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This study focuses on a method for sequential data
augmentation in order to alleviate data sparseness
problems. Specifically, we present corpus expansion
techniques for enhancing the coverage of a language
model. Recent recurrent neural network studies show
that a seq2seq model can be applied for addressing
language generation issues; it has the ability to
generate new sentences from given input sentences. We
present a method of corpus expansion using a
sentence-chain based seq2seq model. For training the
seq2seq model, sentence chains are used as triples. The
first two sentences in a triple are used for the encoder
of the seq2seq model, while the last sentence becomes a
target sequence for the decoder. Using only internal
resources, evaluation results show an improvement of
approximately 7.6% relative perplexity over a baseline
language model of Korean text. Additionally, from a
comparison with a previous study, the sentence chain
approach reduces the size of the training data by
38.4% while generating 1.4-times the number of n-
grams with superior performance for English text.

Keywords: Sentence chain, Lexical chain, Seq2seq
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I. Introduction

Machine learning approaches depend on provided
training data. Statistical machine translation (SMT)
requires a broad-coverage bilingual corpus in order to
satisfy commercial services [1]. The acquisition of
language pairs is limited when there is an insufficient
amount of prebuilt bilingual data. In the case of automatic
speech recognition (ASR) for a specific domain, such as
an automated call-center transcription service [2], a
sufficient amount of domain text for a language model
may not be available due to privacy policies. The training
data for SMT and ASR is a type of sequential data.
Therefore, this paper focuses on sequential data
augmentation in order to alleviate the data sparseness
problem. Specifically, we present corpus expansion
techniques for enhancing the coverage of a language
model.
We present a method of corpus expansion using a

sentence-chain based seq2seq model. Sentence-chains are
based on lexical chain studies, which are one of the main
subjects in text summarization [3], [4]. A sentence-chain is
a set of similar sentences within a particular body of text.
We use word-embedding methods [5] to build sentence
chains. Word embedding plays a role in detecting similar
sentences in the initial context of a target sentence. For
training the seq2seq model, sentence chains are used as
triples. The first two sentences in a triple are used for the
encoder of the seq2seq model, while the last sentence
becomes a target sequence for the decoder. Finally, we
attempt to evaluate the effectiveness of the sentence-chain
based seq2seq model for corpus expansion.
The following are the major contributions of this

research: First, we proposed a novel corpus expansion
technique using only internal resources. Experimental
results indicate significant performance improvements for
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state-of-the-art language models. Second, we present a
triple seq2seq model based on sentence chain as a new
learning method for language generators that can generate
various similar sentences. Third, two corpus expansion
methods using the triple-seq2seq model provide a solution
to the unseen n-gram problem, which is a chronic problem
in n-gram language models.
The remainder of this paper is structured as follows.

Related works are described in Section II. In Section III,
we discuss an algorithm for building sentence chains. A
triple-seq2seq model is presented in Section IV, while
Section V describes how to prepare input data for the
triple-seq2seq model. In Section VI, an experimental
evaluation is presented. Our conclusions and future work
are detailed in Section VII.

II. Related Works

Data augmentation techniques have been applied to
image and speech recognition in the form of input data
expansion for neural network (NN) models via signal
transformations [6], [7]. In the field of text, an approach
for generating text by using thesaurus-based synonym
replacement has been proposed [8]. For studies closely
related to this paper, there have been studies on neural
network machine translation (NMT) using the back-
translation approach [9], [10]. This is an approach for
expanding a parallel training corpus by generating
corresponding language for the encoder via back-
translation of the target language when the parallel corpus
for the NMT is insufficient. However, we focus on
expanding a monolingual corpus using a different type of
NMT technique.
Previous research on corpus expansion can be divided

into two main types of approaches: external resource
approaches and internal resource approaches. As examples
of external resource approaches, an in-domain corpus
expansion using focused Web crawling was proposed in
[11]. For Chinese word segmentation, a technique of
exploiting the redundancy in a Web corpus was first
proposed in [12]. As a lexicon-based approach, WordNet
is an external resource that is almost always available.
WordNet has been utilized as a query expansion technique
[13] for information retrieval and feature selection for
sentiment analysis [14]. As an example of an internal
resource approach, a method for corpus expansion for
SMT using semantic role label (SRL) substitution rules
that rely on an SRL labeler was proposed in [15]. In order
to consider cases where external resources do not exist, we
attempt to expand a corpus using only internal resources.
Additionally, approaches that require tools that rely on

additional knowledge resources, such as [15], appear to
have limitations in versatility and scalability. Therefore,
we attempt to use only the information inherent to the
input data itself.
Statistical paraphrase generations are also related

