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Abstract: We propose a novel dynamic host mutation (DHM) architecture based on moving target
defense (MTD) that can actively cope with cyberattacks. The goal of the DHM is to break the cyber
kill chain, expand the attack surface to increase the attacker’s target analysis cost, and disrupt the
attacker’s fingerprinting to disable the server trace. We define the participating entities that share
the MTD policy within the enterprise network or the critical infrastructure, and define functional
modules of each entity for DHM enforcement. The threat model of this study is an insider threat of a
type not considered in previous studies. We define an attack model considering an insider threat and
propose a decoy injection mechanism to confuse the attacker. In addition, we analyze the security of
the proposed structure and mechanism based on the security requirements and propose a trade-off
considering security and availability.
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1. Introduction

Moving target defense (MTD) is a type of security technology involving the novel concept of the
IT infrastructure changing its form actively to prevent various types of cyberattacks. MTD is the most
notable area of study in the White House publication entitled “Trustworthy Cyberspace: The Federal
Cybersecurity Research and Development Program”, published in 2011 [1]. Network address mutation
is one of the most active research areas in MTD studies [2]. The network address mutation approach is
a proactive defense strategy that disables cyberattacks by changing the main attributes of a network
host (e.g., the IP address, port, network topology, platform, software). Before the concept of MTD was
established, techniques that periodically change the host’s network address related to mutations of
network addresses were regularly investigated [3,4]. However, changing only the network address of
the target host is not efficient because such changes can easily be tracked by the host’s fingerprint when
the active network address space is small [5]. Recently, MTD studies have proposed the concepts of
fingerprint mutation or decoy node operation to address these limitations. The dynamic host mutation
(DHM) architecture proposed in this paper consists of network address mutation for breaking the
cyber kill chain, decoy node operation for increasing the attack cost by expanding the attack surface,
and fingerprint mutation for disabling the server trace through the attacker’s fingerprinting. We define
the entities participating in the MTD policy to operate DHM and their relationships, and define the
DHM functional module of each entity.

MTD technology, which encompasses network address mutation, fingerprint mutation and decoy
node operation, can make target scanning and analysis much more difficult for an attacker than an
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existing static network security technology. However, existing MTD technologies are vulnerable to
the following two threats. The first threat occurs when an attacker infects a legitimate client that
is constantly connected to a server protected by MTD technology. The second threat occurs when
an attacker penetrates inside a subnet protected by MTD technology. Previous studies adequately
suppressed threats from external attackers but did not consider the insider threats that arise in the
two situations described above. An insider threat is caused by a drive-by-download attack due to
user carelessness, or an attack that is executed in stages after determining the attack path using an
attack graph [6–8]. In this paper, we define an attack model considering an insider threat and propose
a deception mechanism to mitigate it.

The paper proceeds as follows. Related work is introduced in Section 2. The attack model
considering an insider threat is defined in Section 3. The DHM architecture fused with the three
MTD technologies, the security requirements for suppressing insider threats, and the decoy injection
mechanism are introduced in Section 4. A security analysis of the proposed architecture and mechanism
is discussed in Section 5, experimental results for the decoy injection mechanism are presented in
Section 6, and conclusions are given in Section 7.

2. Related Work

The trends in MTD research in recent years are shown in Table 1. Typical examples of MTD
research are openflow–random host mutation (OF–RHM) and random host mutation (RHM), which
undertake network address mutation operations using SDN(Software Defined Networking) and
legacy network operations with the use of virtual IPs [9,10]. HIDE (Host IDEntify anonymization)
is an MTD technology that uses a honeypot cloud based on RHM and adds the concepts of
fingerprint mutation and decoy node operation [11]. Moving target IPv6 defense (MT6D) is a
technology for generating addresses using a cryptographic algorithm with timestamps in an IPv6-based
network environment [12]. Decoy-enhanced seamless IP randomization (DESIR) undertakes seamless
connection migration to prevent service disconnections due to server address changes [13]. SDN-based
fingerprint hopping is a technique by which to generate a false fingerprint during network domain
scanning by an attacker [14].

Table 1. Trends in MTD research.

