documents in the same cluster
should be close.

III. Fine-Grained Mobile Application Clustering
Model

The proposed model consists of the following steps, as
shown in Fig. 1. First, the keyword selector extracts
keywords as the initial cluster labels from the mobile
application titles. To cluster similar mobile applications,
the cluster initializer generates the initial clusters based on
the title keywords. By using document embedding, the
cluster expander allows the initial clusters to include more
mobile applications without any title keywords. Finally,
the cluster merger combines similar clusters by using
word and document embedding.

1. Initializing Clusters with Title Keywords

Considering that a mobile application title precisely
identifies its characteristics, the proposed model initializes
clusters based on the keywords in the title. The proposed
model utilizes an association rule [16] to extract keywords
from the titles. For example, the keywords “nail art,” “nail
design,” and “home design” can be extracted from the
titles.

On the other hand, many mobile application titles can
include some stop words, such as “iPhone” and
“Android.” Although these stop words are not useful for
clustering, they can be extracted as keywords because they
are frequently included in many mobile application titles.
To filter these stop words from the keywords, the
proposed model considers that the mobile application
stores classify the mobile applications into 40 to 50
categories according to their characteristics.
Assuming that more frequent words in only certain

categories can indicate the important keywords to cluster
for the mobile applications, the proposed model gives a
high weight to these important keywords by calculating
the relative category frequency (RCF) as follows:

RCFðword;cÞ¼
P

d2c tf ðword;dÞ
jcj � cf ðword;cÞ=jcjP

c02Ccf ðword;c0Þ=jc0j
(1)

where word is a candidate keyword, c is a mobile
application category, d is a document in category c, tf
(word,d) is the term frequency of word in document d, |c|
is the number of total documents in the category, cf (word,
c) is the term frequency of word in category c, and C is the
set of categories.
The extracted keywords are used to classify the

applications, including the keywords in the title, into the
initial clusters. For example, the titles “nail art tutorial,” “nail
art salon,” and “candy nail art” are classified as the “nail art”
cluster. In order to improve the document embedding, the
proposed model utilizes these initial clustering results as the
cluster tagged training corpus, as described in Section IV.

2. Expanding Clusters with Document Embedding

To overcome the limitation in which the initial cluster
cannot classify many mobile applications with no title
keyword, the proposed model expands the initial clusters
using document embedding. First, it generates a document
vector from both the title and the description of each
mobile application in the initial clusters. It then calculates
the average of the document vectors per initial cluster. It
calculates the cosine similarity between the new cluster
centroids and the document vector of every mobile
application with no title keyword. The cluster can
additionally accept new mobile applications with a higher
cosine similarity than threshold e. Although the titles
“French manicure,” “my beautiful nails,” and “nail salon”
do not include the keywords “nail art,” they are classified
into the “nail art” cluster by the document embedding of
the application description.

Apps Keyword
selector

Cluster
initializer

Cluster
expander

Cluster
merger

Document Word vector

Learning
document embedding

Fine-
grained

clustered
apps

Learning
word Embedding

App titles,
categories Keywords

Initial
clusters

Expanded
clusters

App titles
App titles,

descriptions

Fig. 1. Proposed mobile application clustering model.

445Yeo-Chan Yoon et al.

http://etrij.etri.re.kr

http://etrij.etri.re.kr

3. Merging Clusters with Word and Document
Embedding

To merge similar clusters, such as “nail art” and “nail
design,” the proposed method exploits label similarity,
cluster similarity, and cluster overlapping, as described
in Fig. 2. It thus does not require the resource
construction cost for a synonym dictionary because it
utilizes the values of label similarity, cluster centroid
similarity, and the overlapped number. When the linear
combination of these three values exceeds the threshold,
two clusters are merged, as described in Fig. 2. First,
the label similarity is the cosine similarity between the
word vectors of the keywords representing two clusters,
and each word vector is calculated using word
embedding [17]. Whenever two clusters are merged, the
word vector of the merged cluster estimates the average
of the previous two word vectors. Second, the cluster
similarity is the cosine similarity between two average
document vectors, indicating the average of all
document vectors in each cluster. Third, the overlapped
number is the number of mobile applications overlapped
between two clusters.

4. Time Complexity of the Algorithm

The time complexity of the keyword selection is O(n)
because the complexity of the association rule [16] is
O(n), where n is the number of documents. The
complexity of initializing and expanding the clusters is
O(n) and O(c�n), respectively, where c is the number of
initialized clusters. The time complexity of merging
clusters takes O(c2) because it computes the similarity for
each pair of clusters. Because c is much smaller than n, it
is feasible to apply the algorithm to a large data.

IV. Learning Document Embedding with Training
Set

The document embedding method represents documents
as vectors. Most of the previous methods learn the
document vector in an unsupervised manner, as described
below in Section IV-1, whereas the proposed method
learns the vector in a semi-supervised manner, as
described in Section IV-2.

1. Skipgram and doc2Vec

As a word embedding method, shown in word2vec in
Fig. 3, the authors of [17] proposed Skipgram, a neural
network predicting the context words wj, wj+1, and wj+2,
from the input word wi based on the respective input,
projection, and output layers. In (3), Vwi is a word vector
of input word wi based on the weight matrix, whereas V0

wj
,

is a word vector of the output word wj.