research areas. An analysis and definition of paraphrase
occurrences were described in [16]. From the
perspective of a statistical approach, paraphrases do not
have the same meaning. A small editing distance
between strings can be used as the measure of a
paraphrase [17]. A more sophisticated approach for
paraphrase detection was proposed using a method of
dynamic pooling and unfolding recursive auto-encoders
(RAE) [18]. The issue here is that the RAE was based
on syntactic analysis, which generally has difficulty
processing ungrammatical sentences such as freeboard
text and spontaneous speech transcriptions. In the first
statistical paraphrase generation (SPG) scheme,
presented in [19], the SPG model consisted of a
paraphrase model, language model, and usability model.
Here, the model exploits multiple resources to resolve
the data sparseness problem. On the other hand, the
acquisition of sentential paraphrases using crowdsourcing
would be a practical alternative [20]. However, we
attempt to find automatic methods for generating new
sentences using only the provided training corpus.
Neural conversational models have achieved impressive

results in deep learning studies. These studies provide an
easy means of developing a natural language chat-bot,
mainly using the seq2seq framework [21], [22]. In some
cases, triple-type data schemes were adopted. In [21], the
triples consist of context, message, and responses for
generating novel responses. A question answering study,
such as that in [23], converts documents into context-
query-answer triples in order to answer questions. We use
a similar approach to build a dataset for corpus expansion.
The major issue is that the triples are based on a data
structure for a particular application, making it difficult to
apply them to plain text extensions. Therefore, we use the
concept of sentence chains to create our triples.

III. Sentence Chain

For building datasets for corpus expansion, we use
triples composed of two sentences for encoder input and
one sentence for decoder input for training the seq2seq
model. In the generation step, the decoder generates one
sentence from the two sentences that are inputted to the
encoder. These triple-type datasets are similar to those
used in previous studies. In a study on generating
conversational responses, context-message-response
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triples were mined from a twitter corpus for use as datasets
[21]. The authors selected triples by considering bigram
frequency, and then created a crowd-source raters filter
from the triples. In [23], document-query-answer triples
were built from online newspaper articles and their
corresponding summaries. We propose a methodology for
automatically generating triples. Inspired by works on
lexical chains [3], [4] and word embedding [5], we
propose an algorithm for building sentence chains.
The input for the sentence chain algorithm is a

document D = {S1, . . . , Sm}, which is composed of
sentences Si ¼ fWi

1; . . . ;W
i
ng. The sentences in D are

processed in reverse order because it is assumed that the
search area is a preceding history. The algorithm builds a
sentence chain SC if constraints are satisfied in each si of
the D. Here, for the words in si, it is assumed that word
embedding is applied. This allows us to use the skip-gram
model [5]. The skip-gram model uses an approach
that maximizes the average of log probabilities
1
T R

T
t¼1R�cOjOc;j 6¼0 log pðWtþjjWtÞ for a given sequence of

training words w1, w2, w3, . . . , wT. The c in the objective
is the size of the training context. Using this method,
words with a similar context are located near each other in
vector space.
In the algorithm, the SC is generated from a lexical

chain LC, where the LC is derived from a partial lexical
chain PLC. We first build the PLC for the word Wi

j in si
compared to the word Wk

m in sk from a measure of cosine
distance (1) [24], [25]. In Algorithm 1, this is described in
lines 1 through 12.

dðwi
j;w

k
mÞ ¼ 1� wi

j � wk
m��wi

j

��kwk
mk

; ði\k\iþ dÞ: (1)

In line 5, d is the maximum distance between sentences in
D. Because k is a sentence index, k < i indicates that sk is
one of the previous sentences of si in D. Additionally, m is
the mth word of the kth sentence. In line 7, the function d
returns the distance d0 between two vectors, Wi

j and Wk
m. In

line 9, (Wi
j , W

k
m, d0) is appended to the PLC when the d0 is

lower thanmax_d. In Fig. 1, the underlined words are word-
embedded vocabularies. The 5th word “hungarian” in s9 is
connected to the words of s6 to form the PLC. “border” is
ignored because its d value is larger thanmax_d.
The algorithm then finds the next candidate words for the

LC using (2) in lines 13 through 26. This indicates that
PLCðWi

j ;W
k
mÞ finds the Wn

p at the closest distance. In line
14, the PLC is sorted according to d. Lines 16 and 17 show
that (Wi

j , W
k
m, d) is used for LC candidates (LCC) up to

nb_cand. In lines 18 through 23, each word vector of the
PLC[t] is compared with Wn

p to build LCC. In line 22, the

distance values between components are interpolated using
(2). In line 23, (i0, k0, n, g) is appended to LCC. Figure 1
shows that there are four candidates in the LCC group.

Algorithm 1. Building sentence chains.