Research Network Address Mutation Fingerprint Mutation Decoy Node Operation

OF–RHM & RHM #
HIDE # # #
MT6D #
DESIR # #

SDN-Based Fingerprint Hopping # #

2.1. OF–RHM & RHM

OF–RHM is a representative form of network address mutation that allocates virtual IPs to hosts
and periodically translates them for protection against external attackers. OF–RHM maps the real IP
and virtual IP of the host and reveals only the virtual IP while hiding the real IP from outside through
packet-level processing. Owing to the periodic changing of the virtual IP, the attacker can never be
certain about the information obtained through network scanning. A legitimate user can find the
address of the server through DNS. Because a name service is used, the user can receive transparent
service. The creation of the virtual IP and the determination of the address translation cycle are
determined through a mutation controller. Given that OF–RHM is only applicable to SDN and lacks
scalability, the OF–RHM research team has studied RHM applicable to legacy networks. The difference
between OF–RHM and RHM is that OF–RHM performs IP translations using the OF-Switch and
OF-Router SDN equipment, while RHM performs IP translation using a mutation gateway at the front
of each subnet.
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2.2. HIDE

The OF–RHM/RHM research team has been conducting ongoing research based on RHM [15–17].
HIDE, the latest research area of the RHM research team, includes fingerprint mutation and attack
surface expansion, operating a honeypot cloud as well as network address mutation on the RHM
network model. The honeypot cloud is located on a different network from the protected host.
The gateway connected to the external network judges suspicious traffic. Any traffic arriving at
addresses that are not active can be seen as suspicious traffic. This traffic is sent to the honeypot.
This type of fingerprint mutation using a honeypot may not only present an attacker with some
uncertainty about their scanning results but may also cause difficulty when an attacker attempts to
analyze the degree of vulnerability and create attack weapons.

2.3. MT6D

MT6D (moving target IPv6 defense) is a network address mutation scheme that periodically
changes the IID (Interface IDentifier) in a network using IPv6. In order to make it difficult for an
attacker to know the address of the host when attacking, a one-way hash function is proposed in which
a new address is generated by inputting the current IID and timestamp. MT6D, like RHM or HIDE,
changes the address of hosts through a gateway. The difference between MT6D and the concepts in
previous studies is that communication between gateways uses the UDP protocol rather than TCP to
minimize the side effect of connection loss.

2.4. DESIR

DESIR is a technique that randomly translates the IP from an end-point host, unlike previous
studies that changed the IP through SDN boxes or network gateways. DESIR operates decoy nodes
to enhance the effect of IP translation in end-point hosts. Decoy-based MTD [18] is a technology that
creates multiple virtual decoy nodes on the same network as protected servers, and continuously
changes the addresses of real servers and decoy servers over time. The DESIR team applied the
decoy-based MTD technology to attack scenarios to invalidate the blacklist of decoy nodes created
during the target exploration phase. In order to mitigate the side effect of disconnections caused by
changes of the address of the end-point server, a type of seamless connection migration technology is
proposed in this study to ensure continuous service to legitimate users.

2.5. SDN Fingerprint Hopping

Due to the development of secure network boxes, studies of fingerprint randomization and
concealment based on SDN using an intrusion detection system (IDS) and a fingerprint hopping
engine have been conducted. These studies distinguish legitimate user traffic and suspicious traffic
from an attacker through IDS and modify the headers of packets through a fingerprint-hopping
engine for suspicious traffic as an OS other than the real server’s OS. However, these studies have
disadvantages in that they cannot adequately deal with fingerprinting by skilled attackers who cannot
distinguish them through IDS. In addition to this fingerprint-hopping technology, there are also
fingerprint-randomization techniques that manipulate ICMP (Internet Control Message Protocol)
messages directly, but fingerprint randomization can cause unintended network service failures.
In order to realize high-quality MTD technology, research on fingerprint mutation that can avoid
network failures even in the absence of IDS is needed.

An open port on a server where a well-known port is always open to provide a specific service,
such as a DB (DataBase) server or a Web server, can be used as a fingerprint by an attacker. Therefore,
port-hopping techniques have been studied in an effort to make it difficult for an attacker to recognize
a target through an open port [19–21].
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3. Threat Model

A legitimate client using the MTD approach can continuously find a moving server. If a legitimate
client is infected by an attacker, the attacker can easily find a moving server by analyzing the client’s
traffic or by checking the network state. Hence, previous MTD studies excluded the insider (=inside
attacker) from the attack model. In this paper, an attack model is defined for a situation in which
an attacker infects a legitimate client and where an attacker infiltrates a network on which a moving
server exists. In this section, the protected domain by DHM and the attack methods enforceable by
insiders are defined.