1
T

XT

t¼1

X
j2cwðiÞ log PðwjjwiÞ; (2)

log PðwjjwiÞ ¼ expv
0
wj

Tvwi

P
j02Vocab exp

v0wj0
Tvwi

: (3)

Given the training corpus T, Skipgram maximizes the
log probability in (2) and learns the weight matrix.
Because (3) requires several computations to calculate the
denominator, the authors of [33] utilize a negative
sampling method to decrease the number of computations.
Finally, each word is represented as a vector based on the
weight matrix.
Considering the characteristics of a multi-word text,

such as a document, sentence, or paragraph, the authors of
[24] proposed a document embedding method, called
doc2vec, by modifying the word-embedding methods of
Skipgram (PV-DBOW) and CBOW (PV-DM).1 while merged = true

2 merged = false
3 for clusterA in all_clusters
4 for clusterB in all_clusters
5 label_similarity = cos (clusterA.label, clusterB.label)
6 cluster_similarity = cos (clusterA.centroid, clusterB.centroid)
7 overlap = # of apps overlapped between clusterA and clusterB
8 if αlabel_similarity + βcluster_similarity

+ (1 – α – β)cluster_overlap > threshold
9 clusterC = merge(clusterA, clusterB)
10 Insert clusterC to all_clusters
11 delete clusterA, clusterB from all_clusters
12 merged = True
13 go to line 1

Fig. 2. Cluster merge algorithm.

Input:

Output:

Context words Words in the
document di

Documents in the
same cluster

word2vec doc2vec rdoc2vec

Pretrained
matrix

wj wj+1 wj+2 wj wj+1 wj+2 dj dj+1 dj+2

Projection Projection Projection

wi di di

WʹH×V W*ʹH×V W**ʹH×N

WV×H W*N×H W**N×H

Fig. 3. Proposed retrofitted document embedding architecture.

446 ETRI Journal, Vol. 39, No. 4, August 2017

https://doi.org/10.4218/etrij.17.0116.0936

For a forum question duplication task and semantic
textual similarity task, document-embedding-based
approaches perform better than word-embedding-based
approaches, while a PV-DBOW-based approach
performs better than PV-DM [18]. Therefore, the proposed
model utilizes the document-embedding method PV-
DBOW to obtain a pre-trained document vector. Given the
input documentdi, it predicts the context words wj, wj+1, and
wj+2 in the document, as described in doc2vec of Fig. 3.

2. Retrofitting Document Embedding with Tagged
Corpus

The proposed model uses the initial clustering results as
a cluster tagged training corpus to retrofit the pre-trained
document vector. Specifically, the proposed model utilizes
the pre-trained weight matrix, which is learned using the
doc2vec method, as the initial weight matrix. It then
updates the weight matrix using the documents in the
same cluster as the output layer. As described in doc2vec
of Fig. 3, the conventional document embedding method
predicts the words in the document from the input
document. On the other hand, the proposed model predicts
the documents dj in the same cluster from input document
di, as described in rdoc2vec of Fig. 3.
The weight matrix is updated according to the constraint

in which the distance between two documents in the same
cluster should be close within the embedding space.
Inequality (4) represents the constraint in which threshold
d indicates the distance between two random documents.
In inequality (4), the document vectors of two documents
Di and Dj are represented as VDi and VDj .

distðVDi ;VDjÞ\d if Di and Dj are in the same cluster (4)

The proposed model maximizes the log probability (5)
with a constraint and learns the weight matrixes. In log
probability (5), D is the document set, Di is the input
document, Dj is the output document, and sc(Di) is the
index set for the documents within the same cluster.

X
i2D

X
j2scðDiÞ log PðDjjDiÞ (5)

Subject to distanceðDj;DiÞ\d;

log PðDjjDiÞ ¼ exp
V0

Dj
TVDi

P
j 02D exp

V0
Dj 0

TVDi
: (6)

The proposed model learns the document vector
according to the semi-supervised learning method. The

pre-trained document embedding is fine-tuned using the
cluster-tagged training corpus, where the corpus is
automatically generated from the initial clustered results.
To solve the constraint optimization problem, the
proposed model utilizes the constraint as a penalty term of
the object function [31]. In (7), gis a control parameter
used to balance the contribution of the penalty term.

O0 ¼ O� gDistðDi;DjÞ: (7)

The distance between two documents is estimated based
on the cosine distance. A closer distance between two
documents Di and Dj in the same cluster incurs a smaller
penalty value, whereas a longer distance incurs a greater
penalty value.