Inputs: D = {S1, S2, S3, . . . , Sm}, Si ¼ fWi
1;W

i
2; . . . ;W

i
ng

Outputs: sentence chain SC

Initialize1): SC ∅, k1 = 0.4, k2 = 0.3, k3 = 0.3, d = 5, max_d =
0.4, nb_cand = 2

1 for si in D do

2 LC ∅

3 for Wi
j in si do

4 PLC ∅

5 for sk in D, 0 < k < i, k ≥ i – d do

6 for Wk
m in sk do

7 d0 d (Wi
j , W

k
m) ⇒ use (1)

8 if d0 < max_d then

9 append (Wi
j , W

k
m, d0) to PLC

10 end if

11 end for

12 end for

13 if |PLC| > 0 then

14 PLC sort_by_d (PLC)

15 LCC ∅

16 for t in |PLC|, t < nb_cand do

17 Wi
j 0,Wk

m0, d0  PLC[t]

18 for sn in D, 0 < n < k0, n ≥ k0 – d do

19 for Wn
m in sn do

20 d1 d (Wi
j 0,Wn

m)

21 d2 d (Wk
m0, Wn

m)

22 g k1�d1 + k2�d2 + k3�d0 ⇒ use (2)

23 append (i0, k0, n, g) to LCC

24 end for

25 end for

26 end for

27 if |LCC| > 0 then

28 LCC sort_by_g (LCC)

29 for t in |LCC|, t < nb_cand do

30 append LCC[t] to LC

31 end for

32 end if

33 end if

34 end for

35 i0, k0, n0  ming LC

36 append (si0, sk0, sn0 ) to SC

37 end for

1) The constant values were determined empirically.
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gðwi
j;w

k
m;w

n
pÞ ¼ k1 � dðwi

j;w
n
pÞþ k2 � dðwk

m;w
n
pÞ

þ k3 � dðwi
j;w

k
mÞ; ðk1þ k2þ k3 ¼ 1Þ: (2)

Finally, the LCC is sorted using g to build the LC in
lines 27 through 32. We select the best sentence index (i,
k, n) from the LC to append (si, sk, sn) to the SC. The
procedure for building sentence chains is presented in
lines 35 and 36 in Algorithm 1, and the final sentence
chain is described in Fig. 1.
In order to enhance the performance of this algorithm,

we use a beam search during the SC building process.
Here, nb_cand indicates the size of the beam. This aids in
avoiding excessive generation of LCs. The main
difference between our approach and previous studies is
the use of word embedding. In [3], the researchers
constructed lexical chains using various knowledge
sources, such as WordNet and natural language analyzers.
An evaluation of our sentence chain method is provided in
the evaluation section. We expect that the triples generated
from our sentence chains will reduce the size of the
training data for the seq2seq model because the lexical
chain approach stems from summarization issues.

IV. Triple-Seq2seq Model

A recurrent neural network (RNN) can handle long-
distance dependencies in sequential data streams. An
enhanced RNN was proposed in [26], which is an LSTM
that improves upon the RNN by solving numerous
problems that are not solvable by previous RNN
methodologies, such as the vanishing gradient issue. The
LSTM is described in (3). We use the formulation
proposed in [27]. It describes that there is an input gate it,
forget gate ft, output gate ot, and memory cell mt at a

time t when xt is an input vector. The core idea of the
LSTM is to regulate information flow into and out of the
memory cell mt by using non-linear gating units [27]. In
(3), lt is the block input, which is calculated using the
current input xt and the previous block output ht�1. tanh
is a hyperbolic tangent activation function. The input gate
it has the role of regulating the block input lt. The forget
gate ft decides if the previous memory state mt�1 should
be forgotten when building the current memory state mt.
The operator ⊙ denotes point-wise multiplication of two
vectors. The output gate ot controls the block output ht.
The gating units use the logistic sigmoid as an activation
function. Here, W* is the weight matrix estimated during
the training phase using the back-propagation through
time (BPTT) algorithm. When an input stream ends at
time t, ht is considered an embedding value of the input
sequence.

lt ¼ tanhð½Wxl;Whl� � ½xt;ht�1�Þ; it ¼ rð½Wxi;Whi� � ½xt;ht�1�Þ
ft ¼ rð½Wxf ;Whf �Þ; ot ¼ rð½Wxo;Who� � ½xt;ht�1�Þ

mt ¼ ft�mt�1þ it� lt; ht ¼ ot� tanhðmtÞ:
(3)

In this study, we use a standard LSTM-based seq2seq
model to expand the input corpus. The seq2seq model is a
general end-to-end approach used in sequence learning [28].
It has been applied to SMT studies to translate an input
language into a target language [28], [29]. The seq2seq
model is also used for sentence embedding [30], [31]. The
triple-seq2seq model (TSM) is described in (4), (5), and (6).
The difference between triple-seq2seq and a general seq2seq
model is that TSM encodes A = {a1, . . . , an} and B = {b1,
. . . , bn} into an embedding value hAB that is inputted to the
decoder, which generates C = {c1, . . . , cn}. The encoders in
that process A and B in (4) share the parameters of the
LSTM, whereas the decoder for generating C in (6) is a
separate LSTM. The encoders in (4) create embedding
values: hA for A and hB for B. (5) shows that the TSM
reduces a concatenation of hA and hB to hAB in order to
match the dimensions of the recurrent state of the decoder.
Here,Wv is estimated during the training phase.

hA ¼ LSTMencðAÞ; hB ¼ LSTMencðBÞ; (4)

hAB ¼ Wv � ½hA; hB�; (5)

