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For video understanding, namely analyzing who did
what in a video, actions along with objects are primary
elements. Most studies on actions have handled
recognition problems for a well-trimmed video and
focused on enhancing their classification performance.
However, action detection, including localization as
well as recognition, is required because, in general,
actions intersect in time and space. In addition, most
studies have not considered extensibility for a newly
added action that has been previously trained.
Therefore, proposed in this paper is an extensible
hierarchical method for detecting generic actions,
which combine object movements and spatial relations
between two objects, and inherited actions, which are
determined by the related objects through an ontology
and rule based methodology. The hierarchical design
of the method enables it to detect any interactive
actions based on the spatial relations between two
objects. The method using object information achieves
an F-measure of 90.27%. Moreover, this paper
describes the extensibility of the method for a new

action contained in a video from a video domain that is
different from the dataset used.

Keywords: Action detection, Hierarchical action
composition, Generic action, Inherited action, Video
understanding.

I. Introduction

Actions, in company with objects, are essential elements
for understanding a video semantically, namely who
(objects) did what (actions) in the video. Since 1992, most
studies on actions have mainly dealt with the recognition
problems found in different videos [1]–[16]. An action
recognition method returns the type of a representative
action found in a video. The above studies have targeted
different types of actions, including gestures, single-
person actions, human-human or human-object
interactions, and group actions, and have mainly focused
on increasing their classification accuracy.
To understand the actions appearing in a video, we need

action detection methods supporting both spatial and
temporal localization as well as action classification. A
video action dataset includes both videos and annotations
on the actions contained in the videos. Most video datasets
that are widely used for action recognition include well-
trimmed videos [17]. Each video usually contains a single
representative action to which most frames within the
video are related. However, frequently encountered
videos, which are obtained from the Internet or produced
by the general public through smartphones, are different
from the videos collected in the video datasets. Such
videos are lengthy and contain multiple actions
intersecting temporally or spatially. Moreover, some
recent studies on action detection support temporal
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localization targeting for untrimmed videos [18], [19] or
spatial localization for well-trimmed videos [20].
It is difficult to define all action types and train the

models for them in advance before applying them to a
specific video application. Existing action recognition and
detection methods [1]–[16], [18]–[26] have targeted
specific action types closely related to different video
domains. The type of action supported by a recognition
method is determined based on the video domain of the
dataset used. For example, dramas and movies mainly
contain human-human interactions and/or human-object
interactions, whereas surveillance videos are focused on
actions for monitoring objects of interest, such as persons,
cars, and entrances. However, current videos include more
heterogeneous actions than past ones, often produced by
experts in a studio within a limited genre, because such
videos are produced through various channels both
commercially and personally. Therefore, we need an
extensible approach to understanding any videos
irrespective of their video domain.
To address these challenges, we propose a domain-

extensible hierarchical method for detecting interactive
actions. The proposed method extends a knowledge-
driven approach whose feasibility was previously tested
for six target actions [27]. The proposed method detects
both generic composite actions based on dynamic
spatial relations (DSR) between two objects and
inherited composite actions determined by the related
objects. As shown in Fig. 1, the method detects a
generic composite action GoIn(X,Y) based on Into(X,Y)
that consists of two atomic actions, sr_closeTo(X,Y) and
disappear(X), which means X is close to Y, and X then
disappears in a moment. If Y is a car or an entrance,

GoIn(X, Y) is embodied in GetInto(X, Y) or Enter(X, Y),
respectively.
Consequently, this paper makes the following three

major contributions:

• For the extensibility, the proposed method detects a
generic composite action, which can be an abstract
description of a specific action, as well as an inherited
composite action if defined. It is shown that the
detection system detects a generic composite action
corresponding to a new action and detects the new
action by adding a rule for specializing the generic
action with constraints on related objects.

• For representing and reasoning the composite actions
associated with moving objects, the proposed method
uses ontologies and rules, which are mostly utilized
for static hierarchical knowledge. The application of
such ontologies and rules enables the method to
connect the generic and inherited actions semantically.

