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This paper proposes a hierarchical dual filtering
(HDF) algorithm to estimate the spatial region between
a Cloud of Things (CoT) gateway and an Internet of
Things (IoT) device. The accuracy of the spatial
region estimation is important for autonomous CoT
clustering. We conduct spatial region estimation using
a hidden Markov model (HMM) with a raw Bluetooth
received signal strength indicator (RSSI). However, the
accuracy of the region estimation using the validation
data is only 53.8%. To increase the accuracy of the
spatial region estimation, the HDF algorithm removes
the high-frequency signals hierarchically, and alters
the parameters according to whether the IoT device
moves. The accuracy of spatial region estimation using
a raw RSSI, Kalman filter, and HDF are compared to
evaluate the effectiveness of the HDF algorithm. The
success rate and root mean square error (RMSE) of all
regions are 0.538, 0.622, and 0.75, and 0.997, 0.812,
and 0.5 when raw RSSI, a Kalman filter, and HDF are
used, respectively. The HDF algorithm attains the best
results in terms of the success rate and RMSE of
spatial region estimation using HMM.

Keywords: CoT clustering, Hidden Markov model,
Hierarchical dual filtering, Region estimation.

I. Introduction

The Internet of Things (IoT) industry is expected to
continuously grow. As an enormous number of IoT
devices are employed, the effective management of such
devices and a hierarchical analysis of the sensing data are
needed. Therefore, the concept of IoT device grouping is
proposed [1]. The Cloud of Things (CoT) indicates a
logical group of IoT devices [2]–[4]. To use a CoT
platform more effectively, CoT should be autonomously
composed based on situational awareness. One of the
autonomous CoT clustering methods can be employed
using spatial region estimation between a CoT gateway
and the IoT devices. That is, an IoT device can be a CoT
member depending on the spatial region between the CoT
gateway and the IoT device. Therefore, spatial region
estimation is a key technology for autonomous CoT
clustering.
Several methods for estimating the spatial region

between a CoT gateway and IoT device have been
developed. The time of arrival (ToA) is based on the
difference in transmission times for a single signal to be
sent from one device to another [5]–[7]. The time
difference of arrival (TDoA) method is based on the
difference in the transmission times for multiple signals
sent from one device to another [8]–[13]. The received
signal strength indicator (RSSI) method is based on the
strength of the signal received from another device [14]–
[26]. Despite its inaccuracy, RSSI could become the most
widely used technology for distance estimation from a
cost/precision perspective owing to its low cost [27], [28].
Thus, this study adapted a Bluetooth (BT) RSSI and
hidden Markov model (HMM) to estimate the spatial
region for autonomous CoT clustering. However, an
inaccuracy of the spatial region arises for various reasons
such as noise, interference, and crosstalk [29]–[36]. Thus,
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to conduct CoT clustering autonomously, the accuracy of
the spatial region estimation should be improved.
The remainder of this paper is organized as follows.

Section II describes autonomous CoT clustering in a CoT
platform, while Section III describes the spatial region
estimation using an HMM. In Section IV, we describe the
proposed hierarchical dual filtering algorithm, and in
Section V, we provide the results of our experiments.
Finally, some concluding remarks are given in Section VI.

II. Autonomous CoT Clustering in CoT Platform

An IoT platform usually gathers data from IoT devices
and analyzes the data at a central analysis server. IoT
gateways simply receive and collect data from IoT devices
and then send the data to an analysis server. In a real-time
streaming IoT platform, a central analysis server is apt
to create a bottleneck because all IoT data streams are sent
to the analysis server and analyzed. To overcome a
bottleneck in the network and system performance, a CoT
platform is proposed, as shown in Fig. 1. The CoT
indicates a logical group of IoT devices.
The CoT is dynamically composed of multiple IoT

devices by considering their location and function. The
CoT gateway analyzes the data received from the CoT
member devices, which are IoT devices, and can
immediately control the CoT member devices according to
the analyzed results in the CoT gateway. Therefore, there
is no bottleneck at the analysis server [2]. The central
servers analyze the processed data from the CoT gateways
and control the IoT devices using the CoT gateways. A
collaboration analysis is conducted by the CoT gateway
and the analysis server [4].
For a collaboration analysis, the CoT should be

composed of IoT devices according to the analysis goal
dynamically and autonomously. The components of the
CoT platform are systematically operated to compose the
CoT clustering, as shown in Fig. 2. The CoT platform
consists of several modules for autonomous CoT

clustering: CoT configuration manager (A-CCM), IoT
configuration manager (A-ICM), cooperation analysis SW
development (A-CAD), IoT save (C-ITS), CoT create and
save (C-CCS), IoT manager (G-ITM), CoT manager (G-
CTM), and a sensor module (I-SEM).
The dynamic CoT clustering procedure is shown in