C ¼ LSTMdecðhABÞ: (6)

The TSM can be described as a conditional probability
[32]. It predicts the probability of C being conditioned by
A and B, as described in (7). p(ct | hA, hB, c1 � � � ct�1)
computes the probability of the next word ct at time t
when conditioned by the history c1 � � � ct�1, hA, and hB.

she was on a train that had left budapest filled with migrants and
refugees hoping to get to germany

PLC

LCC

d = 0
d = 0.19

g = 0.39

g = 0.21

g = 0.47

g = 0.29

d = 0.41

s1

these are families around us right now that have all fled the wars in 
syria making this horrific journey with their children

s4

some people have told them it’s a town that’s on the hungarian
austrian border

s6

they are concerned because hungarian government officials are 
being quite clear about this

s9

Fig. 1. Example of Building a Sentence Chain: The partial LC
(PLC) and LC candidates (LCC) are built for the 5th
word of s9. The blue line is included in the LC. The final
sentence chain is (s1, s6, s9). d and g are from (1) and (2).
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Here, hA and hB are the embedding values of A and B. In
other words, the probability of ct is calculated using a
softmax function, as shown in (8), in the LSTM decoder
where g(ht�1, ct) is the activation function between the
block output ht�1 and ct.

pðc1 � � � cnja1 � � �an;b1 � � �bnÞ ¼
Yn

t¼1
pðctjhA;hB;c1 � � � ct�1Þ;

(7)

¼
Yn

t¼1

expðgðht�1; ctÞÞ
Rv expðgðht�1;cvÞÞ : (8)

Figure 2 presents an example of the TSM learning
process. Here, the sentence chain (s1, s6, s9) found in
Fig. 1 is described with A = s1 and B = s6 connected to
LSTM encoder, and C = s9 connected to LSTM decoder.
This sentence chain becomes the training data for the
TSM. “<EOS>” is a mark indicating an end-of-sentence,
which is typical in seq2seq models. This mark acts as both
start and stop signals during the decoding phase.

V. Corpus Expansion

1. Cross-Document Based Sentence Pairs

The sentence chain algorithm builds a set of triples used
for training the TSM prior to corpus expansion. The TSM
uses two sentences from a triple as input to generate one
output sentence. Here, the major concern is how to select
the two input sentences. We use an internal resource
approach for corpus expansion. A restriction is
encountered where the expansion stage depends on the
resources of the training stage. We assume that the
training resources are compiled from multiple documents.

One triple for training comes from one document. Thus,
one sentence chain cannot cross documents. If we extract
similar sentences from different documents, the sentences
can be used as input sentences for the TSM. These cross-
document sentence pairs may be written by different
authors, which leads us to expect the TSM to be capable
of generating various expressions.
The process for building cross-document sentence

chains is as follows: 1) shuffle sentences from the input
text, 2) randomly sample pairs of sentences from different
documents, 3) compute the similarity of each pair of
sentences, 4) insert a pair of the best matching sentences
into a cross-document sentence chain, and 5) iterate from
2) through 4) until a sufficient number of inputs is
obtained. Step 3) computes the similarity between two
sentences using (9). This is similar to the distance measure
described in [33]. It calculates an average of all pairs of
words in si and sk, and uses (1) to find the distance
between Wi

j and Wk
m. (9) allows an upper bound for word

distance. This allows us to change the denominator of (9),
which counts only words included in pairs valued lower
than the upper-bound.

similarityðsj; skÞ ¼
Rjsijj Rjsk jm dðwi

j;w
k
mÞ

jsij � jsk j : (9)

Table 1 contains an example sentence (c) generated by
the TSM using the cross-document sentence pair (a), (b).
Here, (b) is the related sentence extracted using the cross-
document approach. The generated sentence (c) has a
semantic relationship with the input sentences (a) and (b),
although it is not a perfect sentence.

2. Triple-Based Sentence Pairs

For the second policy of corpus expansion, we use a
feature of the seq2seq architecture. Empirically, we found
that the TSM does not always generate the target sentence
for a triple given an input sentence pair from the same

she was on germany

some people have border

<EOS> they are this

they are concerned <EOS>

hA

hB

hAB

LSTM enc

LSTM dec

…

…

…

…

Fig. 2. Example of the Triple-seq2seq model.

Table 1. Examples of cross-document based sentence pairing.

Type
Cross-document sentence pair (a), (b) and

generated sentence (c).

(a)
Some people have told . . . on the Hungarian
Austrian border.

(b)
Let’s talk more about
Europe’s deepening refugee crisis.

