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A spatial augmented reality (SAR) system enables a
virtual image to be projected onto the surface of a real-
world object and the user to intuitively control the
image using a tangible interface. However, occlusions
frequently occur, such as a sudden change in the
lighting environment or the generation of obstacles.
We propose a robust object tracker based on a
multithreaded system, which can track an object
robustly through occlusions. Our multithreaded
tracker is divided into two threads: the detection
thread detects distinctive features in a frame-to-frame
manner, and the tracking thread tracks features
periodically using an optical-flow-based tracking
method. Consequently, although the speed of the
detection thread is considerably slow, we achieve real-
time performance owing to the multithreaded
configuration. Moreover, the proposed outlier filtering
automatically updates a random sample consensus
distance threshold for eliminating outliers according to
environmental changes. Experimental results show
that our approach tracks an object robustly in real-
time in an SAR environment where there are frequent
occlusions occurring from augmented projection
images.

Keywords: Augmented reality, RANSAC, Spatial
augmented reality, Stitching, Tracking.

I. Introduction

A spatial augmented reality (SAR) technique is a
projector-based form of augmented reality (AR). Using
such techniques, virtual images can be directly displayed
on the surface of a real-world object, as shown in Fig. 1.
Mirage Table [1] by Microsoft is an interactive table based
on a projected AR technique. The camera recognizes and
detects real-world objects, and the projector projects
virtual information onto a table. A future robotic computer
(FRC) [2] enables the movement of projector and camera
poses using robotic actuators. This means that an FRC can
move projection images according to the requirements of
the application, such as having a wide projection in a
restrictive environment or changing the direction of
projection. When a projector and camera are moved, the
calculation of their pose is essential for rendering a
projection image. This system uses robotic kinematics
based on a computer-aided design or recognizes a marker
for pose estimation.
Another feature of the SAR technique is that a user can

use tangible objects as an interface device. Figure 1(c and d)
show examples of SAR systems using tangible objects. Lego
Oasis [3] recognizes user-created Lego blocks and projects
animated projection images. A curve design game [4] uses
yellow paper markers that can be easily produced for
designing a curve. These systems provide the user with
intuitive control using a tangible interface by projecting a
virtual image onto the surface of a real-world object or onto a
workplace. They can provide an easy and simple user
interface environment for children and the elderly. However,
SAR systems are unfavorable for detecting or tracking real-
world objects owing to occlusions.
Occlusions refer to sudden changes in the lighting

environment or the generation of obstacles between the
camera and the tracked object. They are a serious issue in
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object tracking when calculating a camera pose in an SAR
environment. There are well-known solutions to
occlusions, such as a scale-invariant feature transform
(SIFT) [5], a speeded-up robust feature (SURF) [6],
oriented features from accelerated segment test, and
rotated BRIEF (ORB) [7], which are rotation-invariant
and resistant to noise. However, these tracking methods
incur significant computational costs for achieving real-
time performance.
Hybrid feature tracking (HFT) [8] with an SIFT has

reliable tracking performance in a real-time system.
Although a multithreaded system detects the SIFT features
in another thread, it achieves real-time performance for
calculating a camera position in the main thread.
However, its tracking reliability is low in an SAR
environment where there are frequent occlusions from
augmented projection images.
Simultaneous localization and mapping (SLAM) is

well-known for estimating the camera trajectory while
reconstructing the environment [9]. It detects a large
number of distinctive features in the environment and uses
bundle adjustment to increase the accuracy of camera
localizations. However, we use a single camera mounted
on a robot arm. Camera localizations are estimated by
data-driven robot kinematic control [10]. We only use the
proposed method for tracking a movable object.
Therefore, the number of features from an object is
smaller than that of SLAM approaches. This means that
object features can be easily affected by frequent
occlusions in the projection-based AR system. Similarly,
Wang [11] uses SLAM for camera localizations and tracks
a movable object using an RGB-D camera.

