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More people prefer using rail traffic for travel or for
commuting owing to its convenience and flexibility.
The railway scenario has become an important
communication scenario in the fifth generation era.
The communication system should be designed to
support high-data-rate demands with seamless
connectivity at a high mobility. In this paper, the
channel characteristics are studied and modeled for
the railway tunnel scenario with straight and curved
route shapes. On the basis of measurements using
the “Mobile Hotspot Network” system, a three-
dimensional ray tracer (RT) is calibrated and validated
for the target scenarios. More channel characteristics
are explored via RT simulations at 25.25 GHz with a
500-MHz bandwidth. The key channel parameters are
extracted, provided, and incorporated into a 3rd-
Generation-Partnership-Project-like stochastic channel
generator. The necessary channel information can be
practically realized, which can support the link-level

and system-level design of the communication system
in similar scenarios.

Keywords: MHN, Millimeter wave channel, Railway
communication, Ray tracing simulation, Stochastic
channel modeling.

I. Introduction

Currently, a growing number of people prefer to take
rail traffic for traveling and commuting because of the
comfortable experience and convenience that it provides.
In order to meet the goals of efficiency, safety, and
convenience, rail traffic is expected to be “smart” in the
fifth generation (5G) era. The railway infrastructure,
trains, travelers, and goods will be increasingly
interconnected. Thus, rail-traffic communication has
become an increasingly important topic, and seamless
high-data-rate wireless connectivity is desired.
Consequently, railway communications are required to
evolve from handling only the critical signaling
applications to support various high-data-rate applications
[1], [2]. In order to realize this vision, the millimeter wave
(mmWave) band has become important to overcome
spectrum scarcity, and many efforts have been carried out
to develop novel technologies such as multiple-input–
multiple-output (MIMO) beamforming [3]–[6], resource
allocation, and multiple access. The 5GCHAMPION
project [7], funded by the H2020 Europe–Korea
collaborative program, aims to develop key enabling
technologies for a proof-of-concept environment to be
showcased at the 2018 Winter Olympics in PyeongChang,
Korea. One of the key applications is to provide a high-
mobility broadband connection via a 5G mmWave high-
capacity backhaul in the range of 24 GHz to 28 GHz. The
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Electronics and Telecommunication Research Institute
(ETRI), as a member of the 5GCHAMPION project,
prototyped a new wireless communication system named
“Mobile Hotspot Network (MHN),” which works in the
range of 24 GHz to 30 GHz with 125-MHz, 250-MHz,
500-MHz, and 1-GHz bandwidths. It targets the support of
services with a data rate of gigabits per second with a
speed over 400 km/h [8], and several trials have been
carried out in the Seoul Subway.
Standardization organizations are becoming active in the

promotion of the priority in standardizing mmWave high-
speed railway (HSR) communication technologies as well.
In IEEE 802.15, the “High Rate Rail Communications”
interest group was founded in 2014 to invite proposals and
studies on broadband HSR communications. In 2016, the
Macro + Relay deployment for the HSR scenario was
agreed to be included in the 3rd Generation Partnership
Project (3GPP) evaluation [9]–[11]. The working
frequency is around 30 GHz, and the bandwidth is above
100 MHz. Each baseband unit is attached to three remote
radio heads (RRHs). RRHs are uniformly deployed along
the two rail tracks. The suggested distance from the
RRH to the rail track is 5 m. MIMO systems with
a unidirectional beam or bidirectional beam are
recommended to compensate the high attenuation of
mmWave band propagation. A correct understanding of
the mmWave propagation channel characteristics in
railway scenarios is mandatory to effectively support the
design and evaluation of communication systems [12].
However, the mmWave band channel has been explored
mainly for urban indoor and outdoor scenarios [13]–[16].
According to [17], the railway environments are divided
into 19 scenarios on the basis of a review of four different
HSR lines and eight HSR stations. Five applications are
defined in [1], [2] from the viewpoint of propagation and
wireless channels, including the train-to-infrastructure,
intercar, intracar, inside-the-station, and infrastructure-to-
infrastructure communications. The route shapes are also
very important to the mobility and communication design.
Straight and curved route shapes are typical in railways.
However, most of the current studies focus on the straight
route owing to a lack of measurements of the curved
route. The works on existing standardized channel
modeling rarely provide dedicated parameters for railway
scenarios [18], [19].
In this study, the channel characteristics of tunnel