Fig. 2. The G-ITM, C-ITS, and A-ICM receive and save
IoT device information from I-SEM in order. A-CAD asks
A-CCM to create the CoT needed for a collaboration
analysis at an abstract level, for example, the temperature
of the first floor. A-CCM composes the CoT using
information of the IoT devices in A-ICM. A-CCM then
asks G-CTM to combine CoT at the physical level using
C-CCS. G-CTM creates the CoT using IoT devices within
the CoT gateway region, and then sends the result to A-
CAD through C-CCS and A-CCM.
To make the collaboration analysis more useful, the

CoT should be composed autonomously according to the
situational awareness. One of the autonomous CoT
clustering methods can be fulfilled using spatial region
estimation between the CoT gateway and the IoT devices.
That is, when the IoT devices can move around, and the
distance between the CoT gateway and the IoT device is
changed, the IoT device can be a CoT member based on
the distance. The CoT platform can compose a CoT with
IoT devices within a defined spatial region and exclude
the IoT devices that are outside of the defined
spatial region autonomously. For an autonomous CoT
configuration, multiple spatial region estimations between
the CoT gateway and the IoT device should be accurately
conducted.

III. Spatial Region Estimation Using HMM

To estimate the multiple spatial regions between the
CoT gateway and the IoT devices, we measured the BT
RSSI in an indoor hall environment, as shown in Fig. 3. A
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Fig. 1. CoT platform consisting of servers, CoT gateways, and
IoT devices.
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Fig. 2. Dynamic and autonomous CoT clustering procedure.
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notebook PC sent a BT signal, and a tablet PC received
the BT signal from the notebook PC. The tablet PC
measured the BT RSSI at 0 m [Region 1 (R-1)], 2.5 m (R-
3), 5 m (R-5), 7.5 m (R-7), and 10 m (R-9) from the
notebook PC for 30 s. The BT RSSI was also measured by
the tablet PC during movement between fixed positions at
walking speed, that is, R-2, R-4, R-6, and R-8 were
located between 0 m and 2.5 m, between 2.5 m and 5 m,
between 5 m and 7.5 m, and between 7.5 m and 10 m,
respectively.

1. HMM Parameter Estimation

As shown in Fig. 4(a) and Table 1, spatial region
estimation is difficult using a raw BT RSSI because the
BT RSSI has a similar value from region 2 to region 9.
The measurement range (MR), which is the maximum

value minus the minimum value, and the standard
deviation (SD) are large. Therefore, we apply an HMM
mechanism to be aware of these spatial regions because
the experimental data are time-series data for a Gaussian
mixture model (GMM).
The HMM consists of a discrete-time, discrete-state

Markov chain with hidden states zt 2 f1; . . . ;Kg and an

observation model p(xt|zt) [37]. We have 300 observation
values (x) from x1 to x300. The range of observation values
is from –90 dBm to –50 dBm. Thus, there are 41 types of
observation values (x�50 . . . x�90). A latent variable (z)
indicates a region. Therefore, there are nine types of latent
variables (z1 . . . z9). The initial state probability is a
multinomial distribution, which is shown in (1).

Pðz1Þ�Multiðp1; . . . ; p9Þ; (1)

where z1 is the initial latent variable, and pi is the
probability value of the i-th region.
Because the experimental data start from region 1, we

used a value of 0.5 for p1 and a value of 0.0625 for p2
to p9.
The transition probability, which is an HMM parameter,

indicates the probability of hidden state j at time t under
the condition of hidden state i at time t � 1, which is
shown in (2). The transition probabilities of raw BT RSSI
are shown in Fig. 4(b).

P z j
t ¼ 1jzit�1 ¼ 1

� � ¼ ai;j; (2)

where ai,j is a transition probability matrix, z j
t is hidden

state j at time t, and zit�1 is hidden state i at time t � 1.
The emission probability, which is another HMM

parameter, indicates the probability of observation type j
at time t under the condition of hidden state i at time t,
which is shown in (3). The emission probabilities of raw
BT RSSI are shown in Fig. 4(c).