SLAM methods use a random sample consensus
(RANSAC) [12] to eliminate the errors from detected
and matched features [9, 13]. The RANSAC distance
threshold must be predetermined by the user. In
addition, these papers do not contain the contents of
the RANSAC parameters. Cheng [14] presented an
automatic way to determine the RANSAC threshold
based on the projection error of the RANSAC. We
proposed a tracking method that determines a case-
specific RANSAC distance threshold based on an
optical flow tracker [15]. It enables the threshold to be
determined according to the object shape and a scale.
However, the threshold also must be predetermined
manually by the user.
In this paper, we describe a multithreaded object

tracker with outlier filtering, as shown in Fig. 2. It
enables the RANSAC distance threshold to be
determined according to environmental changes. In
addition, the RANSAC threshold can be updated
automatically at user-defined intervals in real-time. The
rest of this paper is structured as follows. In Section II,
we describe an SAR system model and how to render
a projection image based on the pose of the projector.
In Section III, we describe the proposed multithreaded
object tracker with outlier filtering in detail. In
Section IV, we evaluate the performance of the
proposed tracker and show our experiment results.
Finally, in Section V, we provide some concluding
remarks.

(a) (b)

(c) (d)

Fig. 1. Examples of SAR systems: (a) MirageTable [1], (b) a
future robotic computer [2], (c) Lego Oasis [3], and (d) a
curve design game [4].

(a) (b)

(c) (d)

Fig. 2. Tracking example of the proposed object tracker. The
yellow points indicate the tracked features in the camera
coordinates: (a) augmented projection images on the
image, (b) tracking result of (a), (c) occurrence of
occlusions by a hand, and (d) errors removed through
outlier filtering.
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II. SAR System Model

The SAR system implemented in this study was tested
using an FRC developed by ETRI [16]. The FRC consists
of five actuators and two projector–camera unit pairs. The
camera recognizes real-world objects, and the projector
projects additional virtual information onto the surfaces
of real-world objects. The camera and projector are
physically fixed to each other. Therefore, if a projector–
camera unit is calibrated in advance, the projector pose
can be calculated by simply estimating the camera’s
extrinsic parameters. In this section, we describe the SAR
system model and the calibration method for a projector–
camera unit.

1. Projector–Camera Model

The SAR coordinate system is based on a pinhole
camera model and must be defined based on the
geometric relationship of the projector and through
camera calibration [16], [17]. Each transform
homography matrix consists of an intrinsic parameter
and an extrinsic parameter. The intrinsic parameter M is
a 3 9 3 matrix. Here, a and b are the scale factors of
the u and v axes of the image, u0 and v0 are the
principal points of the coordinate system, and c is the
skew parameter.

M ¼
a c u0
0 b v0
0 0 1

2
4

3
5
;

(1)

Xwc ¼ R t
0 1

� �
: (2)

The extrinsic parameter Xwc is a 3 9 4 matrix. It is
composed of the translation vector t and rotation matrix R
of the x, y, and z axes. In our system, the camera is
calibrated using Zhang’s method [18], [19]. Here, pc is a
point in the calibrated camera coordinates, and pw is the
corresponding point in the world coordinates, as shown in
Fig. 3. In this case, the relationship between them is
defined as the camera homography matrix Hwc, in which
the intrinsic camera parameter Mc and extrinsic camera
parameter Xwc are combined.

pc ¼ McXwcpw ¼ Hwcpw: (3)

In the case of projector calibration, we cannot use
Zhang’s method, which requires knowing the image
resolution in advance. It is difficult to know the resolution
of the projected image from a projector in advance owing

to the offset lens of the projector [16]. Thus, the projector
in our system is calibrated using Tsai’s method [16], [20].
Here, pp is a point in the calibrated projector coordinates,
and pw is the corresponding point in the world
coordinates, as shown in Fig. 3. In this case, the
relationship between them is defined as the projector
homography matrix Hwp, in which the intrinsic projector
parameter Mp and extrinsic projector parameter Xwp are
combined.

pp ¼ MpXwppw ¼ Hwppw: (4)

The relationship matrix Xcp between the projector and
the camera is calculated using the inverse matrix of the
extrinsic camera parameter and extrinsic projector
parameter.

Xcp ¼ XwpX�1
wc ¼ XwpXcw ¼ X�1

pc : (5)

The projector homography matrix Hwp is calculated
using the extrinsic camera parameter, precomputed
intrinsic projector parameter, and relationship matrix Xcp

between the projector and the camera, which is calculated
using (5).

MpXcpXwc ¼ MpXwp ¼ Hwp ¼ H�1
pw : (6)

If pc is a point in the camera coordinates, and is pp is the
corresponding point in the projector coordinates, the
relationship between them is defined as the matrix Hpc. In
the real-time process, Hpc is calculated using the camera
homography and the inverse matrix of the projector
homography:

pc ¼ HwcH�1
wppp ¼ H�1

cwHpwpp ¼ Hpcpp: (7)

In our implemented system, the camera and projector
are physically fixed to each other. Therefore, the relation

pw

pcpp

Hwp
Hwc

Hpc

Camera
coordinates

Projector
coordinates

World coordinates

Fig. 3. SAR coordinate system.
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matrix Hcp between the projector and the camera is a fixed
value in an SAR system.