scenarios are studied and modeled. Measurements are
conducted in the 5G mmWave band in Seoul Subway Line
8 for both straight and curved routes. The 3D environments
of the measurement campaign are modeled, and a ray tracer
(RT) is calibrated and leveraged with the measurements to

explore more channel characteristics. The key time-variant
channel parameters and their correlations are modeled. The
stochastic channels are realized on the basis of a 3GPP-like
channel generator. The validated results indicated that
the 3GPP-like framework is suitable for describing high-
mobility scenarios. With the provided parameters,
researchers and engineers can practically realize 3GPP-like
channels to evaluate the designed communication
technology in similar scenarios.
The remainder of this paper is organized as follows: The

measurements and RT calibration are introduced in
Section II. The channel parameters are analyzed and modeled
in Section III. The conclusions are drawn in Section IV.

II. Measurement Campaign and Ray-Tracer
Calibration

1. Measurement Campaign

An MHN Radio Unit (mRU), which is also called a
transmitter (Tx) in this work, is installed on the side wall
of the tunnel (see Fig. 1(a)), and the MHN Terminal
Equipment (mTE), which is also called a receiver (Rx), is
installed at the middle of the front window in the cab. The
heights of the mRUs and mTE are 3.2 m and 3.0 m,
respectively. The shortest two-dimensional distance
between an mRU and the mTE is 2.8 m. The antenna used
for both the mRUs and mTE is an 8 9 8 patch array
antenna, as shown in Fig. 1(b). The measurements are
conducted by installing the MHN test bed in Seoul
Subway Line 8 from Jamsil station to a place after Songpa
station, as shown in Fig. 1(c). A curved route is connected
to a straight route in the measurement campaign. The
radius of curvature of the tunnel is around 500 m. The
lengths of the curved route and the straight route are
600 m and around 1,700 m, respectively. The half-power
beam width (HPBW) is 8°, and the antenna gain is 22 dBi
with vertical–horizontal dual polarization, as shown in
Fig. 2. The main lobes of both the mRUs and mTE are
pointed at each other, and handover occurs when the train
is near an mRU. Three mRUs (mRU1, mRU2, and mRU3)
are installed in the curved route with distances less than
300 m to guarantee a stable communication link under
possible non-line-of-sight conditions. Only two mRUs
(mRU4 and mRU5) are installed on the straight route, and
the largest tested link distance is 1,180 m at mRU5.

2. Environmental Modeling

As shown in Fig. 3, the cross section of the tunnel is a
rectangle with pylons in the middle that separate the
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two-way tracks. The width of the tunnel is 13.7 m, and the
height is 7.1 m. Figure 4 shows the constructed straight
and curved tunnel models for the RT simulation. The side
wall and pylons are made of concrete, the tracks are made
of metal, and the train is made of metal (train body) and
glass (windows). The lengths of the two models are
greater than 1,200 m, which are longer than the measured
length.

3. Ray-Tracer Calibration

The deployment and configuration of the mRUs and
mTE in the RT are the same as those in the measurement
campaign. A calibration algorithm based on a simulated
annealing method [21], [22] is employed to reduce the
error by seeking the appropriate material parameters. The
calibrated dielectric parameters and scattering coefficients
of the directive scattering model [23] of concrete, glass,
and metal are provided in Table 1; note that the calibrated
transmission loss of glass is 833.33 dB/m (the equivalent
attenuation with a thickness of 6 mm is 5.0 dB). Figure 5
shows the progress of the calibration. As the number of
iterations increases, the calibration error decreases and

saturates after the 4th iteration. The received power of
snapshot s is expressed as PrxðsÞ ¼

Psmax
s¼0 jhðs; sÞj2, and

Fig. 6 compares the cumulative distribution functions
(CDFs) of the error of Prx (mW) before and after RT
calibration. The mean absolute errors of the calibrated RT
are 4.2 9 10�5 mW (straight route) and 5.1 9 10�5 mW
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Fig. 1. Measurement campaign: (a) MHN test bed mRU (Tx) installation details, (b) MHN test bed mTE (Rx) installation details, and
(c) measurement along Seoul Subway Line 8.