• For ten actions intersecting in time and space in
untrimmed videos from the ActionNet-VE dataset, the
detection method using object information achieves an
F-measure of 90.27%.

II. Related Work

Studies on video actions can be divided into action
recognition and detection. The goal of action recognition
is to classify the type of a representative action contained
in a segmented video. Action detection includes spatial
and/or temporal localization as well as action recognition.
Studies on action recognition have made great strides in

the complexity of recognizable actions and recognition
rate. Initially, the KTH [28] and Weizmann [29] datasets

Atomic Actions (AA)
- Movements of a single object
- Maintenance of spatial relations 

between two objects

Generic Composite Actions (GCA)
- Composed by Atomic Actions

Inherited Composite Actions (ICA)
- Determined by specific objects

None

DisappearClose Close

disappear(X)

sr_closeTo(X, Y)

appear(X)
sr_closeTo(X, Y)

AA AA

GoIn(X, Y) ComeOut(X, Y)
GCA GCA

ICA ICA
IsA(Y, Car)

IsA(Y, Entrance)GetInto(X, Y)

Enter(X, Y) GetOutof(X, Y)

Exit(X, Y)

IsA(Y, Entrance)
IsA(Y, Car)

Fig. 1. Concept of extensible hierarchical detection method for interactive actions. Three types of detected actions are (1) an atomic
action for describing movements of an object and maintenance of spatial relations between two objects, (2) a generic
composite action composed by inference rules with multiple atomic actions, and (3) an inherited composite action from a
generic composite action with constraints on the related objects.
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were widely used. The videos contain simple single-
person actions, such as walking and running, performed
by students with a static background. A method using
KTH [29] achieved an accuracy of 71.7%, whereas a
method using spatio-temporal bag-of-features achieved an
accuracy level of 91.8% four years later [5]. Since the
development of the KTH and Weizmann datasets, new
datasets have included real-world actions obtained from
movies, sports, and YouTube videos. HMDB-51 [30] and
UCF-101 [31] are middle-scale datasets, and Sports-1M
[11] is a large-scale dataset. Accordingly, they are most
frequently used nowadays. The method using hand-crafted
improved dense trajectory (iDT) features [6], [7] and a
method of hybrid representation [8] showed average levels
of accuracy of 85.9% and 87.9% on the UCF-101 dataset,
respectively. Although some methods using convolutional
neural networks (CNNs) [9]–[11] have been proposed, the
approaches of two-stream CNNs in [12], [13] started to
slightly outperform approaches using hand-crafted
features with accuracy levels of 88.0% and 88.6%,
respectively. In two-stream CNNs, actions are represented
based on appearance using RGB frames and motion
through optical flows. Approaches using CNNs with RGB
frames, optical flows, and additional iDT [14]–[16] have
achieved levels of accuracy of 90.4%, 91.5%, and 93.5%,
respectively. In terms of accuracy, they have surpassed
approaches using only hand-crafted features. In contrast to
the UCF-101 dataset, the best performances of the Sports-
1M and HMDB-51 datasets in [13] and [16] are only
73.1% and 69.2%, respectively.
Although there have been fewer efforts on action

localization [18]–[26], compared to those of action
recognition, action detection has also made considerable
progress recently by adopting CNNs and long short-term
memories (LSTMs) [18]–[21]. Recent approaches for
spatial and temporal action localization have mainly used
the UCF-Sports [32], J-HMDB [33], and THUMOS [34]
datasets. The UCF-Sports and J-HMDB datasets contain
well-trimmed videos, which have also been used for
action recognition, and annotations on the spatial region of
an action for each frame. On the other hand, the
THUMOS dataset, which has been used for temporal
localization [18], [19], contains untrimmed videos and
annotations on the time interval of different actions. One
of the performance measures of action detection is the
mean average precision (mAP) at an intersection-over-
union (IoU) threshold of d, which means that a detected
action matches the ground truth action if the region of the
detected action intersects with the union of regions of
the two actions above d%. For the UCF-Sports dataset, the
action detection methods proposed in [22] and [23]