(c)
It’s now the people on the ground they’re
coming from.
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triple. Therefore, the triples used during the training phase
can be applied in the generation phase. We simply shuffle
the order of components in a triple to generate additional
inputs for the TSM.
In Fig. 3, we show that the triple (A, B, C) used in the

training phase (a) is used again in the corpus expansion
phase (b). If AB?C indicates that A and B are the inputs
for the encoders of the TSM, and C is the target sentence
of the decoder, then AB?C0 is equivalent in the expansion
phase, and inputs A and B can generate C0. BA?C00 can be
described similarly. Here, we expect that C, C0, and C00 are
different expressions, meaning C 6¼ C0 6¼ C00. Therefore,
we can directly extract a set of inputs from the triple (A, B,
C), such as {AB, AC, BA, BC, CA, CB}.
Examples of generated sentences are presented in

Table 2, the second row of which contains a triple
extracted as a sentence chain. The triple is the sentence
chain (s1, s6, s9), found in Fig. 1. The input types for
the sentence pairs were derived from this triple. From
AB to CB, the sentences were generated using a TSM
model trained with triples. From the generation of input
type AB, the TSM shows that it can generate a
different sentence given an input sentence pair that is

identical to the sentence pair for the encoder of the
TSM during the training phase. In the final row,
“_UNK” is an unknown word mark due to a fixed
vocabulary size.

VI. Evaluation

In order to evaluate the corpus expansion, we used
two methodologies: perplexity (PPL) of the language
model and the n-gram hit-ratio. Minimizing PPL, P(w1,
w2, . . . , wm)

�1/m, is to maximize probability, because
PPL is the inverse probability of the test set, normalized
by the number of words. That is to say, a lower PPL
indicates a better model [34]. If a language model built
from the augmented corpus shows improved perplexity
for the test set, it indicates the usefulness of our
approach for corpus expansion. The n-gram hit-ratio is
the ratio of the number of components per n of the n-
grams hit in the language model over the amount of
unseen data [35]. We expect that the hit-ratio for high-
order n-grams in the test set will increase relative to the
baseline when we use the TSM-based approach. This
would indicate that our approach can generate unseen
high-order n-grams. In the following section, we first
describe the experimental settings, and then present the
results.

1. Experimental Settings

A. Dataset

The dataset used for the evaluation of corpus expansion
includes Korean community documents (KOR), Korean
part-of-speech tag-attached documents (KOR-POS), and
CNN transcriptions (ENG). The triples generated from
sentence chains use a corpus composed of these
documents. We selected documents written in a colloquial
style because spoken language processing is our main
interest. Additionally, we determined that large amounts
of vocabulary may be inappropriate for TSM-based corpus
expansion. We wished to avoid a long training phase
during the experiments. Therefore, dialogic sentences,
such as interview transcriptions and freeboard text, were
prepared for the evaluations.
KOR was extracted from a women’s community site2).

Using the word-segmentation tool (WST) from [36], we
segmented the words from KOR into morphemes. For
KOR-POS, we attached a part-of-speech tag to each
morpheme. We will refer to morphemes as words for

TSM
A
B C

(a)

TSM
A
B C TSM

B
A C

(b)

Fig. 3. Usage of triples: (a) training and (b) corpus expansion.

Table 2. Examples of triple-based sentence pairing.

Type Triple input and generated sentences.

TRIPLE (A, B, C)
A: She was on a train that had left Budapest . . . to get to Germany.
B: Some people have told . . . on the Hungarian Austrian border.
C: They are concerned because Hungarian government . . . clear

about this.

AB
They are running around the border here . . .
trying to get people off.

AC
They’re told government they can . . .
government get to the people.

BA
But the Hungarian government says that they
want to keep it in.

BC
I want to get this very quickly black reporting
on the Serbian . . .

CA
And Germany has been very clear on the very
important issue.

CB
It’s a small government station and the _UNK
are _UNK up.

2) http://www.82cook.com/entiz/enti.php?bn=15, 15 Aug 2013~5 Jan 2015
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convenience. KOR had an ungrammatical style in its word
spacing and sentence boundaries. We resolved the word
space issue using the WST. For the sentence unit issue,
sentence-end detection rules were used to divide KOR into
appropriate sentence units. For ENG, CNN transcriptions
were extracted3). We used a randomly sampled dataset
from the extracted text for the KOR, KOR-POS, and ENG
experiments.
The construction of sentence chains relies on a

similarity measure between words (1), which requires a
word embedding process. We used the word2vec tool [5]
to convert words into vectors. We only selected words that
occurred at least three times within their respective
datasets, yielding the following final dataset; KOR
(43,859), KOR-POS (50,715), and ENG (33,917). The
size of the word vector is 120, which is the word
embedding size. This refers to the vector dimension and is
a parameter used to convert vocabularies into vector
values. The words in the vocabulary set proceed to word
embedding using the left- and right-six context words
from among the words in the document. We then
constructed triples using Algorithm 1. The results are
249,280 triples for KOR, 231,242 triples for KOR-POS,
and 499,048 triples for ENG. The size of the ENG-triples
is larger than the other datasets because the ENG text is
composed of many more words. These triples are used in
the TSM training phase. The configuration of the dataset
for evaluation is summarized in Table 3.