3.1. Protected Domain

In an enterprise network or ICT infrastructure, high-priority servers are placed on the internal
network and protected. In this case, the threat of exposure to the server due to external scanning is
insignificant. However, if a client on the internal network is infected by an attacker by means of a
drive-by-download attack, the attacker will be able to access moving servers on the internal network.
Figure 1 shows the protected domain, which is divided into four areas here.

Symmetry 2018, 10, 14 4 of 16 

 

3. Threat Model 

A legitimate client using the MTD approach can continuously find a moving server. If a 
legitimate client is infected by an attacker, the attacker can easily find a moving server by analyzing 
the client’s traffic or by checking the network state. Hence, previous MTD studies excluded the 
insider (=inside attacker) from the attack model. In this paper, an attack model is defined for a 
situation in which an attacker infects a legitimate client and where an attacker infiltrates a network 
on which a moving server exists. In this section, the protected domain by DHM and the attack 
methods enforceable by insiders are defined. 

3.1. Protected Domain 

In an enterprise network or ICT infrastructure, high-priority servers are placed on the internal 
network and protected. In this case, the threat of exposure to the server due to external scanning is 
insignificant. However, if a client on the internal network is infected by an attacker by means of a 
drive-by-download attack, the attacker will be able to access moving servers on the internal network. 
Figure 1 shows the protected domain, which is divided into four areas here. 

 

Figure 1. Protected domain. 

The moving server A in the protected/public area is directly accessible from the outside. MTD 
technology to protect these types of servers is not mentioned in this paper because it has been studied 
extensively. The legitimate client in the non-protected/private area uses the MTD approach so as to 
access the moving servers in the protected/private area. The illegitimate client does not participate in 
MTD. Both of these clients can be infected by an attacker through a drive-by-download attack. When 
the illegitimate client is infected by an attacker, an attacker can detect the moving servers through 
internal network scanning. This case is not covered in this paper because it is identical to the case of 
an external attacker scanning to detect moving server A. 

The scope of our threat model covered in this paper is a threat to the moving server B, which 
occurs when the legitimate client is infected, and a threat to the moving server C, which occurs when 
the moving server B is infected. Henceforth, these two threats are referred to as insider threats. It is 
assumed that communication between the moving server and the legitimate client is encrypted. 

3.2. Attack Model 

When the legitimate client is infected, an insider can easily detect the moving server in two ways. 
The first is by a traffic analysis. The legitimate client will have many network connections as well as 
connections to the moving server. However, if the insider analyzes the inbound/outbound traffic of 

Figure 1. Protected domain.

The moving server A in the protected/public area is directly accessible from the outside.
MTD technology to protect these types of servers is not mentioned in this paper because it has been
studied extensively. The legitimate client in the non-protected/private area uses the MTD approach
so as to access the moving servers in the protected/private area. The illegitimate client does not
participate in MTD. Both of these clients can be infected by an attacker through a drive-by-download
attack. When the illegitimate client is infected by an attacker, an attacker can detect the moving servers
through internal network scanning. This case is not covered in this paper because it is identical to the
case of an external attacker scanning to detect moving server A.

The scope of our threat model covered in this paper is a threat to the moving server B, which
occurs when the legitimate client is infected, and a threat to the moving server C, which occurs when
the moving server B is infected. Henceforth, these two threats are referred to as insider threats. It is
assumed that communication between the moving server and the legitimate client is encrypted.

3.2. Attack Model

When the legitimate client is infected, an insider can easily detect the moving server in two
ways. The first is by a traffic analysis. The legitimate client will have many network connections as
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well as connections to the moving server. However, if the insider analyzes the inbound/outbound
traffic of the legitimate client and finds a certain pattern, the insider will be able to keep track of the
moving server. The second way is to run a utility (e.g., “netstat”) that can check the network status
to verify established connections. The insider, who checks the network status, will analyze all of the
connections to find the connection to the moving server. If the insider is lucky, the insider will be able
to achieve this goal simply by checking the service name or a well-known port number bound to the
connections without having to analyze the connections thoroughly. Moreover, an insider who knows
that an attacked domain is protected by MTD can guess the address of the moving server by observing
the external address of a specific process ID (PID) that changes periodically. In order to address these
threats caused by certain privileged insiders, novel MTD mechanisms are required.