0 20 40 (mm)

Fig. 2. Antenna pattern of mRU and mTE (V-polarization):
HPBW = 8°, Gain = 22 dBi.
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(curved route); the standard deviation (STD) of the
absolute errors in milliwatts are 6.3 9 10�5 and
7.6 9 10�5, respectively. Thus, the calibrated RT results
match the measurements well. Thereafter, intensive
reliable RT simulations are conducted to practically
explore more characteristics (azimuth/elevation angular
spreads, omnidirectional channel characteristics) that
could not be captured in the measurements. Figure 7

shows the transmitted and reflected rays traced for the
curved tunnel.

III. Simulation and Analysis of the Results

The MHN system works from 24 GHz to 30 GHz and
supports a maximum bandwidth of 1 GHz. Recently, the
Korean government released a regulation that the total
effective isotropic radiated power should be smaller than
36 dBm, and the allocated frequency is 25 GHz to
25.5 GHz, which is lower than that in the measurements.
To re-evaluate the system performance, accurate channels
are needed for straight and curved routes with new
parameters. RT simulations are conducted at 25.25 GHz
with omnidirectional antennas at the Tx and Rx. As most

13.7 m

7.1 m

Fig. 3. Cross section of Seoul Subway Line 8 [20].

Window (glass)
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1,000 mRx
(mTE)
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Rx
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Train body (metal)

Track (metal)

Pylon (concrete)

Tx
(mRU)

Tx (mRU)

(b)

500 m

Fig. 4. (a) Straight and (b) curved tunnel scenarios.

Table 1. Material parameters.

Material
name

�ʹr �ʺr A (dB/m) S a

Concrete 5.310 0.307
Not

involved
0.0011 40

Glass 6.270 0.149 833.33 6.27 9 10–4 91

Metal 1.000 107 INF 0 0

0 2 4 6 8
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Fig. 5. Progress of the calibration results.
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Fig. 6. CDF of the absolute errors before and after calibration.
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Fig. 7. Rays traced for the straight and curved tunnels.
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services have high requirements for the downlink in
practice, the channel propagation and characteristics are
analyzed by considering an mRU as the Tx and the mTE
as the Rx in this work. The travel distance of the Rx is
1,000 m for the straight route and 350 m for the curved
route. The distance between the Tx and the track center is
2.8 m. The snapshot sampling interval is 0.1 m. Thus,
the total numbers of snapshots are 10,001 for the straight-
route scenarios and 5,001 for the curved-route scenarios.
Up to the 10th order of reflection, scattering and
transmission are considered in the simulation.

1. Path-Loss Model

Figure 8 shows how the path loss PL varies with the
Tx–Rx distance d. The “A-B” model is employed in this
work to fit the PL:

PL ¼ Alog10ðdÞ þ Bþ Xr; (1)

where d is the distance between the Tx and the Rx, A is
the slope, B is the intercept, and Xr is the shadow fading
(SF), which can be expressed as a zero-mean Gaussian
random variable with an STD of r. The fitting results are
compared in Fig. 8 as well. As can be seen, a breakpoint
at a distance dbp exists in both scenarios. When d ≤ dbp,
the region is defined as a near region. On the contrary, the
far region is where d > dbp. The extracted parameters are
provided in Table 2. dbp of the straight tunnel is five times
that of the curved tunnel. In both scenarios, Anear is less
than Afar. It is noteworthy that the train body, which is
made of metal, blocks the direct transmission path at the
very beginning of the near region. Thus, only the reflected
and scattered rays can reach the Rx, which results a great
difference between the simulated path loss and the free-
space path loss. In the far region, the path loss in the
curved tunnel is more severe than that in the straight
tunnel, and Acurved is more than two times Astraight. rcurved
is smaller than rstraight in both the near and far regions.
The correlated distance of SF is defined as kSF, and the
units are meters. kSF of the near region is smaller than that

of the far region, and kSF of the curved tunnel is at least
four times shorter than that of the straight tunnel. This
observation indicates that the variation in the straight
tunnel is less than that of the curved tunnel.