achieved mAPs of 54% and 61.6% at an IoU of d = 50%,
respectively. The recent detection methods in [20] and
[21] obtained considerable progress in terms of mAPs of
75.8% and 90.5%, respectively. For the J-HMDB dataset,
the recent methods in [20] and [21] achieved mAPs of
50.3% and 60.7% at an IoU of d = 50%, respectively.
Unlike data-driven vision-based studies on actions,

sensor-based studies have been conducted on actions
based on knowledge-driven approaches. By interpreting
sensor data, these studies have aimed to recognize the
activities of daily living (ADL) [35] in smart homes [36]–
[43], such as BrushTeeth, WashHands, MakeTea, and
TakeMedicine. The knowledge-driven methods for activity
modeling and inference have used domain knowledge and
heuristics with logic-based or ontology-based knowledge
engineering methodologies. They show the strength in
handling a cold start problem compared to data-driven
approaches. However, they do not consider the
extensibility for new actions because the ADL activities
are fixed by sensors installed in a smart home before run-
time.
There have been some efforts made to recognize

video events [44]–[48] by making use of ontologies and
rules represented by the World Wide Web (W3C)
standards including the Ontology Web Language
(OWL) [49] and Semantic Web Rule Language
(SWRL) [50], or other ontology-based formalisms.
Although the ontology-based studies have dealt with
how to learn rules automatically for composite events
in a video [46], [47], they have fixed atomic events in
advance, which compose rules for composite events.
However, it is difficult to define all necessary atomic
events in advance in the real world.

III. Interactive Action Detection

The detection methods consist of temporal localization
on atomic actions using a spatial database (DB) including
object information, temporal localization on composite
actions based on rule-based reasoning, and spatial
localization on temporally localized composite actions
using object information associated with the actions, each
of which is explained in detail in this section.
Figure 2 shows an overview of the detection system that

adopts the proposed method. The detection system obtains
object information as input, which includes the object’s
ID, type, start and end frames, and object track with
minimum bounding rectangles (MBRs) describing the
location and size of the object in each frame. In the object
information management module, the detection system
parses the object information and then constructs a spatial
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DB including two tables, one for the static object
information and the other for the dynamic object track.
Using the spatial DB, the atomic action recognition
module detects atomic actions describing object
movements and the maintenance of spatial relations
between two objects. The composite action inference
module updates OWL-based assertions on both objects
and detected atomic actions, and then applies reasoning
with the defined SWRL rules. The composite action
inference module returns the time intervals of detected
composite actions with the start and end frames. The
action information management module generates the
action tracks including the MBRs of the action within
the time interval for each action by using the MBRs of
the related objects. Finally, the system returns two
descriptors on the detected actions and their associated
objects.
In this paper, the implemented system aims at detecting

ten composite actions, as shown in Fig. 3. Among them,
the four generic composite actions GoIn, ComeOut,
Carry, and Ride are related with into, out of, with, and on
spatial relations, respectively. The six inherited composite

actions are GetInto and Enter (derived from GoIn),
GetOutof and Exit (derived from ComeOut), and
RideBoard and RideBike (derived from Ride).

1. Hierarchical Actions

An action represents a visually meaningful state of a
single object or between two objects. Each action has the
time interval with the start and end frames and action track
with MBRs within the interval. The proposed method
handles the two types of actions, atomic and composite
actions.
Atomic actions. An atomic action is the smallest
component of action that cannot be separated into smaller
ones. The atomic action represents a visual state
maintained within its time interval. The atomic actions
related to movements of an object are appear, disappear,
move, and stop. The atomic actions based on the
maintenance of spatial relation between two objects
include sr_closeTo, sr_with, and sr_on.
Composite actions. In contrast to atomic actions, a
composite action is composed of multiple atomic actions
or another composite action with constraints on the related
objects. By combining multiple atomic actions, a generic
composite action represents a complex visual state. For
example, a carry and ride composite action mean that a
person is moving and the person holds a specific spatial
relation with an object, such as with and on, respectively.
A generic composite action can also represent the change
of spatial state between the subject and object, such as a
GoIn or ComeOut action. By putting constraints on the
objects related to a generic composite action, an inherited
composite action provides more specific visual
information than its generic composite action.