DistðDj;DiÞ ¼ 1� cosðVDi ;VDjÞ: (8)

The proposed model conducts normalization using a
negative sampling method. The negative sampling method
randomly extracts certain documents from the other
clusters without document Di. When the weight matrix is
updated, the negative samples are used in the opposite
way as a positive sample; if the document vector is close
to the document vector in the negative samples, it incurs a
greater penalty value.
Similar to a conventional document embedding approach,

the weight matrix is learned according to the stochastic
gradient descent algorithm. For the back propagation
algorithm, the penalty term is derived as follows:

@DistðDi;DjÞ
@VDi

¼ @
�
1� cos VDi ;VDj

� ��

@VDi

: (9)

Cosine similarity can be partially differentiated as
follows:

cosða;bÞ ¼ a � bffiffiffiffiffiffiffiffiffi
a2b2

p ; (10)

@cossimða; bÞ
@a1

¼ @

@a1

a1 � b1 þ � � � þ an � bn
jaj � jbj

¼ @

@a1
a1 � b1 � ða21 þ a22 þ � � � þ a2nÞ�

1
2 � jbj�1

¼ b1
jaj � jbj �

a1 � b1
jaj � jbj �

a1
jaj2 ; ð11Þ

) @ cosða; bÞ
@a

¼ b
jaj � jbj � cosða; bÞ � a

jaj2 : (12)

In (11), ai and bi are the i-th values of vectors a and b,
respectively.

447Yeo-Chan Yoon et al.

http://etrij.etri.re.kr

http://etrij.etri.re.kr

V. Evaluation

1. Experimental Dataset

For the evaluation dataset, 2.1 million mobile alications
were crawled from the Google Play Store [34], and 1,000
mobile applications were selected for each of the
following five categories: lifestyle (Life), education (Edu),
travel and local (Travel), tools (Tool), and entertainment
(Ent). Then, three annotators manually classified 5,000
mobile applications with a fine-grained hierarchical
classification structure. When the annotators obtained
different results for the same mobile application, the
different results were changed into a single result
according to the mutual agreement. The hierarchical
classification structure enables both a lower-level class
(such as “make up”) and a top-level class (such as
“beauty”) for the same mobile application.
The final number of mobile applications classified per

category was less than 1,000 because some mobile
applications were excluded from the test set when the
annotators failed to agree. Table 1 shows the details of the
test set and the crawled set. To learn the document
embedding, we exploited the crawled set as the training
corpus, which was automatically clustered using the
cluster initializer of the proposed model, as described in
Fig. 1.

2. Experimental Setup

The proposed model shown in Fig. 1 is implemented as
follows. First, the keyword selector extracts certain
keywords based on the association rule [16] and RCF, as
described in (1). Then, the cluster initializer classifies
some mobile applications based on the keywords included
in each mobile application title. Additionally, the cluster
expander classifies other mobile applications with no
keywords by calculating the cosine similarity between
each cluster centroid and every mobile application. The
classification is based on the document vector and is

learned using the proposed retrofitted document
embedding method shown in Fig. 3.
Finally, the cluster merger combines similar clusters

according to the cluster merge algorithm shown in
Fig. 2 based on the document vector and word vector.
Moreover, it is learned using the word embedding [17].
The irace package [35] is used to tune the hyper-
parameter of the algorithm. All experiments in this
paper were run on a PC with an Intel 4.00 GHz CPU
and 64 GB of RAM

3. Comparable Clustering or Classification Methods

We compare the clustering performance of the proposed
method with two renowned and efficient algorithms: the
K-means and LDA algorithms. We also compare our
algorithm with agglomerative hierarchical clustering
against various merging metrics. To compare the
algorithms in a fair manner, we set the number of clusters
as the golden standard and use the irace package [35] to
tune the hyper-parameter of each algorithm with the
lifestyle category. The details of the comparable methods
are as follows:
▪ The K-means and LDA algorithms are respectively
learned by Sklearn [36] and the Gensim tool [37]. The
performances are measured on the average of ten
experimental results.

▪ For agglomerative hierarchical clustering, we use
complete linkage (CHC), average linkage (AHC), and
ward metric with Sklearn [36].

▪ The proposed model is described in Fig. 1. In a linear
combination for a cluster merge, the weights of the label
similarity, the cluster centroid similarity, and the cluster
overlap are optimized for each vector representation.
Similar clusters are merged until the number of clusters
reaches the golden standard.
To analyze the effects of the proposed document

representation method, the following methods are
compared.
▪ TF indicates the term frequency vector of a document.
For the proposed model, a, b, and threshold e for an
expanding cluster is optimized as 0.47, 0.22, and 0.52,
respectively.

▪ RCF indicates a relative category frequency vector of a
document, as described in (1). For the proposed model,
a, b, and e are optimized as 0.51, 0.19, and 0.63,
respectively.

▪ The LDA algorithm can be used to represent the
document as a topic-score based vector [38]. The
number of topics is set to 124. For the proposed model,

Table 1. Test set and crawled set information.

Life Edu Travel Tool Ent

Test
set

Apps 802 806 890 840 760

Class 67 35 19 52 30

Class
(top level)

43 23 15 38 24

Crawled
set

Apps 79,122 96,393 42,858 86,784 91,564

Class 3,865 4,399 2,019 3,302 4,411

448 ETRI Journal, Vol. 39, No. 4, August 2017

https://doi.org/10.4218/etrij.17.0116.0936

a, b, and e are optimized as 0.35, 0.46, and 0.4,
respectively.