2. Delay Spread and Rician K-Factor

Figure 9 shows the CDFs of the root-mean-square
(RMS) delay spreads (DSs) rs of both scenarios. rs can
be fitted by a lognormal distribution function (Table 3).
In the straight tunnel, the mean RMS delay spread in the
near region is larger than in the far region. In the curved
tunnel, the values of rs for the near region and far
region are similar and are fitted with the same model.
The mean value and the range of variation of the
straight tunnel are smaller than those of the curved
tunnel. A Rician distribution indicates the presence of a
specular dominant component in the channel over other
very weak paths, and its probability density function
(PDF) is expressed as

PxðxÞ ¼ x
r2n

e
�x2þA2

2r2n I0
Ax
r2n

� �
; (2)

K ¼ 10log10

�
A2

2r2n

�
; (3)

where I0 is the modified Bessel function of the first
kind and zeroth order, A is the amplitude of the
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Fig. 8. Path losses of both scenarios: (a) path loss of the straight
tunnel and (b) path loss of the curved tunnel.

Table 2. Extracted parameters for the PL.

PL

Straight tunnel
(dbp = 257.2 m)

Curved tunnel
(dbp = 50 m)

Near Far Near Far

A 0.64 16.50 0 33.40

B 113.56 76.06 107.76 51.45

r (dB) 5.93 4.96 4.53 4.83

kSF (m) 1.10 1.70 1.00 1.10
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Fig. 9. Delay spreads of both scenarios: (a) DS of the straight
tunnel and (b) DS of the curved tunnel.

43Danping He et al.

http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326

http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326


dominant path, and rn is the STD of all other weak
path amplitudes. The amplitudes are computed by
using the peak values of the channel impulse
responses. The Rician K-factor (KF) is expressed by
(3). The CDFs are compared in Fig. 10, and the
fitting results are summarized in Table 4. The mean
KFs of both scenarios are greater than 24 dB. In the
far region of the straight tunnel, the mean value is
greater than that in the near region. The mean KF of
the curved-tunnel scenario is the lowest, indicating that
multipath components contribute more significantly
compared to the straight tunnel. The correlated
distance kKF of the curved tunnel is much less than
that of the straight tunnel.

3. Angular Domain

According to the 3GPP definition [24], the conventional
angular spread (AS) calculation for the composite signal is
given by

rAS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1

PM
m¼1 ðhn;m;lÞ2 � Pn;mPN

n¼1

PM
m¼1 Pn;m

s
;

where Pn,m is the power for the mth subpath of the nth
path, hn,m,l is defined as

hn;m;l ¼
2pþ hn;m � lh

� �
if hn;m � lh

� �
\� p

hn;m � lh
� �

if jhn;m � lhj � p
2p � hn;m � lh

� �
if hn;m � lh

� �
[ p

8<
: ;

lh is defined as

lh ¼
PN

n¼1

PM
m¼1 hn;m � Pn;mPN

n¼1

PM
m¼1 Pn;m

;

and hn,m is the angle of arrival/departure of the mth
subpath of the nth path. m is 1 for RT simulation results.
The RMS ASs of both scenarios are shown in Fig. 11.

The fitting parameters are listed in Table 5. ASA, ASD,
ESA, and ESD are the angular spreads of the azimuth
angle of arrival (AoA), the azimuth angle of departure, the
elevation angle of arrival (EoA), and the elevation angle
of departure, respectively. The ASs of the straight tunnel
in the far region are the smallest with the smallest
variation. kAS of the far region of the straight route is the
largest compared to the others (Table 6).

4. Cross-Correlation between the Key Parameters

The cross-correlations are computed for the
aforementioned parameters. Tables 7 and 8 summarize
the parameters for the near and far regions of the

Table 3. Extracted parameters for the DS.

DS
Straight tunnel Curved

tunnelNear Far

Mean log10 (ns) –9.19 –9.24 –9.14

rDS log10 (ns) –9.29 –10.67 –9.53

kDS (m) 6.80 20.30 4.60

rDS (m) 2.83 2.83 2.57
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Fig. 10. Rician K-factors: (a) KF of the straight tunnel and (b)
KF of the curved tunnel.

Table 4. Extracted parameters for the KF.