Atomic action 
recognition

Object
movement

Spatial
relation

Spatial DB

SWRL 
drool engine

Complex action
inference

Ontology 
update

SWRL rule 
reasoning

Atomic
actions

ActionNet-VE
- 40 video clips

Object Info
- frame# 
- ID
- Type
- MBR

INPUT
Object info 

management

Desp. XML
Parsing

Spatial DB 
management Object 

descriptor

Action
descriptor

Action info 
management

Action track
generation

Related action
extraction

Temporally
localized
complex
actions

OWL/SWRL
ontology

Fig. 2. Overview of the interactive action detection system.

RideBoard

GCA
ICA

GoIn

EnterGetInto Exit

ComeOut

GetOutof

Ride

RideBoard

CarryGCA
ICA

RideBike

Fig. 3. Ten target actions: four generic composite actions
(GCA), composed of object movements and spatial
relations between two objects, and six inherited
composite actions (ICA), determined by object type.
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2. Temporal Localization on Atomic Actions

The time intervals of appear and disappear actions
related to an object are determined by the first and last
frames in which the objects are seen in the screen.
For move and stop actions, the temporal localization

method decides whether an object x moves between two
consecutive sampled frames, k and k + 1, as shown in (1)
and (2) with a move threshold of dmove. Similarly, a stop
action is determined using a stop threshold of dstop. The
time interval of a move action is calculated by aggregating
consecutive sampled frames while the object moves.

distance
�
centroid MBRðx;kÞð Þ, centroid MBRðx;kÞð Þ

�

average
�
width MBRðx;kÞð Þ, height MBRðx;kþ1Þð Þ

� [dmove;

(1)

distance
�
centroid MBRðx;kÞð Þ, centroid MBRðx;kÞð Þ

�

average
�
width MBRðx;kÞð Þ, height MBRðx;kþ1Þð Þ

�\ dstop:

(2)

The other atomic actions are detected using the spatial
relation functions on two MBRs of a single object between
two consecutive sampled frames, which are used for atomic
actions for describing movements of a single object, or on
two MBRs of two objects in a frame, which are used for
atomic actions based on the DSRs. The spatial relation
functions between two geometric values g1 and g2 or for a
geometric value g, such as intersects(g1, g2), touches(g1,
g2), contains(g1, g2), distance(g1, g2) and centroid(g), are
provided by the database management system.
The time interval of a sr_closeTo(X, Y) action is

calculated by aggregating consecutive sampled frames,
where the two MBRs of X and Y intersect using the
intersects(g1, g2) function.
The sr_with and sr_on actions are a special case of

sr_closeTo. For sr_with, the temporal localization method
decides whether the two MBRs of X and Y intersect in the
frame, whether the area of the MBR of X is larger than the
area of the MBR of Y, and whether the MBR of X is located
higher than the MBR of Y. For sr_on(X, Y), the temporal
localization method decides whether the two MBRs of X
and Y intersect in the fame and whether the centroid of the
MBR of X is located higher than the centroid of the MBR
of Y. The consecutive sampled frames that satisfy the
defined conditions of sr_with and sr_on are aggregated for
the time interval of each atomic action, respectively.
To remove false positive actions that result from

occlusions between two objects briefly sliding by each
other, the temporal localization method for an atomic action
sets the minimum duration for each atomic action except

for the appear and disappear actions. For example, a false
positive carry action can be detected by an occlusion
between one person and a bag owned by the other person
briefly passing by the person if there is no restriction on the
minimum duration for sr_with atomic action.