B. TSM Configuration

The LSTM-based TSM was developed using the
Tensorflow tool described in [37]. Table 4 describes the

configuration of the TSM. Configuration parameters such
as learning rate, learning rate decay factor, max gradient
norm, and cell size followed the neural translation model
of the example in the Tensorflow seq2seq library4). Other
constants, such as sequence size, embedding size, and
vocabulary size, were experimentally determined based on
a performance evaluation of the development text. We
chose smaller values when possible. The reason for this is
that the learning time of the TSM was approximately 2 to
3 days, despite using a GPU server with a 3.0-GHz Intel
Xenon E5-2623 V3 and an NVidia GTX980Ti.

C. Input Sentence Pairs for Corpus Expansion

The number of input sentence pairs used for corpus
expansion is presented in Table 5. In order to generate
new sentences, we built two types of input sentence pairs.
For the first type, cross.doc, we used the process of
building cross-document based sentence pairs, which is
described in Section V. Empirically, this was time
consuming because the number of similar sentence pairs
depends on the size of the sampled text. In the case of the
second input type, triple, the building step is very simple.
The order of the triple components, A, B, and C, is
simply shuffled. In each input type for the triple, we
remove duplicated sentence pairs. Additionally, this can

Table 3. Dataset configuration.

Data type KOR / KOR-POS ENG

Documents 20,307 3,122

Words 7,831,463 15,995,598

Sentences 508,871 1,154,275

Average words in
a sentence

15 13

Train documents 16,245 2,497

Development
documents

2,031 312

Test documents 2,031 313

Vocabulary 43,859/50,715 33,917

Triples 249,280/231,242 499,048

Table 4. Configuration of the TSM.

Configuration type: value

Learning rate: 0.5 Batch size: 64

Learning rate decay factor: 0.99 Sequence size: 30

Max gradient norm: 5.0 Embedding size: 120

Cell size: 1024 Vocabulary size: 15,000

Table 5. Number of input sentence pairs for corpus expansion.

Input type KOR
KOR-
POS

ENG

cross.doc 202,410 160,938 870,540

triple

AB 213,133 198,272 434,689

AC 242,382 225,500 485,982

BA 213,133 198,272 434,689

BC 241,045 224,706 482,309

CA 242,382 225,500 485,982

CB 241,045 224,706 482,309

3) http://transcripts.cnn.com/TRANSCRIPTS/, 3 Sep 2015~28 Feb 2016 4) https://www.tensorflow.org/versions/r0.10/tutorials/seq2seq
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generate a larger set of input data than a cross-document
approach.

2. Results

A. TSM Training

Figure 4 illustrates the learning process of the TSM for
the KOR, KOR-POS, and ENG triples shown in Table 3,
where train_err is the perplexity of the cross entropy of
the training error value. The TSM learning configuration
follows the values in Table 4. As learning progresses, the
learning_rate is reduced by the ratio of the
learning_rate_decay_factor when the error value
increases during the final three batch operation steps. In
the case of KOR, the initial train_err value is higher than
ENG. However, as the time step increases, the train_err
value converges to a lower level. This means that KOR’s
TSM is learning better than ENG’s TSM. This is
confirmed by the fact that the learning_rate reduction of
KOR is slower than that of ENG.
The performance results of the trained TSM are

described in Table 6. The experimental results show the
correlation between corpus expansion and the TSM
learning curves. As corpus expansion performance
becomes better, the train_err reduction of the TSM
becomes faster, and at the same time, the rate of decrease
in the learning_rate becomes slower.

B. Evaluation of Corpus Expansion

The evaluations of corpus expansion are presented in
Table 6, where the LM type baseline of (a) KOR used

16,245 training documents from KOR, described in
Table 3, to build a 4-gram LM using the SRILM toolkit
[38]. Additionally, cross.doc is an LM of 202,410
sentences generated from the same number of sentence
pairs shown in Table 5. The LM type +cross.doc is an
interpolation of baseline and cross.doc using
interpolation weights estimated from the development
set. Furthermore, triple is made up of six types of LM:
AB, AC, BA, BC, CA, and CB LMs. The AB LM for
the (a) KOR test was built from 213,133 sentences
generated from the AB input sentence pairs shown in
Table 5. In the same manner as +cross.doc, +triple is
an interpolation of baseline and these six LMs. The last
LM type, +cross.doc+triple, is an interpolation of all
LMs: baseline, cross.doc, and triple.
In all experiments on corpus expansion,

+cross.doc+triple LMs achieved the best PPL reduction
rates (RR). The results for +triple are better than those for
+cross.doc, while the results for +triple are slightly lower
than those for +cross.doc+triple. In the (b) KOR-POS
test, the best RR was 7.6%. This suggests that the part-of-
speech information plays a role in generating a better LM
than that in other tests. Although the results of the (c)
ENG test were not better than those of the (a) KOR and
(b) KOR-POS tests, they still indicate that our methods of
corpus expansion can be applied to multilingual text.
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Fig. 4. Learning curve of TSM training.

Table 6. Results of corpus expansion.