When the moving server B is infected, the insider has penetrated the subnet on which the final
attack target exists. As in research on the RHM, MTD technologies that operate gateways on a
per-subnet basis do not defend against insider attacks that penetrate the subnet where a moving server
exists, because the gateways manipulate only the traffic passing through them and make the target
appear to move. Similar to DESIR, MTD technology using address hopping in the end hosts cannot
prevent a network traffic analysis by an insider using ARP (Address Resolution Protocol) spoofing.

In this paper, we propose decoy traffic injection and connection obfuscation mechanisms to cope
with these two attack models.

4. Design

In Section 4.1, security requirements based on the attack model defined in Section 3.2 are defined.
In Section 4.2, relationships between entities participating in the DHM approach, software architecture,
and detailed functional modules are proposed. Finally, in Section 4.3, mechanisms to mitigate insider
threats are proposed.

4.1. Security Requirement

In Section 3, an attack model considering an insider threat, which was excluded from previous
studies, is defined. Because MTD requirements for external attackers were proposed in previous
studies, we define only the security requirements for an insider threat, as follows.

Requirement 1. The decoy traffic-injection mechanism should make it as difficult as possible to analyze
the traffic to find the moving server by the insider who infected the legitimate client.
Requirement 2. The decoy traffic-injection mechanism makes it difficult to analyze the traffic to find
the moving server by an insider who penetrated the subnet on which the moving server exists.
Requirement 3. The connection obfuscation mechanism makes it extremely difficult for an insider
who infected the legitimate client to find the moving server through the network status and by active
process monitoring.
Requirement 4. The DHM should prevent the continuous tracking of the moving server through MAC
(Media Access Control) address analysis and fingerprinting by the insider who penetrated the subnet
on which the moving server exists.

The defined security requirements are intended to mitigate the threats that arise within the
network infrastructure in which MTD is being implemented. The stationary security system uses
security devices such as an IDS or attack detection mechanisms in application layer [22,23] to detect
an attacker who has penetrated the inside. Unlike stationary security systems, MTD aims to deceive
the attacker through constant network mutations rather than detecting an insider. Naturally, the best
security policy is an instance of combined use with the existing IDS with practical MTD technology,
but we focus solely on MTD technology to deceive attackers here.
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4.2. Architecture

The DHM network entities and their relationships proposed in this paper are shown in Figure 2.
The management system collects information about the moving server and the network to which it
belongs, performs the attack point analysis, and then determines the mutation strategy. The mutation
strategy consists of network address mutation, fingerprint mutation, and decoy node operations.
The decoy host expands the attack surface toincrease the cost incurred by an attacker to recognize
a moving server. The decoy-bed controller is responsible for creating and operating decoy hosts
according to the decoy operation received from the management system. Because the moving server
and the decoy host share the address space within the same network, they must share the mutation
rule to avoid address collisions during the mutation process.
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The legitimate client using the services provided by the moving server must be aware of the
mutation rule so that it can connect to the moving server. Mutated addresses are generated based on a
secret key. Because the secret key must be distributed only to the entities sharing the mutation rule, the
authentication server authenticates the entities and distributes the secret keys. After authentication, the
entities that have acquired the secret key perform address mutation using a crypto function. A counter
or timestamp can be used to synchronize addresses between entities.
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A client with a secret key must first be authenticated through an authentication server to access
the moving server. Similar to DNS, the authentication server sends the address of the moving server to
the authenticated legitimate client. If the authentication method is not robust, the attacker will intercept
the MTD policy. In this regard, recently, Bayesian classifiers using question/response patterns have
been studied to authenticate legitimate users [24]. Also, since the authentication server performs an
operation similar to the DNS, techniques such as the latest research that provide DNS security based on
a public key infrastructure rather than a certificate basis [25] can be applied in the authentication server.

The management system is functionally separated from the authentication server, as shown
in Figure 2A, but it can operate with the authentication server in a physical machine, as shown in
Figure 2B.

The moving server, decoy host, and legitimate client must be equipped with a software module
for DHM. In this paper, we define the software module as a self-mutation system. The subsystem
configuration of the self-mutation system of each entity is shown in Figure 3.
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Figure 3. DHM entities for MTD.