3. Temporal Localization on Composite Actions

As shown in Fig. 4, the temporal localization method
for composite actions is divided into two parts, the part
defining the terms and rules for detecting composite
actions during the design period and the part automatically
generating instances related to composite actions through
rule-based reasoning during the execution time. A
TBox contains terms representing objects and actions,
which are defined with OWL classes and object properties
in the OWL ontology file. Using the terms defined in the
TBox, an RBox includes OWL/SWRL rules for detecting
composite actions. At run-time, an ABox contains asserted
facts represented by OWL instances, which are inferred
from object information and detected atomic actions with
their time intervals. The rule-based reasoning engines use
TBox, RBox, and ABox for inferring instances of object
properties representing composite actions. After rule-
based reasoning, the temporal localization method updates
the ABox with inferred values and then lists the
temporally localized composite actions.

A. Defining Terms

There are two types of terms used for defining rules:
terms representing objects defined with OWL classes and

Define terms for rules
with OWL classes and 

properties

Generate assertions on 
objects and atomic actions

(OWL instances) 

SWRL rule based reasoning for complex actions

TBox ABox

Atomic actions 
with time intervals

Object info. 
- ID and type 

Updated ABox

Define inference rules 
for complex actions 

with SWRL

RBox

Temporal localization on complex actions

Complex actions 
with time intervals

Before run-time

Fig. 4. Procedure of temporal localization on composite actions
consisting of manually defining the terms and rules
before run-time and generating assertions using object
information and detected atomic actions with their time
intervals, reasoning the rules for composite actions, and
obtaining temporally localized composite actions with
inferred instances.
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terms representing actions defined with OWL object
properties.
To represent the type of objects occurring in videos, we

define the Object class as the subclass of Thing, because
the top class in the OWL ontology is Thing. As shown in
Fig. 5, the Object class has two disjoint subclasses,
Person and NotPerson classes. The NotPerson class
contains Belongings, Entrance, and Vehicle subclasses.
The gray-colored leaf-node classes represent the types of
objects occurring in a video.
The Duplication class is defined for representing an

object for a specific period. Contrary to OWL classes,
which are defined in typical ontologies for a text-based
knowledge base, objects in a video have dynamic
properties, such as their size and location at a particular
time, their spatial relations with other objects, and related
actions. The properties are changeable in time and space.
Therefore, the Object class is not suitable for representing
a moving object in a video. Because the objects perform a
certain action for a specific period, this paper designs
a Duplication class for describing an object during a
particular period.
Corresponding to an action, this paper defines an OWL

object property between the Object and Duplication
classes or between two Duplication classes, as shown in
Fig. 6. There is a hasDuplication object property between
the Object and Duplication classes. Four atomic actions
describing movements of a single object are represented
by the object properties between the Object and

Duplication classes. The three DSR-based atomic actions
and ten composite actions performed by two objects are
represented by the object properties between the two
Duplication classes. The startTime and endTime data
properties represent the time interval of the actions, which
are the basic properties all actions should have.

B. Defining Rules

This paper adopts OWL and SWRL for knowledge
representation and inference because OWL is suitable for
implementing restrictions on the type of related objects for
an inherited composite action, and there are several
inference engines supporting OWL and SWRL, the W3C
standards.
Table 1 shows the OWL/SWRL based rules for ten

composite actions. For example, a GoIn action is detected
if there are the three intersecting atomic actions,
sr_closeTo(X,Y), disappear(X), and stop(Y), the interval of
stop(Y) is longer than Tstop, and the difference between the
end frame number of sr_closeTo(X,Y) and the frame
number of disappear(X) is less than or equal to the
sampling rate. The six rules for inherited composite
actions defined by their generic composite actions and
constraints on the type of object Y.
SWRL rules need multiple comparisons for determining

whether there is an intersection between time intervals
because OWL/SWRL provides binary predicates. To
determine whether there is an intersection between two
time intervals [st1, et1] and [st2, et2], two comparisons are
required, as shown in (3). They are implemented using
swrlb:lessThanOrEqual, which is a built-in SWRL
function.

st1 � et2 && st2 � et1: (3)

4. Spatial Localization on Composite Actions

After rule-based reasoning with TBox, RBox, and
ABox, the inferred instances representing composite
actions are generated and stored in the OWL ontology.
Using the time interval of a temporally localized composite
action and the related object IDs obtained from the
ontology and their object tracks stored in the spatial DB,
the spatial localization method generates the action tracks
including MBRs during the time interval of the action.