2. Rendering a Projection Image

In our SAR system, the camera detects a real-world
object, and the projector projects a virtual image onto
the surface of the object. The projector–camera unit is
calibrated based on the projector–camera model
described in the previous section. First, we need to
calculate the extrinsic camera parameter Xwc to
generate a virtual projection image. The perspective-n-
point (PnP) estimation using RANSAC between the pw
features detected in the world coordinates from the
object image and the pc features detected in the camera
coordinates is applied to calculate Xwc. Features in the
world coordinates must be three-dimensional points for
PnP estimation. All z-axis values of pw are zero owing
to the use of a planar object as the real-world object.
The central origin point 0; 0ð Þ in the object image is
the central origin point (0, 0, 0) of the world
coordinates. Finally, the projection image Iw in the
world coordinates is transformed into the projection
image Ip in the projector coordinates.

Ip ¼ MpXcpXwcIw ¼ HwpIw: (8)

III. Multithreaded Tracking System

The pose estimation of a projector–camera unit is the
most essential part of an SAR system. It is carried out as
PnP estimation applied between the scene features
detected in an object of the camera input image and the
object features detected in the original object of the world
coordinates. The object features are detected using an
SIFT. The scene features are detected and tracked by the
proposed multithreaded tracker during the real-time
process.
Our multithreaded tracker is implemented based on

HFT [8] and is divided into two threads: a detection
thread for detecting distinctive features and a tracking
thread for tracking features using a pyramidal Lucas–
Kanade tracker (LKT), which is an optical-flow-based
tracker [21], [22]. Figure 4 shows the task flow of the
multithreaded object tracker system. The tracking
thread is applied frame-to-frame for tracking the
detected features, whereas the detection thread is
applied periodically for detecting newly added SIFT
features as the scene features in a camera input image.
Owing to occlusions, tracked features are easily
removed or deformed through the optical-flow-based

LKT. Therefore, the proposed outlier filtering is
imperative for removing errors for robust camera pose
estimation.

1. Tracking Thread

The tracking thread is the main thread in an SAR
system. Therefore, the real-time tracking thread runs at the
same interval as the camera’s frame rate, which is
indicated with the white blocks shown in Fig. 4. Table 1
summarizes the pseudocode for the tracking thread. When
the system starts, we set the object that will be detected
and tracked in the loop process. We detect SIFT features
as the object features from the original object in the world
coordinates. Because the original image is a two-
dimensional planar object, all z-axis values of the detected
object features are set to zero.
After the loop process in Table 1 starts, the tracking

thread tracks the detected scene features in a camera input
image. According to the tracking results, the extrinsic
camera parameter Xwc is calculated through PnP
estimation using RANSAC. The extrinsic projector
parameter that is physically fixed to the camera can be

w

c

c

c

c

cp

wc

Yes

Fig. 4. Work flow of an SAR system using the proposed
multithreaded object tracker.
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estimated using Xwc and Xcp with (6). Here, Xcp is
precomputed during the offline process. Finally, a
projection image projected by the projector is visualized.
Our SAR system includes outlier filtering for robust
tracking through environmental changes such as the
distance between the camera and the object, the object
shape, or occlusions. The proposed outlier filtering uses a
case-specific threshold that is automatically updated using
the proposed adaptive RANSAC threshold decision.

A. Outlier Filtering

The proposed outlier filtering is applied in a frame-by-
frame manner in the tracking thread before PnP
estimation. It chooses good features as inliers for tracking
with an LKT and eliminates unstable features as outliers
that are affected by occlusions. Our approach classifies
them into inliers and outliers based on the relationship
between the object image and the scene image, as shown
in Fig. 5(a and b). The object image is the original image
of the real-world object, and the origin of the object image
is set as the origin of the world coordinates in Fig. 5(a).
The scene image is captured in the loop process shown in
Fig. 5(b).
Table 2 summarizes the detailed steps of the proposed

outlier filtering. If a transformed feature p0c in the scene
image is placed out of the case-specific threshold range, it

is regarded as an outlier, as shown in Fig. 5(c). Therefore,
this implies that the distance threshold is the primary
factor for classifying inliers and outliers. We describe the
proposed adaptive RANSAC threshold decision in the
next section.