LM type
dev test

PPL RR PPL RR

(a) KOR

baseline 257.6 N/A 266.0 N/A

+cross.doc 246.6 4.2% 254.6 4.2%

+triple 238.9 7.2% 247.0 7.1%

+cross.doc
+triple

238.7 7.3% 246.6 7.2%

(b) KOR-POS

baseline 244.1 N/A 249.4 N/A

+cross.doc 233.8 4.2% 239.1 4.1%

+triple 225.5 7.6% 230.5 7.5%

+cross.doc
+triple

225.2 7.7% 230.2 7.6%

(c) ENG

baseline 120.8 N/A 128.8 N/A

+cross.doc 114.0 5.6% 121.8 5.4%

+triple 113.3 6.1% 120.8 6.1%

+cross.doc
+triple

112.6 6.7% 120.2 6.6%
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Additionally, a Wilcoxon signed-rank test [39] was
conducted to determine statistical significance. In each
test, the improvements of the extended models were
shown to be statistically significant, achieving a p-value of
(<0.001) when compared to the baseline model.

C. N-gram Hit-Ratio

The back-off LM computes the probability of unseen 4-
grams, such as p(w1w2w3w4), using p(w2w3w4) and the
back-off value of a 3-gram, such as w1w2w3. The back-off
value is computed from the residual probability of
previously seen 4-grams. The residual value comes from
the n-gram discount approach, which subtracts a small
value from the count of each n-gram. Thus, the probability
of an unseen n-gram is approximated using lower-order n-
grams. Thus, if the high-order n-gram hit-ratio of LM A is
relatively higher than that of LM B, it can be said that the
quality of LM A is better.
Figure 5 presents improvements in high-order n-gram

hit-ratios using our corpus expansion methods. The n-
gram hit-ratios are the proportion of the number of
components per n of the n-grams hit in the LM over the
total amount of unseen test data. The first four-color bar in
Fig. 5 (a) shows the ratios for the number of matching 1-
grams, 2-grams, 3-grams, and 4-grams when the baseline
LM calculates the probability of the test text. As the

corpus expansion technique is applied, it can be seen that
the ratio of high-order n-grams gradually increases. In the
graphs, both (a) KOR and (b) KOR-POS show similar
results for n-gram hit-ratios. The tests for +cross.doc
+triple yield the best n-gram hit-ratios across all
experiments. In the case of (C) ENG, the 4-gram area is
larger than in the other sections. This is caused by ENG
containing relatively small n-gram variations, which
results in the low perplexity of the LM test. From these
experiments, we are able to confirm the basis for the
performance improvements seen in Table 6. That is to
say, our corpus expansion methods can handle the unseen
n-gram problems.

D. Sentence Embedding Comparison

The final test is a comparison with a previous approach.
Although we were unable to find any studies on
expanding sequential data using a neural model, the
technique for sentence embedding proposed in [31] is
appropriate for comparison with our sentence-chain based
TSM approach. The authors used triples composed of
sequential sentences for sentence embedding. They trained
a seq2seq model to reconstruct the surrounding sentences
for an encoded target sentence. We tested these sequential
sentence based triples (SST) for corpus expansion. In this
experiment, our approach uses sentence chain triples
(SCT), which are evaluated on the KOR-POS and CNN
datasets. These SCT tests are the +triple tests in shown
Tables 7 and 8.
Table 7 contains the results for the KOR-POS dataset,

while the results for the CNN dataset are described in
Table 8. SCT reduced the number of triples used for

baseline

+cross.doc

+triple

+cross.doc
+triple

baseline

+cross.doc

+triple

+cross.doc
+triple

baseline

+cross.doc

+triple

+cross.doc
+triple

13.8%

5.7% 27.2% 29.6% 37.6%

5.7% 27.6% 29.9% 36.7%

6.0% 28.7% 30.4% 34.9%

6.3% 30.4% 31.6% 31.8%

(c)

(b)

10.9% 37.6% 30.2% 21.2%

11.1% 37.9% 30.1% 20.9%

12.9% 40.2% 28.8% 18.0%

13.8% 41.4% 28.1% 16.8%

11.2% 38.1% 29.8% 20.9%

11.4% 38.4% 29.7% 20.5%

12.9% 40.8% 28.5% 17.9%

42.2% 27.7% 16.4%

(a)

0 20 40 60 80 100

1-gram
2-gram
3-gram
4-gram

Fig. 5. The n-gram hit ratio: (a) KOR, (b) KOR-POS, and (c)
ENG.

Table 7. Results of SST and SCT for KOR-POS.

Type SST SCT Diff. of %

No. of triples 360,305 231,242 �35.8%
No. of generations 2,020,012 1,296,956 �35.7%

+triple

No.