IV. Experiments and Results

For the experiments, this paper tested the detection
method using 40 video clips and their annotation files in

Duplication

Thing

Object

NotPerson

Belonging Entrance Vehicle

Bike Board

Car

Person

Bag BagWithWheels

SubClassOf

RVehicle

Fig. 5. Defined OWL classes including the Object class, for
describing objects associated with actions in a video, and
Duplication class, for describing an object during a
certain period.
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ActionNet-VE [51], which extended VIRAT Ground 2.0
[52] by adding generic and inherited composite actions
and objects related to the actions. VIRAT ground 2.0
includes actions intersecting each other in time and space,
as shown in Fig. 7. To reduce the computation time for
detecting actions, object MBRs of frames sampled from
every ten original frames are used in the implemented

system. As shown in Table 2, the distribution of actions in
ActionNet-VE is unbalanced because the videos were
recorded in the real world. Therefore, the total precision,
recall, and F-measure were calculated based on their
weighted summation for the ten actions using the weight
of each action proportional to its occurrences in the video
clips, and not based on their average.

Table 1. OWL/SWRL based rules for ten composite actions.

Action OWL/SWRL Rules

GoIn

Person(?s1)^ hasDuplication(?s1,?d1)^ hasDuplication(?s2,?d2)^ sr_closeTo(?d1,?d2)^ disappear(?s1,?d3)^ endTime(?
d1,?et1)^ endTime(?d3,?et3)^ swrlb:subtract(?mt1,?et3,?et1)^ swrlb:(?mt1, samplingRate)^ startTime(?d1,?st1)^ stop(?
s2,?d4)^ startTime(?d4,?st4)^ endTime(?d4,?et4)^ swrlb:subtract(?inV,?et4,?st4)^ swrlb:greaterThan(?inV, minstop) ^
swrlb:lessThanOrEqual(?st1,?et4)^ swrlb:lessThanOrEqual(?st4,?et1) ? GoIn(?d1,?d2)

GetInto GoIn(?d1,?d2)^ hasDuplication(?s2,?d2)^ Car(?s2) ? GetInto(?d1,?d2)

Enter GoIn(?d1,?d2)^ hasDuplication(?s2,?d2)^ Entrance(?s2) ? Enter(?d1,?d2)

ComeOut
Person(?s1)^ hasDuplication(?s1,?d1)^ hasDuplication(?s2,?d2)^ appear(?s1,?d3)^ stop(?s2,?d4)^ sr_closeTo(?d1,?d2)^
startTime(?d1,?st1)^ startTime(?d3,?st3)^ swrlb:equal(?st1,?st3)^ endTime(?d1,?et1)^ startTime(?d4,?st4)^ endTime(?
d4,?et4)^ swrlb:lessThanOrEqual(?st4,?st1)^ swrlb:lessThanOrEqual(?et1,?et4) ? ComeOut(?d1,?d2)

GetOutof ComeOut(?d1,?d2)^ hasDuplication(?s2,?d2) ^ Car(?s2) ? GetOutOf(?d1,?d2)

Exit ComeOut(?d1,?d2)^ hasDuplication(?s2,?d2)^ Entrance(?s2) ? Exit(?d1,?d2)

Carry

Person(?s1)^ hasDuplication(?s1,?d1)^ hasDuplication(?s2,?d2)^ sr_with(?d1,?d2)^ startTime(?d1,?st1)^ endTime(?d1,?
et1)^ move(?s1,?d3)^ move(?s2,?d4)^ startTime(?d3,?st3)^ startTime(?d4,?st4)^ endTime(?d3,?et3)^ endTime(?d4,?et4)
^ swrlb:lessThanOrEqual(?st1,?et4)^ swrlb:lessThanOrEqual(?st4,?et1)^ swrlb:lessThanOrEqual(?st1,?et3)^ swrlb:less
ThanOrEqual(?st3,?et1)^ swrlb:lessThanOrEqual(?st3,?et4)^ swrlb:lessThanOrEqual(?st4,?et3) ? Carry(?d3,?d4)