The authentication and key management are responsible for authentication and key distribution
for all entities [24,25]. The moving server and decoy host have interfaces for interactions by which
to receive the mutation strategy from the management system. The decoy host needs the address
mutation because it has to undergo mutation, like the moving server. The legitimate client does not
mutate, but it needs to know the changed address of the moving server. Hence, it only knows the
address generation rule through the address mutation.

Because a skilled attacker can identify a target through a fingerprint trace, the moving server
must undergo fingerprint mutation. The decoy host needs the fingerprint mutation because it can be
excluded from the analysis if the decoy host is traced by fingerprinting.

Table 2 is a description of the function modules constituting the five subsystems of the
self-mutation system.
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Table 2. Descriptions of function modules.

Subsystem Module Description

Network Address Mutation

Crypto Function-Based
Address Generation

Address generation function using a cryptographic
algorithm for address synchronization without
interactions between entities.
The algorithm that generates the same output using the
same input and correct output values only for entities
sharing symmetric keys.

IP Collision Detection Conflict detection for addresses generated by each host.

Connection Migration Connection migration to prevent a service disruption
while a host address is being changed.

Network Address Shuffling Efficient MAC learning and updating ARP table while a
host address is being changed.

Activity Monitor Monitoring the status of connections between a server
and clients.

Fingerprint Mutation OS Fingerprint Mutation Translating various fingerprints collected through
network scanning by an attacker.

Fault Management Forecasting any faults due to a fingerprint mutation.

Decoy Operation

Node Generation Creating virtual nodes to increase the active address
space to prevent recognition of the target by an attacker.

Traffic Generation
Creating decoy traffic to prevent recognition of the target
when an attacker who penetrates the internal network
analyzes network traffic.

Connection Generator
Creating decoy connections to prevent recognition of the
target by analyzing network status by an attacker who
penetrates the internal network.

Context Awareness Collecting attributes to create decoy nodes similar to
moving servers.

Host Authentication
Certificate Based Auth. Entity authentication based on certificates.

Symmetric Key Based Auth. Entity authentication based on a symmetric key.

Key Management

Key Distribution Session key distribution used for address generation.

Key Update
Ensuring session key safety.

Key Revocation

4.3. Decoy Injection

A typical study that was conducted for the purpose of mitigating an insider threat is that
which developed the indistinguishable decoy injection method [26,27]. In this line of research, the
proposed method automatically generates indistinguishable decoy traffic in the wireless network to
prevent an attacker who accesses the wireless network from stealing and abusing network traffic.
The research is somewhat different from our research domain because it was conducted on a subnet of
a wireless network, where various terminal nodes exist, but we were motivated by the study to devise
mechanisms to mitigate an insider threat.

The two types of insiders mentioned in Section 3 analyze traffic and the network connection status
to detect the moving server. A key idea of MTD is to change the information the attacker analyzes
to identify the target continuously. As a result, the MTD technology which responds to an insider
threat must deceive the insider by changing the traffic and network connection status. The connection
obfuscation and the traffic injection steps described below are both part of the decoy node operation of
the DHM architecture because they involve interaction with decoy servers.

4.3.1. Connection Obfuscation

An insider who has infected the legitimate client can detect the moving server simply by executing
a simple command. Taking an extreme situation as an example, if the legitimate client has only a
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connection to the moving server, the insider will have no difficulty in verifying that the moving server
is the target the insider is attempting to attack through a vulnerability analysis.

The first step in the connection obfuscation is, as shown in Figure 4, deliberately to increase the
number of legitimate client connections that the insider must analyze to detect the target. Henceforth
in this paper, these connections are called decoy connections. Decoy connections are between the
legitimate client and the decoy server. In previous studies that did not consider insider threats, the
decoy server was used only to expand the attack surface, whereas in this study, which considers insider
threats, decoy servers should establish decoy connections with the legitimate clients.Symmetry 2018, 10, 14 9 of 16 
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For MTD administrators, it is possible to determine which connections are decoy connections, but
the insider will look at all connections during their analysis. Simply by establishing decoy connections
in the legitimate client, the insiders’ analysis cost can be increased, as shown in Figure 5.
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There are several drawbacks to this approach. If the network state does not mutate when decoy
connections are established, the insider’s attack will not be different from an attack on the stationary
network infrastructure. Also in this state, if only the external address of the legitimate connection
changes continuously due to the network address mutation by the moving server, the address mutation
technology of the MTD informs the attacker of the moving server. These drawbacks are solved by
address shuffling of the moving server and by using decoy servers, as in previous dynamic decoy
studies [28,29]. Nevertheless, there are still fatal drawbacks when using this method.