P x j
t ¼ 1jzit ¼ 1

� � ¼ bi;j; (3)

where bi,j is an emission probability matrix, x j
t is

observation type j at time t, and zit is hidden state i at
time t.
A spatial region can be estimated using these transition

and emission probabilities. The Viterbi algorithm can be
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Fig. 3. Multiple spatial region estimation experiment.
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Fig. 4. HMM parameter estimation results of raw BT RSSI. Raw BT RSSI sequence: (a) time-series data for GMM, (b) transition
probabilities, and (c) emission probabilities.
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used to compute the most probable sequence of states in a
chain-structured graphical model [37]. The hidden states
are computed as shown in (4).

z�t ¼ argmaxkV
k
t ; (4)

where z�t is a decoding hidden state at time t, and Vk
t is a

probability of the k-th hidden state at time t.
The initial probability can be computed as shown in (5):

Vk
1 ¼ bk;x1pk ; (5)

where bk;x1 is an emission probability, and pk is the
probability of the k-th region.
The probability can be computed iteratively until time T,

as shown in (6):

Vk
t ¼ bk;idxðxtÞmaxi2zt�1ai;kV

i
t�1; (6)

where bk;idxðxtÞ is an emission probability, and ai,k is the
transition probability.
To see the accuracy of the HMM, the Viterbi decoding

algorithm is applied with the training dataset using these
probabilities, and the decoding hidden states (Z*) are then
compared with the true hidden states of the training
dataset (Z), as shown in Table 2.
The accuracy of the hidden states of the HMM is about

97.3%, and the root mean square error (RMSE), shown in
(7), of all regions is 0.163.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼l

i¼f ðz�i � ziÞ2
ðl � f þ 1Þ

s
; (7)

where f is the first sequence number, and l is the last
sequence number.
An HMM estimates the spatial region well using raw

BT RSSI. However, this is an inevitable result because the
training data are used. The spatial region estimation
should be applied using validation data.

2. Spatial Region Estimation Using Validation Data

The validation data are similar to the training data, as
shown in Fig. 5(a). The validation data are also difficult to
use in estimating a spatial region because the average
values of each region are similar, and MR and SD are large.
The Viterbi decoding algorithm is applied using the

validation data with HMM parameters, and the decoding
hidden states are then compared with the true hidden states
of the validation data, as shown in Fig. 5(b) and Table 3.
The accuracy of the spatial region estimation is about
53.8%, and the RMSE of all regions is 0.997 when the
validation data are used. The accuracy is too low to be aware
of the spatial region. Therefore, a hierarchical dual filtering
(HDF) algorithm is proposed to preprocess the raw RSSI
data before determining the spatial region using an HMM.

IV. Hierarchical Dual Filtering Algorithm

HDF receives raw RSSI values from another IoT
device and then removes the high-frequency signals

Table 1. Raw BT RSSI result of multiple spatial regions.

Region
Min.
(dBm)

Max.
(dBm)

MR
(dBm)

Ave.
(dBm)

SD
(dBm)

R-1 �64 �50 14 �55.22 3.02

R-2 �75 �50 25 �62.19 6.31

R-3 �76 �58 18 �64.68 4.34

R-4 �71 �60 11 �65.72 3.46

R-5 �75 �61 14 �66.51 3.57

R-6 �78 �63 15 �70.08 4.66

R-7 �88 �60 28 �71.43 6.11

R-8 �90 �68 22 �74.00 5.72

R-9 �85 �66 19 �74.47 4.33

Table 2. Spatial region estimation result using training data of
raw BT RSSI.

Region Pðzt ¼ z�t Þ Pðzt 6¼ z�t Þ RMSE

Region 1 1.000 0.000 0.000

Region 2 0.905 0.095 0.309

Region 3 0.957 0.043 0.206

Region 4 0.944 0.056 0.236

Region 5 0.962 0.038 0.194

Region 6 0.917 0.083 0.289

Region 7 1.000 0.000 0.000

Region 8 1.000 0.000 0.000

Region 9 1.000 0.000 0.000

All regions 0.973 0.027 0.163
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Fig. 5. Spatial region estimation results using validation data:
(a) raw BT RSSI sequence and (b) spatial region
comparison between decoding hidden states and true
hidden states.
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hierarchically. In the primary step, the primary estimated
RSSI values are measured using raw RSSI values. In the
secondary step, the secondary estimated RSSI values are
determined using the primary estimated RSSI values.