Ride
Person(?s1)^ hasDuplication(?s1,?d1)^ hasDuplication(?s2,?d2)^ sr_on(?d1,?d2)^ move(?s1,?d3)^ startTime(?d1,?st1)^
endTime(?d1,?et1)^ startTime(?d3,?st3)^ endTime(?d3,?et3)^ swrlb:lessThanOrEqual(?st3,?et1)^
swrlb:lessThanOrEqual(?st1,?et3) ? Ride(?d3,?d2)

RideBike Ride(?d1,?d2)^ hasDuplication(?s2,?d2)^ Bike(?s2) ? RideBike(?d1,?d2)

RideBoard Ride(?d1,?d2)^ hasDuplication(?s2,?d2)^ Board(?s2) ? RideBoard(?d1,?d2)

hasDuplication

DuplicationObject

appear, disappear,
move, stop

sr_closeTo, sr_with, sr_on,
goIn, comeOut, carry, ride,
getInto, enter, getOutof, exit, 
rideBoard, rideBike

Object property
Data property

endTime
xsd:integer

startTime
xsd:integer

Fig. 6. Defined OWL object properties for representing atomic and composite actions and OWL data properties for describing basic
properties of both actions and the start and end frames.
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To evaluate the performance of the proposed detection
system, this paper compared the ground truth with the
system results using the matching criterion described in
[41]. The matching criterion assumes that action A
matches action B if the type of A is the same with that of
B, the time intervals of A and B intersect with an IoU of
d = 10%, and two MBRs of A and B intersect each other
with an IoU of d = 10%.
As shown in Table 2, the proposed system achieved a

precision of 88.30%, recall of 92.40%, and F-measure of

90.27% for all ten composite actions. The proposed
system achieved higher precision, recall, and F-measure
on person–vehicle interactions including GetInto and
GetOutof than those on person–entrance interactions
including Enter and Exit. Because some entrances were
near some pavements, the proposed system considered
going into or coming out of the pavements as entering or
exiting the nearby entrances, which deteriorated the
precision and recall on the person–entrance interactions.
In addition, the proposed system had a higher precision
and recall on RideBike than those on RideBoard. Because
boards are smaller and thinner than bikes, occlusions
decreasing the precision and recall occurring more
frequently in the case of boards than bikes.
Table 3 shows that the proposed method outperformed

the state-of-the-art methods on two typical human–vehicle
interactions, GetInto and GetOutof, from the VIRAT
Ground 2.0. Table 3 compares the precision and recall of
the proposed method with the method using the context
information that describes the state of the vehicle and
person [53].
To show the extensibility of the proposed method, this

paper conducted a test on a newly-added action, DiveInto,
as shown in Fig. 8. When the related objects existed in the
OWL ontology, the system successfully detected the GoIn
action corresponding to the DiveInto action without any
changes in the system. The system was able to detect both
the DiveInto and GoIn actions after the system added a
SWRL rule to specialize the GoIn action with the restriction
of the type of related objects, which is similar to the rules
for specializing generic actions listed in Table 1.

Table 2. Detection performance of the proposed method.

Action Weight Precision (%) Recall (%) F-measure (%)

GoIn 0.147 87.60 90.18 88.87

GetInto 0.037 94.44 100.00 97.14

Enter 0.110 84.71 86.91 85.79

ComeOut 0.102 84.21 92.31 88.07

GetOutof 0.029 87.88 95.46 91.51

Exit 0.073 82.26 91.07 86.44

Carry 0.389 89.18 94.61 91.82

Ride 0.056 95.24 90.70 92.91

RideBike 0.033 100.00 92.00 95.83

RideBoard 0.024 89.47 88.89 89.18

Total 1.00 88.30 92.40 90.27

Object and ground-truth actions

Detected actions

GetInto
Carry

Carry

Fig. 7. Screenshots of ground truth and detected actions in a test
video.