KF
Straight tunnel Curved

tunnelNear Far

Mean (dB) 25.70 32.95 24.02

rKF (dB) 14.23 19.15 12.24

kKF (m) 11.20 14.60 2.10

C
D

F

1.0

0.8

0.6

0.4

0.2

0
0

ASD (˚)
50 100

Straight near RT
Straight near fit
Straight far
Straight far fit
Curved RT
Curved fit

C
D

F

1.0

0.8

0.6

0.4

0.2

0
0

ESD (˚)
40 80

Straight near RT
Straight near fit
Straight far
Straight far fit
Curved RT
Curved fit

6020

C
D

F

1.0

0.8

0.6

0.4

0.2

0
0

ASA (˚)
50 100

Straight near RT
Straight near fit
Straight far
Straight far fit
Curved RT
Curved fit

C
D

F

1.0

0.8

0.6

0.4

0.2

0
0

ESA (˚)
40

Straight near RT
Straight near fit
Straight far
Straight far fit
Curved RT
Curved fit

6020

Fig. 11. CDFs of the ASs.
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straight tunnel, respectively. The cross-correlation of the
DS and SF is positive in both regions, whereas the
correlation between the DS/SF and other parameters are
negative. Further, the cross-correlations of the other
parameters significantly increase in the far region. When
the diversity of multipath components (MPCs) increases,
the variation in the SF increases as well. When the DS
increases/decreases, the multipath components are more/
less diverse in the time domain. The DS and SF are
positively correlated, indicating that the SF is likely to
vary with a similar trend as the DS. However, the
angles are constrained within the narrow propagation
region, and the range of ASs in the far region is less
than that in the near region of the straight tunnel. Thus,
the variations in the delays of rays barely influence the
angles, especially in the far region of the straight tunnel.
In the curved tunnel (see Table 8), the KF and SF are
barely correlated with the other parameters. In both
scenarios, the ASs are strongly correlated.

5. Polarization

The cross-polarization ratio (XPR) refers to the field
received in the vertical (horizontal) copolarization relative

to the field transmitted in the vertical polarization
(horizontal) and received horizontal polarization (vertical).
The XPR is expressed as

XPR ¼ 20log10
Eco

Ecross

� �
:

The XPRs are fitted as a normal distribution (Fig. 12),
and Table 9 summarizes the parameters. The smallest
XPRs are negative in both scenarios with a probability of
less than 20%, indicating that the copolarization configuration
outperforms the cross-polarization configuration with a very
large chance. The depolarization is the most severe in the

Table 5. Extracted parameters for the ASs.

ASD
Straight tunnel Curved

tunnelNear Far

Mean log10 (˚) 0.63 9.65 9 10–4 0.02

rASD log10 (˚) 0.64 –0.52 0.44

kASD (m) 6.00 19.40 2.90

ESD
Straight tunnel Curved

tunnelNear Far

Mean log10 (˚) 0.65 0.03 0.87

rESD log10 (˚) 0.56 –0.38 0.57

kESD (m) 2.90 17.50 4.80

ASA
Straight tunnel Curved

tunnelNear Far

Mean log10 (˚) 0.37 –0.04 0.47

rASA log10 (˚) 0.62 –0.76 0.26

kASA (m) 6.95 19.90 4.00

ESA
Straight tunnel Curved

tunnelNear Far

Mean log10 (˚) 0.28 –0.07 –0.07

rESA log10 (˚) 0.47 –0.94 0.12

kESA (m) 15.45 20.00 4.20

Table 6. Cross-correlation of the straight tunnel in the near
region.

DS KF SF ASD ASA ESD ESA

DS 1 0.52 0.20 0.87 0.76 0.83 0.78

KF 1 –0.12 0.65 0.23 0.64 0.21

SF 1 0.13 0.18 0.08 0.17

ASD 1 0.59 0.76 0.57

ASA 1 0.53 0.92

ESD 1 0.61

ESA 1

Table 7. Cross-correlation of the straight tunnel in the far region.

DS KF SF ASD ASA ESD ESA

DS 1 –0.65 0.11 –0.75 –0.68 –0.72 –0.64

KF 1 0.01 0.96 0.98 0.89 0.99

SF 1 –0.01 –0.01 –0.03 0.01

ASD 1 0.97 0.94 0.96

ASA 1 0.94 0.99

ESD 1 0.89

ESA 1

Table 8. Cross-correlation of the curved tunnel.