An insider can associate network connections with the process information (e.g., PID, process
name, memory consumption) bound to it through simple command executions. Most MTD
technologies guarantee transparency of the application layer even if the network configuration is
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mutated. Therefore, even if the moving server address mutates, as shown in Figure 6, the process of
establishing the connection does not change. A fixed PID can be used as a fingerprint by an insider.
The insider will be able to analyze the static factor rather than analyzing the dynamic factor.

If an insider analyzes the processes using PID and strace (the system call debugging utility in
Linux) instead of analyzing the dynamic factor, the insider may associate the PID with a legitimate
process or a decoy process. If the PID of the legitimate process is exposed to the insider by means of
a process analysis, the insider will be able to confirm the external address related to the PID as the
moving server. Moreover, if the insider who analyzes the dynamic factor detects the moving server
even once in a certain time period, from the next period the insider will be assured that the external
address of the process that was associated with the moving server during the previous period is the
address of the moving server.
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This drawback can be solved by PID randomization. As an example of the Windows operating
system, EPROCESS, an object for managing process information in the kernel, can be used.
The EPROCESS structure stores the memory location of the PID of a specific process. If the value
of this location changes, the PID of the running process also changes. As a result, if PID shuffling
is enforced simultaneously with address shuffling, the insider attack described above is mitigated.
However, there is a need for more in-depth study of the side effects and overhead analysis caused by
the random shuffling of the PIDs of running processes.

Other information that an insider can use to detect the moving server is the memory usage of the
process bound to the connection. If the insider continues to analyze this memory usage, because the
memory usage can be used to detect the moving server as well as the PID, a context-awareness decoy
operation is required to control the memory usage of the decoy process properly.

4.3.2. Decoy Traffic Injection

The connection obfuscation approach described above is a mechanism for mitigating the threat
from an infected legitimate client. However, if an attacker analyzes network traffic, it is useless to
replicate only the connection. Hence, a decoy traffic injection is required. The decoy traffic injection
can mitigate not only threats from insiders who have infected the legitimate client, but also threats
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from insiders who have penetrated the same subnet as the moving server, as mentioned in Chapter 3.
Because the moving server and the legitimate clients use encrypted communication, insiders cannot
analyze the contents of payloads, but they can find the moving server by analyzing the traffic flow
and frequency of occurrence. The first goal of a decoy traffic injection is to increase the amount of
traffic an attacker must analyze. In order to achieve this goal alone, it is sufficient to generate decoy
traffic irregularly. In this case, however, a sophisticated insider can easily distinguish between decoy
traffic and legitimate traffic, which can greatly reduce the cost of the analysis. The second goal of a
decoy traffic injection is to mimic the legitimate traffic pattern to create more efficient decoy traffic.
To achieve the second goal, context awareness by the decoy traffic injection as proposed in this paper
is shown in Figure 7.Symmetry 2018, 10, 14 11 of 16 
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The LP (legitimate process) is the process bound to the legitimate connection, and the DP (decoy
process) is the process bound to the decoy connection. The decoy connection is created by the
connection-generator module of the decoy operation daemon. The connection generator module
refers to the LP behavior through the interceptor module to create decoy connections. The interceptor
module of the decoy operation daemon monitors the outbound traffic generated by the LP. The traffic
generator module requires that traffic generated to the DP is created as LP. The generated traffic shows
a pattern similar to that of the outbound traffic generated by the LP, but the two are not identical.
The decoy traffic generated by the DP is not always generated after the LP generates traffic. The traffic
generator analyzes the pattern of traffic generated by the LP and determines the traffic generation
policy within a range determined to be similar to it.