B. Adaptive RANSAC Threshold Decision

A distance threshold for outlier filtering is determined in
real-time based on the adaptive RANSAC threshold
decision. The proposed approach determines the distance
threshold according to environmental changes such as the
object shape and the distance scale between the camera
and the object. Therefore, unlike the previous setting of
the distance threshold offline by a user, it enables
continuous updating of the distance threshold in real-time.
As a result, the stability of tracking can be improved.
Table 3 summarizes the steps of the adaptive RANSAC

threshold decision. Prior to the loop process, the

Table 1. Pseudocode of the tracking thread.

FUNCTION: MAIN()
Detect object feature pw in an object image by an SIFT.
Detect scene feature pc in a camera input image
Set pc to LKT features pc0
i; k ¼ 0
BEGINLOOP:

Capture a camera input image.
Track pci by an LKT; its tracked result is pciþ1

.
Adaptive RANSAC threshold decision process.
k = k + 1
IF: k = 100,

Update RANSAC distance threshold.
k = 0.

IF: Detection thread is over,
Calculate transformed pose of detected features.
Add newly detected scene features to pciþ1

.
Outlier filtering with pw and pciþ1

; its result is pciþ1
.

IF: number of pciþ1
is smaller than the user-defined number

OR user-defined interval,
Detection thread starts.

PnP estimation with pw and pciþ1

Rendering a projection image.
i = i + 1

ENDLOOP

p

(a) (b)

(c)

p

p

p
4

p5

p
0

p

p

p
p

p

Outliers
Inliers

′

Threshold

w

w2

w4

w1

c0

c2

c3

c4

pc1

w3

w3

p′c2

p′c1

p′c3

pc1

pc2

pc0

Fig. 5. Detected and tracked features in the object and scene
image and the definition of outliers: (a) detected features
through an SIFT in the object image, (b) results tracked
by an LKT from the scene image in the loop process, and
(c) an outlier feature if a transformed feature p0c is out of
range.

Table 2. Outlier filtering steps for classifying inliers and outliers.

1) Compute a perspective projection matrix H from between the
features pw in the object image and pc in the scene image using
RANSAC.

2) Compute the Euclidean distance values di between the ith feature
pci and a transformed feature p0ci ¼ H � pci .

3) If di is smaller than a case-specific threshold, it is an inlier. In
other cases, it is an outlier.
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temporary initial threshold is determined when the initial
detected features pc are added to the tracking thread. The
initial threshold t0 is set according to the object scale. We
set the interval of the threshold decision to 100 frames in
our experiment. The adaptive threshold decision is
performed every 100 frames in real-time. Here, tnor 9 s is
really used as the distance threshold in the outlier filtering.
This means that the threshold is adaptively changed
according to the distance between the camera and the
object.

2. Detection Thread

The detection thread is another thread of the proposed
multithreaded object tracker. This thread detects SIFT
features in the scene image from the camera input image.
However, the SIFT detection method is too slow and is
not suitable for a real-time system. In our approach, SIFT
detection does not affect the tracking speed of the tracking
thread because the detection thread is generated
intermittently under certain conditions in a new thread.
Figure 6 shows a flowchart of the detection thread

when adding new SIFT features to the tracked feature
dataset in the tracking thread. When the detection thread
starts at the lth frame, SIFT detection detects new SIFT
features in the lth frame. The speed of the SIFT detection
procedure is generally 340 ms for detecting and matching
about 700 features. For application in a real-time system,
all procedures must be performed within 33.3 ms using a
30-fps camera. Thus, newly detected SIFT features
cannot be added to the lth frame in real-time.
Newly detected SIFT features must be added to the next

few frames later. New features are added to the tracked
feature dataset in the tracking thread at the kth frame, as
shown in Fig. 6. New features are added to pckþ1

, which is
described in Table 1. It cannot be assumed that all lth and

kth frames are captured from the same camera position.
Therefore, we calculate the perspective projection matrix
between the tracked features pl at the lth frame and pckþ1

at
the kth frame.

pckþ1
¼ H:pl: (9)

Finally, the transformed pose p0new of the newly detected
features are computed using H.

p0new ¼ H:Pnew (10)

when p0new is added to the tracked features pckþ1
, we need

to confirm that the same features exist between them. If
any features of p0new are the same as one of pckþ1

, a feature
cannot be added. We calculate the Euclidean distances
between one of the p0new features and all of pckþ1

. If any
distance is smaller than a case-specific threshold, we
determine that the point is a duplicate.