1. Primary Step

For high-frequency elimination, first, the average RSSI
value of t � m to t � 1 (E X t�1

t�m

� � ¼ Pi¼t�1
i¼t�m xi=m) is

calculated whenever a new raw RSSI value (xt) is
received, where m is the number of raw RSSI values for
calculating the average. Second, the gap ratio value (GRV,
Gt) between the new raw RSSI value (xt) and an average
RSSI value of t � m to t � 1 (E X t�1

t�m

� �
) is calculated

using the recently received RSSI values, as shown in (8):

Gt ¼
xt � ðPi¼t�1

i¼t�m xi=mÞ
�� ��Pi¼t�1

i¼t�m xi=m
: (8)

Third, the weight value (wt) is calculated using the gap
ration value, as shown in (9). To assume the GRV,
we measure 3,000 raw RSSI samples in an indoor
environment, as shown in Fig. 6. The minimum and
maximum values of the GRV are 0.007 and 0.407,
respectively. However, a GRV between 0.01 and 0.09 is
considered because the average and standard deviations of
the GRV are 0.05 and 0.04, respectively. The weight value

is designed to be between approximately 0.5 and 0.05
when the GRV has a value between 0.01 and 0.09. Thus,
the weight parameter (at) has a value between 2 and 4.

wt ¼ ð10Gt þ 1Þ=ðGt � 100atÞ; (9)

where at is a weight parameter with a value between 2 and
4 at time t.
Fourth, an adjusted RSSI value (xat ) is calculated using

the weight value, as shown in (10):

xat ¼
Xi¼t�1

i¼t�m
xi=m

� �
þ ðxt �

Xi¼t�1

i¼t�m
xi=mÞ � wt

n o
:

(10)

Fifth, a primary estimated RSSI value (bxat ) is measured
using the adjusted RSSI value recursively, as shown in
(11): bxat ¼ btbxat�1 þ 1� btð Þxat ; (11)

where bt is a low-pass parameter with a value between
zero and 1 at time t.

2. Secondary Step

Through the primary step, the raw RSSI values turn into
the primary estimated RSSI values, which have a lower
fluctuation. In the secondary step, the average calculation

(EðbX t�1
t�mÞ), the gap ratio calculation (Gt), and the adjusted

RSSI value (xat ) are applied using the primary estimated
RSSI values, as shown in (12) through (14), respectively:

E bX t�1
t�m

� �
¼

Xi¼t�1

i¼t�m
bxat =m ; (12)

Gt ¼
xt � ðPi¼t�1

i¼t�m bxat =mÞ�� ��Pi¼t�1
i¼t�m bxat =m ; (13)

xat ¼
Xi¼t�1

i¼t�m
bxat =m� �

þ ðxt �
Xi¼t�1

i¼t�m
bxat =mÞ � wt

n o
:

(14)

A secondary estimated RSSI value (xat ) is measured using
the adjusted RSSI value recursively, as shown in (15):

xat ¼ btx
a
t�1 þ 1� btð Þxat : (15)

The parameters (bt, at) are updated at the end of the
secondary step to estimate the next estimated RSSI value
(xatþ1). If the low-pass parameter (bt) is close to 1, the
previous secondary estimated RSSI value (xat�1) will have a
greater effect on the present secondary estimated RSSI
value (xat ), and the adjusted RSSI value (xat ) will have a
lesser effect on the present secondary estimated RSSI
value. Therefore, if a low-pass parameter has a large value,

Table 3. Spatial region estimation result using validation data.