▪ Doc2vec represents a document as a document vector
using the doc2vec algorithm, and it is learned using the
Gensim tool [37]. The vector dimension is set to 300.
The length of the window is set to eight, and the number
of negative examples is set to five. For the proposed
model, a, b, and e are optimized as 0.31, 0.45, and 0.43,
respectively.

▪ Rdoc2vec represents a document as a document vector
using the retrofitted weight matrix. Up to 50 positive
examples are randomly selected from the documents
within the same cluster. The same number of negative
examples is also randomly selected from the other cluster.
The value of g is set to 0.34. For the proposed model, a,
b, and e are optimized as 0.32, 0.49, and 0.41.
In addition, we evaluate the performance in classifying

the applications using the training set automatically
constructed from the crawled set. For the classification
performance evaluation, the proposed document vector
similarity based approach is compared with naive Bayes,
SVM, and the one-class SVM classifier.
▪ The naive Bayes classifier is learned using Sklearn [36].
We set the alpha as one.

▪ An SVM classifier is learned using Lee’s SVM tool [39]
with a linear kernel and 1,000 as the cost value.

▪ One-class SVM [40] is learned with a linear kernel. We
set the cost value as 100. The main difference of a one-
class SVM is that it learns from only positive examples.

4. Experimental Results

A. Clustering Performance

To compare clustering performance between the
proposed model and the baseline algorithms, we use purity
and entropy as evaluation measures. Because the baseline
algorithms are designed for a nonhierarchical output, the
top-level classes are used as the correct class without the
lower level in the test set.
Purity is an external evaluation criterion of the cluster

quality. Moreover, it is the ratio of the number of correctly
clustered mobile apps from the number of total clustered
mobile apps.
In (13), N is the number of total clustered mobile

apps, k is the number of clusters, ci. is a cluster, and tj.
is the class tag that most of the mobile apps select in
cluster ci.

Purity ¼ 1
N

Xk

i

maxjjci \ tjj: (13)

Entropy measures the unexpectedness. For each
resulting cluster, we can measure its entropy as follows. In
(14), P(tj) is the probability of classifying a mobile
application as tj in cluster i, N is the total number of
clustered mobile apps, and Nw is the number of mobile
apps in cluster i.

Entropy ¼ Nw

N

Xk

i

X
j
� PðtjÞ log PðtjÞ: (14)

Table 2 shows the clustering performances based on the
combinations of clustering algorithms and the document
representation methods. Purity takes a value of zero to
one, where a higher purity value indicates a better
performance. Entropy takes a value of more than zero,
where a lower entropy value describing less
unexpectedness indicates a better performance.
In Table 2, the “travel and local” category shows a

better performance than the other categories because the
number of clusters in this category is less than those of the
other categories, and the keywords are easily found in the
title and description.
The proposed model shows a better performance than

the K-means algorithm in a comparison of most of the
document representation methods. For the average
performance of the five categories, the document
representation with rdoc2vec increases by 0.19 in terms of
purity, and decreases by 1.18 in terms of entropy when
using the proposed model instead of the K-means
algorithm.
Table 2 shows that the LDA algorithm performs better

than any instance of the K-means algorithm. However, the
proposed algorithm tends to overwhelm the LDA
algorithm except for frequency-based document
representation methods, such as TF or RCF. In addition,
the proposed model using LDA as the document
representation shows a better performance than using the
document topic weight from LDA for direct clustering.
The performance difference between the two document

representation methods, TF and RCF, is not significant.
With the K-means algorithm, the document representation
method RCF shows a better performance than the
document representation method TF in terms of both
purity and entropy. On the other hand, with the proposed
model, the document representation method RCF shows a
better performance than the document representation
method TF for purity, whereas the document
representation method TF shows a better performance than
the method RCF for entropy.
The performance of the hierarchical clustering is

generally poor except for the ward metric. With this

449Yeo-Chan Yoon et al.

http://etrij.etri.re.kr

http://etrij.etri.re.kr

algorithm, using the rdoc2vec method shows the highest
performance on average.
Compared with frequency-based document

representation methods, the LDA and doc2vec based
methods show better performances regardless of the
clustering algorithms. This indicates that the way in which
the document characteristics are represented is important.
Although the difference in performance between LDA and
doc2vec is not significant, doc2vec shows less
performance deviation per category than LDA.
Compared with other document representation methods,

the proposed document representation method rdoc2vec
performs better regardless of the clustering algorithms. For
the average performance level based on the five
categories, the document representation rdoc2vec
increases by 0.06 in terms of purity, and decreases by 0.13
in terms of entropy in comparison with the document
representation doc2vec. This indicates that the
performance can be improved by retrofitting the document
embedding using the training corpus and constraint.
Table 3 shows the top-five nearest neighbor mobile

applications for each of the three mobile applications. The
bold type indicates truly similar mobile applications,
which indicates that the proposed retrofitted document
embedding method rdoc2vec can find more truly similar
mobile applications than the conventional document
embedding method doc2vec.
Figure 4 shows the change in performance of the

proposed method according to a and b. The difference
between the minimum and maximum purities is 0.13,

whereas the difference between the minimum and
maximum entropy is 0.52 according to the values of a and
b, respectively. The clusters merged by both the word
similarity and cluster similarity together showed a better

Table 2. Clustering performance estimated based on purity and entropy.