The traffic generator module of the decoy server mimics the outbound traffic of the moving server
and generates traffic between the decoy server and the DP. The traffic deception module of the moving
server shares the characteristics of the outbound traffic generated by the moving server to decoy
servers through a secure channel. The traffic generator module of the decoy server, like the traffic
generator module of the legitimate client, analyzes the pattern of traffic generated by the moving
server and determines a policy within a range that is judged to be similar.
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4.3.3. Limitation

The decoy injection mechanism is a countermeasure to mitigate the insider threat. However, if a
decoy connection and traffic occur frequently, degradation of the system and network performance
is inevitable. Therefore, it is inefficient to use the decoy injection strategy in network infrastructures
where large amounts of traffic are generated. Because the number of legitimate clients also affects
performance, it is desirable to apply the decoy injection only after considering trade-offs related to the
security and availability of the network infrastructure. This paper does not mention IDS, which is a
traditional security system, but the decoy injection can be applied to critical infrastructures where both
security and availability should be considered, even if a low degree of availability is suspected only
when an insider threat is suspected from IDS.

5. Security Analysis

In this section, we analyze the security of the proposed MTD structure and the decoy injection
method. A security analysis is performed based on the security requirements defined in Section 3.

- Reqs. 1 and 2: In order to increase the cost of the traffic analysis necessary to detect the moving
server, the proposed traffic-injection mechanism increases the amount of traffic that an attacker
must analyze. In addition, because the decoy traffic is imitated by legitimate traffic, the analysis
results of the insider are uncertain.

- Req. 3: In Section 4.3.1, we analyzed various types of network state information and process
information that an insider can use to detect the moving server. Based on the analysis results,
we propose the connection-obfuscation mechanism based on the MTD concept of continuously
changing the information used by the insider.

In the situation where one legitimate connection exists and the connection obfuscation for this is
being applied, the initial probability (Pi) that the insider will recognize the moving server is

Pi =
1

1 + number of decoy connections
.

Because the sophisticated insiders can precisely analyze the decoy connections and exclude them
from an attack list, the probability that an insider will recognize a moving server at a particular time t
(Pt) is

Pt =
1

1 + number of decoy connections − number of excluded connections

(number of excluded connections ≤ number of decoy connections).

Over time, since Pt goes to 1, if the insider can get enough time, using only the connection
obfuscation will not protect the moving server. However, if the addresses of the moving server and the
decoy servers are periodically shuffled, Pt will be initialized to Pi, so the insider will have to resume
trying to identify the moving server. The decoy traffic injection makes it difficult for the insider to
judge the excluded decoy connection.

In summary, the decoy injection mechanism proposed in this paper inhibits the increase of
Pt through the decoy traffic injection, and periodically initializes Pt to Pi through the connection
obfuscation. By doing so, the decoy injection mechanism meets the security requirements 1–3, which
are related to increased attack cost.

- Req. 4: MTD technology to operate the gateway in front of the network switch is fatal to the threat
of an attacker who has penetrated the subnet on which the moving server is located. Because the
proposed DHM architecture is implemented in an end-point host, it is not easy for an insider to
detect the moving server when it is protected by decoy servers and end-point hopping, even if
there is an insider on the subnet. In addition, DHM can further increase the complexity of an
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attack by adding MAC address and OS fingerprinting information (e.g., TTL values, window
sizes) to end-point hopping rules through mutual authentication between the entities participating
in MTD.

6. Experiment

In order to verify the feasibility of the decoy injection mechanism, we implemented a client-side
decoy operation daemon and measured the consistency between the legitimate traffic and the decoy
traffic. The decoy traffic should not be exactly the same as the legitimate traffic, nor be too different.
As described in Section 4.3.2, in order not to be easily distinguished by a skilled insider, the decoy
traffic should look similar to the legitimate traffic and have an irregular pattern.

The interceptor module of the decoy operation daemon implemented in this experiment calculates
the total amount of legitimate traffic generated over a period of time. The traffic generator generates
the decoy traffic for the next time period based on the total amount of legitimate traffic calculated
in the previous time period. The decoy traffic generated by the traffic generator has another pattern
similar to the legitimate traffic pattern. In this experiment, we applied the method of randomizing the
decoy traffic during the next time period by the total amount of legitimate traffic calculated over a
previous time period. The experimental environment and scenarios are shown in Figure 8.
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In order to generate the legitimate traffic for the experiment, the legitimate client sends an integer
value N to the moving server every 3 s, and the moving server that receives this packet creates an
N-byte-sized packet (payload size only) and sends it to the legitimate client. The integer value increases
by 1 every 3 s within the range of 20–100, and decreases by 1 when it reaches the maximum value.
In this experiment, the traffic generated as above is regarded as the legitimate traffic. The interceptor
module monitors the ports that are communicating with the moving server through tcpdump and
calculates the total amount of legitimate traffic. For intuitive consistency comparisons, traffic computed
via tcpdump only considers traffic generated by experimental applications.