1-g 15,001 15,001

+19.5%
2-g 1,639,861 2,046,052

3-g 6,920,321 8,713,150

4-g 12,964,806 14,965,274

n-gram
hit ratio

1-g 12.1% 11.1% �8.27%
2-g 38.0% 37.9% �0.26%
3-g 28.9% 30.1% +4.15%

4-g 21.0% 20.9% �0.48%
test PPL RR

(baseline 249.46)
6.67%
(232.7)

7.59%
(230.5)

+13.79%
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SST by 35.8% for the KOR-POS dataset. Similarly, for
the CNN dataset, SCT reduced the number of triples
used by 38.42%. This suggests that the training size for
SCT is smaller than for SST because SCT drops triples
that are not included in sentence chains. Using these
two types of training sets, we trained each TSM for the
SST and SCT methods for both datasets. For the
number of generated sentences, SCT for the KOR-POS
dataset achieves a reduction of 35.7%, with a reduction
of 39.85% for the CNN dataset. However, in the +triple
LMs, the n-gram size of SCT is bigger than that of SST
for both datasets. The +triple for the KOR-POS dataset
increases n-gram size by 19.5%. Furthermore, the CNN
dataset increases n-gram size by 41.91%. These results
indicate that SCT uses a small training set while
generating a rich set of n-grams.
The n-gram hit-ratio and PPL results support that

theory that SCT is superior to SST for corpus
expansion. In the KOR-POS test, the n-gram hit-ratio
increased by 4.15% when using 3-grams, while it
decreased slightly when using 4-grams. As shown for
the CNN test in Table 8, the hit-ratio increased by
5.46% when using 4-grams. In the PPL reduction rate
tests, the improvement in the PPL reduction rate of the
SCT was 13.19% for the KOR-POS test set and
17.71% for the CNN test set. We have confirmed that
this improvement is statistically significant using the p-
value (<0.001) obtained using the Wilcoxon signed
rank test [39]. In summary, our SCT approach reduced
training data size by 38.42% and generated 41.92%
more n-grams while improving the high-order n-gram
hit-ratio. Additionally, it decreased the reduction rate of
the PPL by 17.71% for the CNN test set.

3. Discussion

We experimentally demonstrated that the proposed
corpus expansion technique improves the performance of
the traditional n-gram LM. We also demonstrated the
reason for the performance improvement of the corpus
expansion technique through the n-gram hit-ratio
experiment. N-grams that are not present in the training
text are generated by the TSM, allowing the probability
value of the n-grams in the test data to be calculated
directly. Additionally, we confirmed that the triples
generated by the sentence chain approach are superior to
triples composed of consecutive sentences. This means
that relational sentence sets extracted by the sentence
chain approach are more suitable for text generation via
TSM.
We were unable to find a similar existing study, but we

reviewed previous studies that improved upon PPL by
using the interpolation methodology of the n-gram model.
The best PPL improvement was seen in [40]. Using a
generalized linear interpolation technique based on a
specific feature rather than the existing linear interpolation
approach, the performance improvement reached 6.5%.
Our study showed a PPL improvement of 6.6% in the
English domain and 7.6% in the Korean domain. Despite
the differences in the evaluation sets and technical fields,
we can confidently state that our results are close to the
state-of-the-art for PPL improvement.

VII. Conclusions and Future Work

We proposed a sentence-chain based triple seq2seq
model (TSM) for corpus expansion. The proposed model
uses an approach based on internal resources without
requiring external knowledge. Experimental results
demonstrate that corpus expansion improves the
perplexity of the language models by approximately 7.6%
in the KOR-POS test. An analysis of the n-gram hit-ratio
indicated that TSM-based corpus expansion has the ability
to generate unseen high-order n-grams. Additionally,
triple-generated inputs are an effective technique for
language generation. From a comparison with a previous
study, our sentence-chain approach reduced the size of the
training data by 38.4% and generated 1.41-times the
number of n-grams while maintaining better performance
in the CNN test.
We used an LM interpolation technique because our

sequential data integrations depend on language models.
For future work, we wish to test additional methods for
the integration of existing resources and generated
resources. Additionally, we found that TSM-based corpus

Table 8. Results of SST and SCT for CNN.

Type SST SCT diff. of %

No. of triples 810,395 499,048 �38.42%
No. of generations 4,665,024 2,805,960 �39.85%

+triple

No.

1-g 15,001 15,001

+41.92%
2-g 1,267,374 1,427,003

3-g 5,261,759 6,980,361

4-g 10,477,538 15,734,108

n-gram
hit ratio

1-g 6.1% 5.7% �6.56%
2-g 29.0% 27.6% �4.83%
3-g 30.1% 29.9% �0.66%
4-g 34.8% 36.7% +5.46%

test PPL RR
(baseline 128.84)

5.25%
(122.0)

6.18%
(120.8)

+17.71%
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expansion can be applied to natural language research,
such as semantic role labeling, part-of-speech tagging, and
syntactic structure analysis. The reason for this is that the
KOR-POS dataset yielded the best results in our
experiments. Finally, we will make an attempt to generate
semantically similar sentences for the input rather than
simple text extension using the results of this study. In
order to achieve this, it is necessary to study semantic
similarity evaluation methods and big-data based similar
sentence extraction technology.
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