Table 3. Comparison with state-of-the-art method for typical
human–vehicle interactions on (precision/recall).

Action [53] Our method

GetInto 70.8/49.09 94.44/100.0

GetOutof 57.74/51.56 87.88/95.46

GoIn
DiveInto
& GoIn

goIn(?d1,?d2) ^  
hasDuplication(?s2,?d2) ^ Pool(?s2) 
→ diveInto(?d1,?d2)

Adding a rule

300(GoIn) 300(DiveInto)

Fig. 8. Detection of a newly added action from a different
domain, DiveInto using a generic and inherited
composite action.
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V. Discussion

Compared to most data-driven methods for detecting
actions, the proposed method considers the generic
properties between actions based on the dynamic spatial
relations. The data-driven methods that can detect Enter
and GetInto actions cannot detect DiveInto actions
before learning their model on DiveInto actions. There is
no relationship between DiveInto, Enter, and GetInto
actions to the data-driven methods, whereas the
proposed method recognizes them as actions inherited
from the GoIn action. The precondition is the ontology
should include all object types before run-time. The
object types shown in Fig. 5 are enough only to detect
the ten actions from ActionNet-VE. We plan to extend
the ontology with 200 basic-level object categories
provided by ImageNet for the object detection task in
2016 [54]. In addition, we can extend the detection
system with a module that finds new object types from
the object information and adds it to the ontology at
run-time before action inference.
To understand interactions between two objects in all

open-domain videos, the detection system needs to extend
generic composite actions and their related atomic actions
according to the dynamic spatial relations. We examined
spatial prepositions and adverbs of English and identified
27 dynamic spatial relations. We are adding generic
composite actions, such as PickUp and PutDown with new
atomic actions, such as move_up and move_down.
Occlusions occurring in 2D videos reflecting the 3D real

world distort the spatial relations. Although the detection
system sets the minimum length of time interval for each
atomic action for excluding false positive actions, as
mentioned in Section III-2, the setting cannot resolve all
troublesome cases caused by occlusions. For example, an
occlusion between a person and a bag owned by a
companion that is very close to the person can cause a false
positive carry action if they move together and the
occlusion continues for a longer period than the minimum
duration for a sr_with atomic action. For resolving this
problem, the additional method of modeling group
interaction between multiple persons and objects is required.

VI. Conclusion

Actions performed by objects are fundamental elements
for semantically understanding various video sequences.
Studies do exist for targeting representative actions
contained in well-segmented videos. Although some data-
driven methods for action recognition and detection have

achieved a superior performance of above 90% for fixed
target actions, they do not consider the extensibility of
their model for new actions. Therefore, a method for
detecting heterogeneous actions contained in untrimmed
videos is required for a semantic understanding of open-
domain videos.
This paper proposed an extensible hierarchical method

for detecting generic and inherited composite actions
between two objects. A generic composite action consists
of atomic actions describing movements of a single object
and the state maintenance of spatial relations between two
objects for a particular period. A generic composite action
can be specialized by multiple inherited composite actions
with constraints on objects associated with the actions.
Because the generic actions represent spatio-temporal
relations between two objects within a video, one of the
generic actions can interpret any interactive actions
between two objects, irrespective of the video domain.
Using the object information, the methods achieved an

F-measure of 90.27% with an IoU of d = 10% for ten
composite actions in the ActionNet-VE dataset. In
addition, it was shown that the method detected a new
action, DiveInto, which was contained in a video whose
domain differs from the domain of videos containing the
ten actions above. The proposed system can detect a
DiveInto action as a GoIn action without any change, and
detect a DiveInto action after adding a new rule for the
DiveInto action.
The extensibility of the proposed method is significant

when it is adopted for video analysis in the field.
Nowadays, actions are more heterogeneous than before
because videos are also produced by the general public
using their personal smartphones. In addition, it is
impossible to define all actions in advance before applying
the method to a particular video. Therefore, the proposed
method, together with data-driven detection methods
achieving a superior performance, can be used for
semantic video understanding in a complementary
manner.
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