The purpose of this experiment is to examine the effect of the pattern-recording time period on
legitimate traffic and decoy traffic consistency for legitimate traffic with a certain pattern. We also
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expect another variable to be used as a new variant of deceiving insiders. Figure 9 shows decoy traffic
for the ground truth with the time period of 6 s.
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The ground truth is the phase of the legitimate traffic with a certain pattern over time. In the
experiment in Figure 9, the traffic generator randomly generates the decoy traffic within the next
time period by the amount of legitimate traffic generated in the previous time period. As you can
see, although the decoy traffic seems to be very consistent with the ground truth, it is not identical.
In order to increase the consistency between the decoy traffic and the ground truth, we applied the
decoy traffic randomly but reduced the displacement. Figure 10 shows the decoy traffic with reduced
displacement. In order to reduce the displacement of decoy traffic, we adjusted the range of randomly
generated decoy traffic to approach the average value.

Symmetry 2018, 10, 14 14 of 16 

 

 

Figure 9. Comparison between the decoy traffic and the ground truth. 

The ground truth is the phase of the legitimate traffic with a certain pattern over time. In the 
experiment in Figure 9, the traffic generator randomly generates the decoy traffic within the next time 
period by the amount of legitimate traffic generated in the previous time period. As you can see, 
although the decoy traffic seems to be very consistent with the ground truth, it is not identical. In 
order to increase the consistency between the decoy traffic and the ground truth, we applied the 
decoy traffic randomly but reduced the displacement. Figure 10 shows the decoy traffic with reduced 
displacement. In order to reduce the displacement of decoy traffic, we adjusted the range of randomly 
generated decoy traffic to approach the average value. 

  
Figure 10. Consistency with reduced displacement. 

As can be seen from the experimental results, when decoy traffic is generated, adding a slight 
deformation may increase or decrease consistency with the ground truth. If the pattern of decoy 
traffic does not change, it is desirable that the traffic generator periodically changes the shape of 
decoy traffic, because skilled insiders can easily distinguish decoy from APT (Advanced Persistent 
Threat) attacks. 

7. Conclusions 

In the traditional stationary network infrastructure, attackers who attack arbitrary network 
targets absolutely have advantages over defenders. Reactive and passive network security techniques 
cannot effectively defend against attacks in an environment of unforeseen vulnerabilities because 

Figure 10. Consistency with reduced displacement.

As can be seen from the experimental results, when decoy traffic is generated, adding a slight
deformation may increase or decrease consistency with the ground truth. If the pattern of decoy traffic
does not change, it is desirable that the traffic generator periodically changes the shape of decoy traffic,
because skilled insiders can easily distinguish decoy from APT (Advanced Persistent Threat) attacks.
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7. Conclusions

In the traditional stationary network infrastructure, attackers who attack arbitrary network targets
absolutely have advantages over defenders. Reactive and passive network security techniques cannot
effectively defend against attacks in an environment of unforeseen vulnerabilities because these
techniques allow attackers time to analyze targets. MTD is a technology that attracts attention in
the field of cybersecurity because it can offer defenders advantages, unlike existing network security
technologies. MTD should provide various network randomization techniques which can be used to
deceive attackers. DHM moves the protected host continuously through network address mutations
and disables attacks that track fingerprints through fingerprint mutation. The decoy node operation
strategy aims to increase the target analysis cost of the attacker by expanding the attack surface. In this
paper, we propose a DHM architecture that combines the three aforementioned MTD technologies.
Because DHM enforces MTD with the end-point hopping method, it can cope with not only threats
which come from the outside of the network, but also those posed by an insider penetrating inside.
Specifically, the decoy injection mechanism implemented through the decoy node operation can
mitigate insider threat that was not considered in previous studies. All MTD technologies generate
various types and amounts of overhead. Therefore, in order to use a decoy injection effectively, the
characteristics of the network domain considering the trade-off between security and network/system
overhead must be considered as well.
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