IV. Experiments

1. Tracking Stability and Speed

We evaluated the tracking experiment using a projector
and camera unit for an SAR system through occlusions.
An occlusion is referred to as a sudden change in the
lighting environment or the generation of an obstacle
between the camera and tracked object. The experiment
was performed using a desktop computer with an Intel�

2.67-GHz CoreTM i7 CPU, a projector (Optoma P320 with
a resolution of 1,280 9 720), and a USB 2.0 camera
(Logitech C920 with a resolution of 640 9 480).
We compared the tracking stability and speed of the

proposed multithreaded object tracker using the SIFT,
SURF, or ORB based on a single thread. The experimental
video frames were captured using a fixed camera and fixed
planar object for calculating the root-mean-square error
(RMSE). The ground truth of the fixed camera pose, as a

Table 3. Adaptive RANSAC distance threshold decision steps.

1) Set the initial threshold to t0 ¼ s=100, where the scale s is the
diagonal length of the object in the camera input image.

2) The Euclidean distances di,j between pci;j and p0ci;j are computed
with the jth feature at every ith frame until the nth frame.

3) At the nth frame, djmean ¼ 1
n

Pn
i¼1 di;j is calculated as the sum of

each jth feature with all ith frames.
4) If djmean is twice dmean ¼ 1

k

Pk
j¼1 djmean , djmean is removed to exclude

impulse errors. k is the number of features.
5) Update the distance threshold t1 through the djmean dataset

computed using Otsu threshold decision [27] methods. Finally,
the normalized threshold tnor = t1/s is computed.

6) At every nth frame interval, steps 2) through 5) are repeated, and
the normalized distance threshold is updated.

c

Fig. 6. Flowchart of the detection thread for adding new SIFT
features to a tracked feature dataset in the tracking
thread.

251Ahyun Lee and Insung Jang

https://onlinelibrary.wiley.com/journal/22337326

http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326


real camera pose, was computed by measuring the four
corner points of a rectangular planar object from the
camera input image. Experimental camera poses were
calculated through the PnP estimation results of each
tracker. A camera pose is the 4th column vector t of the
extrinsic camera parameter Xwc and is given by

pc ¼ McXwcpw ¼ Mc R ðx; y; z; 1ÞT
� �

pw: (11)

We calculated the RMSEs of the Euclidean distance
values between the real camera pose and the camera poses
estimated by each tracker. The ideal result is a difference
in RMSE of close to zero. Figure 7 shows the first
experimental results in an SAR environment through
frequent occlusions. The SIFT and proposed method tracked

the object more robustly than the SURF or ORB, as shown
in Fig. 7(a and b). The processing speed results are shown
in Fig. 7(c). The speed results include only the detection,
matching, and tracking process times. The SIFT is the
slowest approach among those considered. On the other
hand, the proposed method is the fastest approach because it
is based on a multithreaded system. In conclusion, we found
that our proposed tracker is the most effective method in
terms of the tracking stability and speed.
In another experiment, we evaluated the pose changes

along the x, y, and z axes by moving the camera or object.
Although the SIFT is the slowest tracker, it is the most
stable approach, as shown in Fig. 8. The proposed tracker
shows similar results as the SIFT. In the case of the ORB
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Fig. 7. RMSEs of the Euclidean distances for the SIFT, SURF,
ORB, and proposed methods and each processing speed
when the camera and planar object are fixed: (a) RMSE
between the real camera position and the estimated
camera positions, (b) magnified graph of (a), and (c) the
processing speed results.
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or SURF, some of the results were not expressed in the
graphs with a limited size owing to the presence of overly
large errors. Table 4 summarizes the process times of each
step in the tracking thread of the proposed multithreaded
tracker. The process time results were measured when
tracking more than 300 features during 400 frames.

2. Threshold Method for an Adaptive Threshold
Decision

A distance threshold value that classifies inliers and
outliers in outlier filtering is an essential factor of the
filtering performance. A threshold method for determining
the threshold value for dividing djmean into 2 was found
from the data collected from each jth feature during
specific frame intervals, as presented in Table 3. In this
study, we attempted to find an effective threshold method

for our SAR system [23]–[27]. The experimental video
frames were captured using a fixed camera and fixed
planar object for calculating the RMSE between the
ground truth of the fixed camera pose and the
experimental camera poses. Depending on the threshold
method used, tnor is determined differently, and the
tracking results are also different.
Table 5 summarizes the experiment results for finding an

effective threshold method for our SAR system. The value
of tnor is very small because it is divided by the diagonal
length of the object in the camera coordinates. These
experiment results indicate that Otsu’s method was the
most effective way to determine the adaptive threshold
decision for outlier filtering. However, the best way differed
according to the objects. We thought that a threshold
method should be an optional parameter in the proposed
outlier filtering. In general, a low threshold results in a low
difference error. However, a low tnor causes a low number
of inliers. As a result, a small number of inliers generates a
poor pose estimation result. In addition, we compared the
results from another multithreaded tracker [8] without using
the proposed outlier filtering.