Category
Purity Entropy Avg Time (s)

Life Edu Travel Tool Ent Avg Life Edu Travel Tool Ent Avg Train Test

K-means (TF) 0.39 0.39 0.70 0.28 0.32 0.42 3.25 2.67 1.26 3.85 3.12 2.83 202.87 35.93

K-means (RCF) 0.42 0.41 0.70 0.37 0.40 0.46 3.13 2.56 1.27 3.34 2.98 2.66 309.64 31.27

K-means (LDA) 0.47 0.49 0.76 0.39 0.38 0.50 2.52 2.37 1.05 2.90 2.74 2.32 10718.5 19.93

K-means (d2v) 0.44 0.51 0.76 0.39 0.44 0.51 2.93 2.29 1.10 3.25 2.63 2.44 1951.02 46.32

K-means (rd2v) 0.52 0.56 0.74 0.43 0.46 0.54 2.41 2.09 1.16 2.73 2.39 2.15 3128.41 53.58

LDA 0.58 0.56 0.79 0.51 0.49 0.59 1.79 1.84 0.89 2.13 2.04 1.74 316.78 33.43

CHC (rd2v) 0.39 0.42 0.49 0.34 0.35 0.40 2.88 2.45 2.18 3.34 3.04 2.78 3128.41 46.63

AHC (rd2v) 0.28 0.28 0.47 0.20 0.22 0.29 4.15 3.38 2.38 4.43 3.69 3.60 3128.41 45.83

Ward (rd2v) 0.57 0.55 0.75 0.50 0.49 0.57 2.02 2.03 1.12 2.42 2.21 1.96 3128.41 47.16

Proposed (TF) 0.47 0.52 0.85 0.51 0.55 0.58 1.97 1.91 0.47 2.2 1.19 1.55 202.87 112.1

Proposed (RCF) 0.54 0.46 0.73 0.67 0.57 0.59 1.87 1.98 1.21 1.37 1.42 1.57 309.64 111.27

Proposed (LDA) 0.55 0.68 0.89 0.63 0.64 0.68 1.50 1.29 0.45 1.25 1.48 1.19 10718.5 122.5

Proposed (d2v) 0.64 0.61 0.81 0.69 0.62 0.67 1.25 1.32 0.43 1.14 1.35 1.1 1951.02 90.76

Proposed (rd2v) 0.72 0.67 0.86 0.73 0.65 0.73 0.99 1.18 0.48 0.94 1.28 0.97 3128.41 102.58

Table 3. Top-five nearest neighbor apps with doc2vec and
rdoc2vec.

App
Similar apps
(doc2vec)

Similar apps
(rdoc2vec)

Nail Fashion

� Nigerian Fashion
Gallery
� App Uninstaller
Mechanics
� Art of Nail
Decoration
�Monster Jump Free
� Colorful and
Fashion
� Helper

� Art of Nail
� Decoration
Nail Art Trend
� Beautiful Nail
Designs
� Nail Decoration
� Nail 2 Go

Horoscope

� Strobe Light
� Living Room
� Easy to Use
Calculator
� Love Calculator
�My Daily
Horoscope Positive

� Horoscope
� Daily Horoscope
� The Horoscope
� Horoscope
� Cancer Horoscope

My Diary

� GENIUSGAME
� FREE Anxiety &
Panic
Relief
� Should I Date You?
� New Year Gift

�WePhoto: Diary
� Baby Sounds
� Diary Q
� Picture Diary
� Contact Diary

450 ETRI Journal, Vol. 39, No. 4, August 2017

https://doi.org/10.4218/etrij.17.0116.0936

level of performance than the clusters merged by only one
of them (when a or b is zero).
The average training time of rdoc2vec is approximately

3,128 s. Considering that it learns the vector from tens of
thousands of documents, this is a reasonable time frame
for large data. It requires less than 2 min to cluster
approximately 1,000 mobile apps during the test set,
which means rdoc2vec is suitable for a real environment.

B. Classification Performance

The proposed method automatically constructs the
initial cluster and uses it as the training set. It then
classifies the documents by comparing their similarity
with the clusters. However, there is a well-known method
for using the training set, namely, exploiting machine
learning classifiers such as an SVM or naive Bayes
classifier. The document vector similarity based approach
is compared with other classification algorithms, such as
the above two classifiers.
To evaluate the performance in classifying applications

using the automatically constructed training set, the mean
average precision is used as an evaluation measure. The
mean average precision (MAP) is the mean of the average
precision scores for each cluster. The mean average
precision computes the mean of the average values of
precision as follows.