DS KF SF ASD ASA ESD ESA

DS 1 0.12 0 0.45 0.84 0.69 0.57

KF 1 –0.03 0.07 –0.17 0.05 0.01

SF 1 0.03 –0.03 0.02 0.07

ASD 1 0.47 0.52 0.67

ASA 1 0.60 0.69

ESD 1 0.47

ESA 1

45Danping He et al.

http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326

http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326


far region of the straight tunnel, as the mean XPR and
minimum XPR are the smallest compared with the
others. Thus, a dual polarization configuration at the Tx
and Rx is suggested.

6. Clustering

The clustering procedure is realized by using a K-
power-means algorithm clustering algorithm by
considering the power, delay, AoA, and EoA.
Twenty clusters are generated for both scenarios. The
per-cluster parameters are summarized in Table 10.
The per-cluster parameters in the far region of the
straight tunnel are the smallest compared to the
others.

7. Validation of the Channel Models

With all of the provided parameters in this work,
stochastic channels can be generated by using a 3GPP-
like channel generator. The QuaDRiGa channel
generator [25], which includes all of the features of the
3GPP channel framework and supports the evolution of
time-variant channel parameters, is used to realize and
validate the channels. The deployment configuration and
mobility patterns of the Tx and Rx are exactly the same
as those in the RT, as shown in Fig. 13. Two segments

are defined on the basis of the different values of dbp of
the two scenarios. Examples of the values of PL of the
generated channels are shown in Fig. 14. By running
QuaDRiGa 105 times, the mean absolute error of PL is
2.5 dB, and the error in the PL coefficient is 0. The
corresponding examples of the DS and KF are shown in
Fig. 15. The mean absolute errors of the means and
STDs are also 0. The validated parameters and the
channel generator maintain consistency in the
distribution of the large-scale parameters. As a result,
the results of this work can be used to practically
evaluate link/system-level technologies for similar tunnel
scenarios.

IV. Conclusion

In this study, the channel characteristics are analyzed
and modeled for railway tunnel scenarios in the mmWave
band. Straight and curved route shapes are defined, and
the 3D environment models are available online for free to
download. Measurements are conducted inside the tunnel
of a Seoul subway line. A 3D ray tracer is calibrated to
ensure that the environment model and material
parameters are practically close to reality. The
transmission loss of the front window is 5 dB, and the
dielectric parameters of the considered materials are
obtained. The path loss, RMS delay spread, Rician K-
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Table 9. Extracted parameters for the XPR.

XPR
Straight tunnel Curved

tunnelNear Far

Mean (dB) 13.65 4.29 14.86
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Table 10. Per-cluster parameters.
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factor, 3D angular spreads, and polarizations are extracted
from the calibrated RT simulation, and the distributions
and correlations are modeled. On the basis of a 3GPP-like
channel modeling framework and the QuaDRiGa channel
generator, the provided parameters are validated. The
work of this paper indicates that the RT simulator can be
integrated with channel measurements to analyze more
channel characteristics. Moreover, the 3GPP-like
framework and QuaDRiGa generator are suitable for
describing high-mobility scenarios. With the provided
parameters in this work, researchers and engineers can
practically realize channels to evaluate the designed
communication technology in similar scenarios.
Moreover, the main observations from this work are
summarized as follows:

• A break point exists in both scenarios, and dbp of the
straight tunnel is larger than that of the curved tunnel.
Thus, two sets of parameters should be extracted, and
special attention should be paid when implementing a
stochastic channel generator.

• The correlated distances of the key parameters in the far
region are larger than those in the near region, meaning
that the channel characteristics vary more drastically in
the near region.

• Owing to the drastic variation in the multipath
components, the PL slopes in the near region of both
scenarios are approximately 0, which makes PL barely

vary with the distance. In the far region, the curved tunnel
suffers more path loss than that in the straight tunnel.

• The DS and SF are less correlated with the other
parameters in the far region of the straight tunnel,
whereas the other parameters are more correlated with
each other. In the curved tunnel, the KF and SF are
barely correlated with the other parameters. The ASs are
strongly correlated in both scenarios.

• The copolarization configuration outperforms the cross-
polarization configuration with more than 80%
probability. The depolarization in the far region of the
straight tunnel is the most severe compared to those of
the others. Thus, a dual polarization configuration at the
Tx and Rx is suggested.
In future work, different Tx/Rx configurations and

multilink channel simulations will be explored. The
influence of different configurations on link-level and
system-level technologies will be evaluated.
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