Region Pðzt ¼ z�t Þ Pðzt 6¼ z�t Þ RMSE

Region 1 1.000 0.000 0.000

Region 2 0.045 0.955 0.977

Region 3 1.000 0.000 0.000

Region 4 0.000 1.000 1.000

Region 5 0.000 1.000 1.557

Region 6 0.000 1.000 1.628

Region 7 0.425 0.575 1.466

Region 8 0.231 0.769 0.877

Region 9 1.000 0.000 0.000

All regions 0.538 0.462 0.997
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Fig. 6. Bluetooth RSSI measurement test in indoor environment.
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the high-frequency component will be greatly reduced, but
the change in spatial region will be less sensitive. The
weight parameter (at) affects the weight (wt).
If the weight parameter is close to 4, the weight will

be small. If the weight is small, the high-frequency
component will be further reduced, and the change in
spatial region will be less sensitive. Therefore, the
parameters (bt, at) should be updated by considering the
removal of the high-frequency component and the
sensitivity of the change in spatial region, as shown in
Fig. 7. The absolute sum of difference value (ASDV, st)
between the raw RSSI value and the average secondary
estimated RSSI value of t � m to t � 1 is computed as
shown in (16). Through the ASDV, we determine whether
an IoT device is moved around.

st ¼ abs
Xj¼t�1

j¼t�k
ðxj �

Xi¼j�1

i¼j�m
xai =mÞ

n o
: (16)

After computing the ASDV, the parameters are changed
using fast, slow, and immobile weighted factors (wf, ws,
and wi). That is, if the ASDV is greater than the fast
threshold (Tf), and the parameters are greater than the
minimum values (vbm and vam), the parameters are changed
using a fast weighted factor. If the ASDV is greater than
the slow threshold (Ts) and less than the fast threshold,
then the parameters are changed using a slow weighted
factor (ws) if the parameters are greater than the minimum
values. If the ASDV is less than the immobile threshold
(Ti), and the parameters are less than the maximum values
(vbM and vaM), the parameters are changed using an
immobile weighted factor (wi). Otherwise, the parameters
are not changed.
An IoT device can move or remain stationary. If the

high-frequency component is reduced too much, the spatial
region change of the IoT device owing to movement will
be recognized too slowly. The parameter update method
also considers the case of IoT device movement. When an
IoT device is stationary, the high-frequency component will

be further reduced. In addition, when an IoT device is
moved around, the sensitivity of the change in the spatial
region will be increased. Therefore, the parameters (bt, at)
should be updated to obtain a larger or smaller value than
before within the minimum (vbm and vam) and maximum (vbM
and vaM) values according to the ASDV (st).

V. Experimental Results

To evaluate the effectiveness of the HDF algorithm,
spatial region estimations using the raw RSSI, Kalman
filter, and HDF data are compared.

1. Spatial Region Estimation Using Kalman filter

The Kalman filter addresses the general problem of
trying to estimate the state of a discrete-time controlled
process governed by a linear stochastic difference
equation [38]. The process and measurement models are
shown in (17) and (18), respectively:

xtþ1 ¼ Axt þ pt; (17)

yt ¼ Bxt þ mt; (18)

where pt is the process noise, and the probability of pt is
N(0, P). In addition, mt is the measurement noise, and the
probability of mt is N(0, M). Moreover, xt and yt are the
state vector and measurement value, and A and B are
matrices for defining the process and measurement
models, respectively.
Common process and measurement models in the

Kalman filter exist to estimate the distance between
devices [39]. Both A and P are 1 in the process model
because the same measured RSSI value is anticipated in
the same spatial region. The value of B is 1 and that of
M is 25 because the SD of the measured RSSI value is
about 5 dBm. The RSSI sequence using a Kalman filter
reduces the MR and SD in all regions, as shown in
Table 4.
The emission probabilities of RSSI using a Kalman

filter are shown in Fig. 8.
To estimate the spatial region using HMM, the validation

data are also filtered by the Kalman filter, as shown in
Fig. 9(a). Using validation data with the Kalman filter, it is
also difficult to estimate the spatial region because the
average value of each region has a similar value, and MR
and SD are still too large to distinguish the spatial regions.
The Viterbi decoding algorithm is applied with the

validation data using the HMM parameters, and the
decoding hidden states are then compared with the true
hidden states of the validation data, as shown in Fig. 9(b)

1: Initialize Parameters: β0, α0
2: loop 
3: Compute ASDV: st
4: switch (ASDV, βt, αt) do
5: case (ASDV > Tf) & (βt > vm

β) & (αt > vm
α): 

6: βt ← wf × βt–1, αt ← wf × αt–1
7: case (Tf > ASDV > Ts) & (βt > vm

β) & (αt > vm
α): 

8:          βt ← ws × βt–1, αt ← ws × αt–1
9: case (ASDV > Ti) & (βt > vM

β) & (αt > vM
α):

10:         βt ← wi × βt–1, αt ← wi × αt–1
11: default : 
12: βt ← βt–1, αt ← αt–1
13: end switch
14: end loop

Fig. 7. Pseudo-code of parameter update method.
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and Table 5. The accuracy of the spatial region estimation
is about 62.2%, and the RMSE of all regions is 0.812
when the validation data filtered through a Kalman filter
are used. The accuracy is improved more than when using
raw BT RSSI. However, significant inaccuracy occurs in
regions 3 through 7.