MAP ¼ 1
jcj

X
c

PðkÞ � rel(k)
number of relevant documents

(15)

In (15), P(k) is the precision at cut-off k in the ranked
list; rel(k) is an indicator function, which takes one if the
item at rank k is relevant, or zero otherwise; and |C| is the
number of test clusters. To measure the mean average
precision (MAP), the similarity score or classification
scores are used to rank the similarity between documents
and clusters. Table 4 shows the classification
performances according to the classification algorithm
applied. MAP takes a value of zero to one, where the
higher value indicates a better performance.
The proposed document representation method

rdoc2vec shows the best MAP for the average of five
categories. It improves by more than 0.09 in MAP in a
comparison with the three classifiers: naive Bayes, the

one-class SVM, and SVM. This indicates that the
proposed model is more suitable for the fine-grained
classification problem than a classifier.
The classifiers perform better than the frequency-based

document representation methods, TF and RCF. On the
other hand, the classifiers show a lower performance level
than the neural-network-based document representation
methods, doc2vec and rdoc2vec, for the following
reasons. Because the fine-grained clustering problem for
mobile applications requires a large number of clusters, it
is difficult to prepare a sufficiently large training corpus
for every cluster. In the initial clusters used for the training
corpus, some clusters include only 10 to 30 mobile
applications. In addition, the hierarchical classification
structure can be unfavorable to the classifiers. The one-
class SVM classifier is not affected by the hierarchical
classification structure because it uses only positive
examples. However, the performance of one-class SVM is
generally lower than that of a conventional SVM, and it
cannot overcome the limitation of a small-sized training
set.
To confirm the classifier performance differences

according to training corpus size, we separated the initial
clusters used for the training corpus based on the number
of mobile applications in each cluster. Figure 5 shows that
the MAP of the classifiers depends on the training corpus
size. Specifically, the naive Bayes classifier learned from
less than 100 mobile applications shows a 0.30 MAP,

Pu
rit

y

En
tro

py

0.75

0.70

0.65

0.60
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.7
0.5

0.3
0.1

β β
α

α0.9
1.0
1.1
1.2
1.3
1.4
1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.3
0.5

0.7
0.9

Fig. 4. Results of parameter optimization.

Table 4. Classification performance estimated by MAP.

Category Life Edu Travel Tool Ent Avg
Train
time

Test
time

TF 0.42 0.40 0.41 0.55 0.44 0.45 202.87 74.21

RCF 0.46 0.28 0.37 0.55 0.38 0.41 309.64 83.14

LDA 0.57 0.45 0.61 0.60 0.54 0.55 10718.5 78.36

doc2vec 0.64 0.49 0.56 0.72 0.59 0.60 1951.02 56.93

rdoc2vec 0.70 0.54 0.67 0.74 0.58 0.64 3128.41 63.67

Naive Bayes 0.54 0.58 0.46 0.60 0.55 0.55 795.99 11079.3

One-class SVM 0.50 0.49 0.51 0.39 0.46 0.47 348.72 142.13

SVM 0.58 0.63 0.52 0.54 0.53 0.55 26394.2 264.31

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
<= 100 <= 500 > 500

rdoc2vec nb svmosvm

Fig. 5. Performance based on the training corpus size.

451Yeo-Chan Yoon et al.

http://etrij.etri.re.kr

http://etrij.etri.re.kr

whereas the same classifier learned from more than 500
mobile applications shows a 0.65 MAP.
The proposed rdoc2vec method shows a stable

performance regardless of the training corpus size owing
to its characteristics. The classification performance highly
depends on the quality of the document vector and the
centroid vector, which averages the cluster document
vectors. The proposed method shows good performance
because each cluster centroid vector is appropriately
learned, albeit the cluster is small.

VI. Conclusion

In this paper, we proposed a fine-grained mobile
application-clustering model retrofitting the document
embedding. The proposed model has the following
characteristics. First, the proposed semi-supervised
clustering algorithm clusters a huge number of mobile
applications. The proposed model initializes the clusters
based on the title keywords with less noise. The initialized
clusters are used as a training set to learn the document
embedding. The experimental results showed that the
proposed model increased by 0.19 in terms of purity, and
decreased by 1.18 in terms of entropy, compared with the
K-means algorithm. In addition, it improved more than
0.09 for MAP in a comparison with the classifiers.
Second, we proposed a method for learning a document

vector using a training set. By adding a constraint to the
object function, the performance of document embedding
is improved compared to the conventional doc2vec. Third,
to merge similar clusters, we consider the label similarity
of the clusters, the cluster similarity, and the cluster
overlap together. Through the proposed approach, it is
possible to avoid constructing costly resources, such as a
synonym dictionary. In future work, we will apply the
proposed fine-grained mobile-application clustering model
for retrofitting the document embedding to other domains,
such as an emotional analysis.

References

[1] Number of Apps Available in Leading App Stores, June

2016, Retrieved from https://www.statista.com/statistics/
276623/number-of-apps-available-in-leading-app-stores/

[2] H. Zhu et al., “Exploiting Enriched Contextual Information

for Mobile App Classification,” Proc. ACM Int. Conf.

Inform. Knowl. Manag., Maui, HI, USA, Oct. 29–Nov. 2,

2012, pp. 1617–1621.
[3] H. Zhu et al., “Mobile App Classification with Enriched

Contextual Information,” IEEE Trans. Mobile Comput.,
vol. 13, no. 7, 2014, pp. 1550–1563.

[4] M. Lindorfer, M. Neugschwandtner, and C. Platzer,
“Marvin: Efficient and Comprehensive Mobile App
Classification through Static and Dynamic Analysis,” IEEE

Annu. Comput. Softw. Applicat. Conf., Taichung, Taiwan,
July 1–5, 2015, pp. 442–433.