3. Panorama Image Stitching with Real-Time Preview

The proposed tracker enables the robust tracking of
a planar object in real-time. Therefore, we evaluated
panorama image stitching with a real-time preview using
our tracker. Panorama image stitching is a well-known

Table 4. Process times of each step in the tracking thread (400
frames as an average value).

Time per frame (ms)

Tracking thread 7.4724

Track scene features with an LKT 3.2638

Adaptive RANSAC threshold decision 0.3392

Outlier filtering 0.3819

Pose estimation 0.5352

Rendering 2.9523

Table 5. RMSE according to each threshold method using various planar objects. Bold numbers indicate the smallest value in each
object.

Threshold
decision
method

Objects Average RMSE

Intermodes
[23]

tnor 0.0057 0.0034 0.0043 0.0024 N/A

RMSE 4.7388 3.1944 3.0971 4.1119 3.7856

Iterative
[24]

tnor 0.0103 0.0058 0.0043 0.0034 N/A

RMSE 6.0300 2.4545 3.2684 6.5352 4.5720

Moments
[25]

tnor 0.0304 0.0030 0.0056 0.0022 N/A

RMSE 15.0666 2.8198 2.8722 3.1803 5.9847

Percentile
[26]

tnor 0.0117 0.0095 0.0073 0.0031 N/A

RMSE 5.2985 1.6011 3.3572 9.3309 4.8769

Otsu
[27]

tnor 0.0055 0.0037 0.0022 0.0048 N/A

RMSE 4.2006 3.1935 4.0536 3.6529 3.7752

Without
filtering [8]

RMSE 18.8934 11.5217 24.2251 25.9701 20.1526
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method for creating a wide-angle image with limited tools
or environments. Previous approaches have been
concerned with the quality of the panorama image
stitching result or fully automated systems [28]–[30].
These stitching programs select the source images, while
users predict the stitching result using a guideline that
helps capture a source image. To create a view of a user-
desired shape, trial-and-error is required.
In this paper, we propose a multithreaded panorama

image stitching method with a real-time preview. Our
panorama image stitching detects and tracks SIFT features
in real-time and estimates the perspective projection
transformation between the camera input images using the
proposed multithreaded tracker. The proposed system is
composed of tracking, detection, and blending parts. The
blending thread based on an automatic panoramic image
stitching method [31] is difficult to execute in real-time;
thus, we configured a real-time executable multithreaded
system, as shown in Fig. 9.
The initial frame is the object image that should be

tracked and detected in the loop process. When a user
selects a source image for panorama image stitching, the
initial frame is updated as a blending result through the
blending thread. SIFT features are detected from the
updated initial frame for the later tracking process. Real-
time preview rendering is performed based on the tracking
result until a user selects an additional source image. Our
contribution is the implementation of a user-friendly and
real-time-based panorama image stitching system. A
real-time preview can be shown in real-time according to

the user’s controls, as shown in Fig. 10(a). This can help
the user easily generate a desired panorama image such as
a large land view or building image without trial-and-
error.

V. Conclusion

We introduced a robust multithreaded object tracker
with outlier filtering for an SAR system. Our proposed
tracker is composed of two threads, the tracking and
detection threads. Only the tracking thread, as the main
thread, is executed in a frame-to-frame manner, and it
enables an object to be tracked in real-time. However, the
optical-flow-based LKT has unstable tracking results
owing to occlusions, which easily remove or deform the
tracked features. Our outlier filtering automatically
updates the RANSAC distance threshold according to
environmental changes. In addition, we consider the most
effective threshold decision method for outlier filtering.
The experiment results show that our approach with
adaptive threshold-decision-based outlier filtering enables
a real-world object to be robustly tracked for an SAR that
has frequent occlusions from augmented projection
images. Moreover, we evaluated a panorama image-
stitching system with a real-time preview by applying the
proposed multithreaded tracker. We believe that our
approach will be a highly practical solution for tracking
planar objects in other applications.
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