2. HDF

The HDF is composed of primary and secondary steps
to improve the spatial region estimation accuracy. First,
single hierarchical filtering (SHF), which is composed of
only the primary step and parameter update function in the
secondary step, is conducted to determine the accuracy of
the spatial region estimation. The accuracy of the spatial
region estimation is about 55.6%, and the RMSE of all
regions is 0.821 when the validation data filtered through
SHF are used, as shown in Table 6. The accuracy is a little
lower than when using a Kalman filter. A significant
inaccuracy occurs in regions 2 through 7. It is difficult to
estimate the spatial region using SHF.
The RSSI sequence using HDF further reduces the MR

and SD in all regions, as shown in Table 7. The average
interval length employed in the HDF algorithm is 10,
which is determined based on the experiment results
shown in Fig. 6. According to the average interval length,

Table 4. RSSI result using Kalman filter.

Region
Min.
(dBm)

Max.
(dBm)

MR
(dBm)

Ave.
(dBm)

SD
(dBm)

R-1 �53.0 �57.4 4.4 �54.98 1.09

R-2 �55.1 �65.0 9.9 �60.53 3.88

R-3 �62.8 �67.0 4.2 �64.66 0.99

R-4 �63.6 �66.6 3.0 �65.14 0.72

R-5 �64.6 �69.1 4.5 �66.51 1.13

R-6 �66.9 �70.7 3.8 �69.29 1.22

R-7 �68.2 �76.7 8.5 �70.99 1.88

R-8 �71.5 �74.9 3.4 �73.20 1.02

R-9 �72.0 �76.2 4.2 �74.41 1.12
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Fig. 8. Emission probabilities of RSSI using a Kalman filter.
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states and true hidden states.

Table 5. Spatial region estimation results using validation data
filtered through a Kalman filter.

Region Pðzt ¼ z�t Þ Pðzt 6¼ z�t Þ RMSE

Region 1 1.000 0.000 0.000

Region 2 0.773 0.227 0.477

Region 3 0.378 0.622 1.556

Region 4 0.000 1.000 1.000

Region 5 1.000 0.000 0.000

Region 6 0.100 0.900 0.949

Region 7 0.075 0.925 0.962

Region 8 0.846 0.154 0.392

Region 9 1.000 0.000 0.000

All regions 0.622 0.378 0.812

Table 6. Spatial region estimation results using validation data
filtered through SHF.

Region Pðzt ¼ z�t Þ Pðzt 6¼ z�t Þ RMSE

Region 1 1.000 0.000 0.000

Region 2 0.545 0.455 0.674

Region 3 0.133 0.867 1.528

Region 4 0.000 1.000 1.000

Region 5 0.400 0.600 0.775

Region 6 1.000 0.000 0.000

Region 7 0.200 0.800 0.894

Region 8 0.692 0.308 0.555

Region 9 1.000 0.000 0.000

All regions 0.556 0.444 0.821
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the average and standard deviations of the average RSSI
data are shown in Fig. 10. The average values are similar
despite the change in average interval length. However,
the larger the average interval length, the smaller the
standard deviation value. The standard deviation of the
average RSSI data is 1.14 dBm when the average interval
length is 10.
The emission probabilities of RSSI using HDF are

shown in Fig. 11.
To estimate a spatial region using an HMM, the

validation data are also filtered using HDF, as shown in
Fig. 12(a). The validation data using HDF have a smaller
MR and SD in all regions than the validation data using a
Kalman filter. Therefore, the spatial regions of the
validation data using HDF are more clearly distinguished.
The Viterbi decoding algorithm is applied to the

validation data using HMM parameters, and the decoding
hidden states are then compared with the true hidden states
of the validation data, as shown in Fig. 12(b) and Table 8.
The accuracy of the spatial region estimation is about
75%, and the RMSE of all regions is 0.5 when the
validation data filtered through HDF are used.
To see how the average interval length (m) affects the

accuracy of the spatial region estimation, the RSSI
sequences and accuracy of the spatial region estimations

are estimated using m = 2, 3, 10, 15, and 20, as shown in
Fig. 13 and Table 9, respectively. All average interval
lengths have better results (accuracy and RMSE) than
those of a Kalman filter. When the average interval length

Table 7. RSSI results using HDF.