[5] G. Berardi et al., “Multi-store Metadata-Based Supervised
Mobile App Classification,” Proc. Annu. ACM Symp. Appl.

Comput., Salamanca, Spain, Apr. 13–17, 2015, pp. 585–
588.

[6] J.M. Heo and S.Y. Park, “Word Cluster-Based Mobile
Application Categorization,” J. Korea Soc. Comput.

Inform., vol. 19, no. 3, Mar. 2014, pp. 19–24.

[7] V. Radosavljevic et al., “Smartphone App Categorization
for Interest Targeting in Advertising Marketplace,” Proc.

Int. Conf. Companion World Wide Web., Quebec, Canada,
Apr. 11–15, 2016, pp. 93–94.

[8] J.D. Rose, “An Efficient Association Rule Based
Hierarchical Algorithm for Text Clustering,” Int. J. Adv.

Eng. Techol., vol. 7, no. 1, Jan.–Mar. 2016, pp. 751–
753.

[9] F. Beil, M. Ester, and X. Xu, “Frequent Term-Based Text
Clustering,” Proc. ACM SIGKDD Int. Conf. Knowl.

Discovery Data Mining, Alberta, Canada, July 23–26,

2002, pp. 436–442.
[10] S.S. Bedi, H. Yadav, and P. Yadav, “Categorization,

Clustering and Association Rule Mining on WWW,”
Multimedia, Signal Process. Commun. Techol., Aligarh,

India, Mar. 14–16, 2009, pp. 173–177.
[11] A. Kongthon, C. Haruechaiyasak, and S. Thaiprayoon,

“Constructing Term Thesaurus Using Text Association
Rule Mining,” in Proc. ECTICON 2008, Krabi, Thailand,
May 14–17, 2008, pp. 137–140.

[12] S. Das et al., “Opinion Based on Polarity and Clustering for
Product Feature Extraction,” Int. J. Inform. Eng. Electron.

Bus., vol. 8, no. 5, Sept. 2016, pp. 36–43.
[13] K. Bafna and D. Toshniwal, “Feature Based Summarization

of Customers’ Reviews of Online Products,” Procedia

Comput. Sci., vol. 22, 2013, pp. 142–151.

[14] S. Homoceanu et al., “Will I Like It? Providing Product
Overviews Based on Opinion Excerpts,” IEEE Conf.

Commerce Enterprise Comput., Luxembourg, Sept. 5–7,
2011, pp. pp. 26–33.

[15] Z. Zhai et al., “Clustering Product Features for Opinion

Mining,” Proc. ACM Int. Conf. Web Search Data Mining,
Hong Kong, China, Feb. 9–12, 2011, pp. 347–354.

[16] M. Hegland, “The Apriori Algorithm–a Tutorial”, in
Mathematics and Computation in Imaging Science and

Information Processing, Singapore: World Scientific, 2005,
pp. 209–262.

[17] T. Mikolov and J. Dean, “Distributed Representations of
Words and Phrases and Their Compositionality,” in

452 ETRI Journal, Vol. 39, No. 4, August 2017

https://doi.org/10.4218/etrij.17.0116.0936

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

Advances in Neural Information Processing Systems, MIT
Press, 2013.

[18] J.H. Lau and T. Baldwin, An Empirical Evaluation of

doc2vec with Practical Insights into Document Embedding

Generation, July 2016, Accessed 2016. https://arxiv. Org/

abs/1607.05368
[19] M.J. Kusner et al., “From Word Embeddings to Document

Distances,” Proc. Int. Conf. Mach. Learn., Lille, France,
July 6–11, 2015, pp. 957–966.

[20] B. Hu et al., “Convolutional Neural Network Architectures
for Matching Natural Language Sentences,” Adv. Neural

Inform. Process. Syst., Montreal, Canada, Dec. 8–13, 2014,

pp. 2042–2050.
[21] Y. Kim, Convolutional Neural Networks for Sentence

Classification, Sept. 2014, Accessed 2016. https://arxiv.org/
abs/1408.5882

[22] T. Kenter and M. de Rijke, “Short Text Similarity with
Word Embeddings,” Proc. ACM Int. Conf. Inform. Knowl.

Manag., Melbourne, Australia, Oct. 18–23, 2015, pp.
1411–1420.

[23] C.B. di Chen et al., “Simcompass: Using Deep Learning
Word Embeddings to Assess Cross-Level Similarity,” Proc.
Int. Workshop Semantic Evaluation, Dublin, Ireland, Aug.

23–24, 2014, pp. 560–565.
[24] Q.V. Le and T. Mikolov, “Distributed Representations of

Sentences and Documents,” Int. Conf. Machin. Learn.,
Beijing, China, 2014, pp. 1–9.

[25] A.M. Dai, C. Olah, and Q.V. Le, Document Embedding
with Paragraph Vectors, July 2015, Accessed 2015. https://

arxiv.org/abs/1507.07998
[26] R. Kiros et al., “Skip-Thought Vectors,” in Advances in

Neural Information Processing Systems, MIT Press, 2015.

[27] S. Wang et al., “Linked Document Embedding for
Classification,” Proc. ACM Int. Conf. Inform. Knowl.

Manag., Indianapolis, IN, USA, Oct. 24–28, 2016, pp. 115–
124.

[28] R. Johansson and L.N. Pina, “Embedding a Semantic
Network in a Word Space,” Proc. Conf. North American

Chapter Association Computational Linguistics: Human

Language Technol., Denver, CO, USA, May 31–June 5,

2015, pp. 1428–1433.
[29] S. Rothe and H. Sch€utze, Autoextend: Extending Word

Embeddings to Embeddings for Synsets and Lexemes, July

2015, Aceessed 2016. https://arxiv.org/abs/1507.01127
[30] Z. Chen et al., “Revisiting Word Embedding for

Contrasting Meaning,” Proc. Annu. Meeting ACL-IJCNLP,
Bejing, China, July 26–31, 2015, pp. 106–115.

[31] Q. Liu et al., “Learning Semantic Word Embeddings Based
On Ordinal Knowledge Constraints,” Proc. Annu. Meeting

ACL-IJCNLP, Bejing, China, July 26–31, 2015, pp. 1501–
1511.

[32] M. Faruqui et al., Retrofitting Word Vectors to Semantic

Lexicons, Mar. 2015, Accessed 2016. https://arxiv.org/abs/
1411.4166

[33] A. Mnih and K. Kavukcuoglu, “Learning Word
Embeddings Efficiently with Noise-Contrastive

Estimation,” in Advances in Neural Information Processing

Systems, MIT Press, 2013.

[34] Viennot N., Garcia E., and Nieh J., “A Measurement Study
of Google Play,” ACM SIGMETRICS Performance

Evaluation Rev., vol. 42, no. 1, 2014, pp. 221–233.
[35] M. L�opez-Ib�anez et al., “The Irace Package, Iterated Race

for Automatic Algorithm Configuration,” Universit�e Libre

de Bruxelles, Belgium, Technical Report TR/IRIDIA/2011-
004, IRIDIA, 2011.

[36] F. Pedregosa et al., “Scikit-Learn: Machine learning in
Python,” J. Mach. Learn. Res., vol. 12, Oct. 2011, pp.

2825–2830.
[37] R. Rehurek and P. Sojka, “Software Framework for Topic

Modelling with Large Corpora,” In Proc. LREC Workshop

New Challenges NLP Frameworks, Malta, 2010, pp. 46–540.

[38] G. Peng et al., “K-means Document Clustering Based on
Latent Dirichlet Allocation,” In Proc. WDSI, Las Vegas,
NV, USA, Apr. 5–9, 2016.

[39] C.K. Lee and M.G. Jang, “A Modified Fixed-threshold
SMO for 1-Slack Structural SVM,” ETRI J., vol. 32, no. 1,

Feb. 2010, pp. 120–128.
[40] C.K. Lee, “1-Slack One-Class SVM for Fast Learning,” J.

KIISE, vol. 19, no. 5, 2013, pp. 253–257.

Yeo-Chan Yoon received BS and MS
degrees in computer science and

engineering from Korea University, Seoul,
Rep. of Korea, in 2004 and 2007,

respectively. Currently, he is a senior
researcher at the Electronics and

Technology Research Institute (ETRI),
Daejeon, Rep. of Korea. His research interests include digital
content recommendation systems, natural language processing,

machine learning, and big data analytics.

Junwoo Lee received a BS degree in

resource engineering and an MS in
electronic engineering from Hanyang

University, Seoul, Rep. of Korea, in 1996
and 1998 respectively. Since 1999, he has

been a research engineering staff member
of the Smart Contents Research

Laboratory at ETRI, Daejeon, Rep. of Korea. His research
interests include intelligent content service recommendation,

virtual and mixed reality, and HCI regarding digital contents.

453Yeo-Chan Yoon et al.

http://etrij.etri.re.kr

https://arxiv
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1507.07998
https://arxiv.org/abs/1507.07998
https://arxiv.org/abs/1507.01127
https://arxiv.org/abs/1411.4166
https://arxiv.org/abs/1411.4166
http://etrij.etri.re.kr

So-Young Park received a BS degree in
computer science and engineering from

Sangmyung University, Cheonan, Rep. of
Korea, in 1997, and MS and PhD degrees

in computer science from Korea
University, Seoul, Rep. of Korea in 1999

and 2005, respectively. She has been an
associate professor in the Department of Game Design and
Development at Sangmyung University since 2007. Her current

research interests include natural language processing and data
mining.

Changki Lee received a BS degree in
computer science from the Korea

Advanced Institute of Science and
Technology (KAIST), Daejeon, Rep. of

Korea in 1999. He received MS and PhD
degrees in computer engineering from

Pohang University of Science and
Technology, Rep. of Korea in 2001 and 2004, respectively.
From 2004 to 2012, he was a researcher with ETRI, Daejeon,

Rep. of Korea. Since 2012, he has been a professor of Computer
Science at Kangwon National University. His research interests

include natural language processing, machine learning, and deep
learning.

454 ETRI Journal, Vol. 39, No. 4, August 2017