Region
Min.
(dBm)

Max.
(dBm)

MR
(dBm)

Ave.
(dBm)

SD
(dBm)

R-1 �54.3 �55.2 0.9 �54.65 0.19

R-2 �55.0 �56.9 1.9 �55.79 0.63

R-3 �57.1 �62.0 4.9 �59.89 1.51

R-4 �62.2 �63.5 1.3 �62.84 0.37

R-5 �63.7 �65.8 2.1 �64.96 0.56

R-6 �65.9 �66.8 0.9 �66.42 0.32

R-7 �66.8 �69.5 2.7 �68.14 0.78

R-8 �69.6 �70.6 1.0 �70.12 0.31

R-9 �70.7 �73.0 2.3 �72.02 0.62

St
an

da
rd

 d
ev

ia
tio

n 
(d

B
m

)

Average interval length (m)
(a)

A
ve

ra
ge

 v
al

ue
 (d

B
m

) –72.525

–72.520

–72.515

–72.510

–72.505

–72.500

Average value
–72.530

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

(b)
Average interval length (m)

Standard deviation

Fig. 10. Average RSSI data according to average interval length:
(a) average and (b) standard deviations.

Em
is

si
on

 p
ro

ba
bi

lit
ie

s

–90

0

0.3

0.0
–80

–70
–60

–50
2

4
6

8
100.1

0.2

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Region (z
)

Fig. 11. Emission probabilities of RSSI sequences using HDF.

Sequence

(a)
Sequence

(b)

300250200150100500

–50

–90

R
SS

I (
dB

m
)

–70

–80

R-1

–60

R-2 R-3 R-4 R-5 R-6 R-7R-8 R-9–40

300250200150100500

R
eg

io
n

10

8

6

4

2

0

True region
HDF

Raw RSSI
HDF
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filtered by HDF: (a) HDF RSSI sequence and (b) spatial
region comparison between decoding hidden states and
true hidden states.

Table 8. Spatial region estimation results using validation data
filtered through HDF.

Region Pðzt ¼ z�t Þ Pðzt 6¼ z�t Þ RMSE

Region 1 1.000 0.000 0.000

Region 2 0.409 0.591 0.769

Region 3 0.733 0.267 0.516

Region 4 0.789 0.211 0.459

Region 5 0.625 0.375 0.612

Region 6 1.000 0.000 0.000

Region 7 0.825 0.175 0.418

Region 8 0.154 0.846 0.920

Region 9 0.744 0.256 0.506

All regions 0.750 0.250 0.500
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is 10, the accuracy and RMSE are better than the other
values.

3. Comparison Results

The results of spatial region estimation using raw RSSI,
a Kalman filter, SHF (m = 10), and HDF (m = 10) are
compared, as shown in Fig. 14 and Table 10.
The spatial region estimation success rates and RMSE

of all regions are 0.538, 0.622, 0.556, and 0.75, and 0.997,
0.812, 0.821, and 0.5 when raw RSSI, Kalman filter, SHF,
and HDF are used, respectively. The HDF algorithm
attains the best results in terms of the spatial region
estimation success rate and RMSE.

VI. Conclusion

This paper addressed spatial region estimation for
autonomous CoT clustering using an HMM. Autonomous
CoT clustering is conducted using spatial region
estimation between a CoT gateway and IoT devices.
Therefore, spatial region estimation is an essential
technique. We apply a spatial region estimation using an
HMM with raw BT RSSI. However, the accuracy is
53.8% for autonomous CoT clustering. The HDF
algorithm removes the high-frequency signals created by
sensor and system errors hierarchically. In addition, the
HDF algorithm automatically alters the parameters to
change the spatial region sensitivity according to the
movements of the IoT device. To evaluate the
effectiveness of the HDF algorithm, spatial region
estimations using raw RSSI, Kalman filter, and HDF data
were compared. The experiment results indicate that the
HDF algorithm shows better results in terms of the success
rate and RMSE than the raw RSSI and Kalman filter.
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