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1  |   INTRODUCTION

Computer vision and natural language processing have fre-
quently been tackled as independent studies during the past 
decade. Humans often describe objects using text and im-
ages. Whereas images provide comprehensive information, 
texts summarize the descriptive features of objects, and both 
types of information help people to recognize objects, such as 
birds and flowers. Intuitively, visual descriptions and images 
are strongly connected and can therefore be used together to 
better understand images. Image captioning is a task to de-
scribe objects in images, and current state‐of‐the‐art image 
captioning approaches [1‒13] have achieved successful re-
sults by connecting computer vision and natural language 

with deep learning approaches. These approaches employ a 
convolutional neural network (CNN) encoder–recurrent neu-
ral network (RNN) decoder method, which utilizes a CNN 
to generate a fixed‐length vector representation [14] and an 
RNN to generate a visual description using this vector repre-
sentation. Image‐to‐text encoder‐decoder approaches, which 
translate image features into textual descriptions, yield fasci-
nating results. This approach has achieved success in many 
recent related studies, such as visual QA [8‒10], generating 
explanations of deep learning algorithms [4], and zero‐shot 
retrieval [15,16]. Conversely, text information can be utilized 
for image processing, such as image classification [15,17]. 
Most previous methods have only focused on one task with 
two types of modalities. However, closely linked tasks, such 
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as image captioning and image classification, can have a pos-
itive impact on each other.

The main objective of this study is to simultaneously im-
prove the performances of both visual description generation 
and image classification using the descriptions. Intuitively, 
the visual descriptions of images can be exploited to help 
classify an object in images and vice versa. Fine‐grained 
classification is an attractive method of demonstrating our 
approach, because distinctive visual descriptions help in rec-
ognizing objects from images. We apply our method to fine‐
grained image classification and an image‐captioning task to 
demonstrate its validity.

In this study, we achieve our goal by proposing an end‐
to‐end joint learning method with a novel loss function that 
mediates each task. An intermediate layer is utilized to rep-
resent multiple forms of information on an object in the tar-
get images. Through a disagreement loss function based on 
class activation mapping (CAM), which localizes the dis-
criminative image region of a model, we achieve a higher 
score when the captioning and classification model reaches 
a consensus on the key parts of the object, further improving 
the results. By sharing an intermediate representation, we 
achieve a state‐of‐the‐art fine‐grained image classification 
performance and improve the performance for a caption gen-
eration task.

To the best of our knowledge, this study represents the 
first attempt to improve both image recognition and image 
captioning using an end‐to end joint learning model.

2  |   RELATED WORK

2.1  |  Deep image captioning
The author of [1] proposed an image‐to‐text encoder‐decoder 
model for image captioning tasks. The encoder‐decoder 
model first extracts high‐level visual features from a CNN 
trained on the image classification task, and then feeds the 
visual features into an RNN model to predict subsequent 
words of a caption for a given image. In recent years, a variety 
of successive models [2‒16,18‒20] have achieved promis-
ing results. Semantic concept analysis, or attribute prediction 
[17,21], is a task closely related to image captioning, because 
attributes can be interpreted as a basis for descriptions. To 
generate captions, semantic concepts or attributes of objects 
in images are detected and utilized as inputs of the RNN de-
coder [3,6,12,20,22]. Latent topics [6], cross domains [22], 
and inter‐attribute correlations [12] are considered to im-
prove the results. Meanwhile, some approaches [5,15,17‒19] 
have adopted multimodal embedding, which represents mul-
tiple aspects of objects with pictures and descriptions as the 
latent semantics of objects. Language features from an RNN 
decoder and image features from a CNN encoder are embed-
ded in a multimodal space. The learned embedding is then 

utilized to guide the caption generation or zero‐shot retrieval. 
In this study, we also adopt a multimodal unit to represent 
both the images and descriptions. Unlike the previous studies 
outlined above, our method allows multimodal embedding 
learning to mediate between two different goals: image clas-
sification and image captioning.

Because a loss function is one of the key factors in a deep 
learning model, various loss functions have been introduced 
for image captioning tasks. These loss functions are designed 
to suit their own algorithms. To integrate topic representa-
tion into the training process, the authors of [3] introduced an 
interpretive loss, which helps to improve the interpretability 
of the learned features. A loss function that encourages gen-
erated sentences to include class discriminative information 
was designed to explain class discriminative characteristics 
for bird images [4]. We also designed our own loss function 
for the multimodal layer, which represents the aspects of both 
images and text. Objects belonging to the same class share 
many common features in both images and visual descrip-
tions. Because a multimodal embedding represents the latent 
semantics of an input image with the aid of descriptions and 
image contents, it is desirable for the key visual object parts 
of each model's predictions to be close. To address this prob-
lem, we apply the CAM [23] method with a cosine distance 
loss [24] for image embedding.

2.2  |  Fine‐grained classification
Fine‐grained classification is a challenging task, which as-
signs objects to subordinate classes. The objects are visually 
similar to each other, and can only be discriminated through 
subtle details. Most fine‐grained classification systems em-
ploy visual features of images to classify objects using a 
CNN [25‒29], and subordinate classes from various domains 
such as flowers, birds, dogs, aircrafts, and cars can be suc-
cessfully recognized using these approaches. To improve the 
classification performance, some approaches employ hierar-
chical semantic information such as a taxonomic rank [30], 
the semantic distance of WordNet [31], and text [15,17]. In 
this study, we employ the visual descriptions of images to 
classify each visually similar object, because the visual de-
scriptions contain discriminative and summarized character-
istics of objects.

2.3  |  Multitask learning
Multitask learning is a method of improving the perfor-
mance by simultaneously learning several related tasks, 
such as face and gender detection [32], or POS tagging 
and dependency parsing [33]. This approach was inspired 
by the human learning process, which easily learns simi-
lar tasks with little experience. There are two types of ap-
proaches to multitask learning: hard parameter sharing 
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and soft parameter sharing. In hard parameter sharing, all 
hidden layers are shared between all tasks, while keeping 
several task‐specific output layers [34]. In contrast, in soft 
parameter sharing each task has its own layers and weights. 
Rather than sharing parameters, each task affects the oth-
ers by comparing or transferring knowledge [32,35]. In this 
study, we employ hard parameter sharing with a disagree-
ment loss mediated between two related tasks: image cap-
tioning and image classification.

3  |   METHODOLOGY

In this section, we present the key components of our image 
captioning and classification system. We first overview the 
proposed model, which aims to learn image classification and 
captioning at the same time. We then present a detailed end‐
to‐end training algorithm, which incorporates a disagreement 
loss to improve the performance with the aid of multimodal 
features. The disagreement loss is based on CAM, which pro-
vides the rationale for the model predictions. The details are 
introduced in the next section.

3.1  |  Image classification and captioning
The proposed model consists of an image encoder, interme-
diate layer, image classifier, and image captioner, as shown 
in Figure 1. The image encoder represents a CNN‐based en-
coder with the weights pre‐trained by ImageNet. This con-
verts a given image into a fixed‐length image feature vector. 
The intermediate layer transforms the image feature vector 
into another image feature vector, creating an influence be-
tween the image classifier and image captioner. The image 
classifier is a single‐layer perceptron‐based classifier, which 
assigns the class label to the image. The image captioner is an 

RNN‐based captioner, which generates the caption describ-
ing the image. Like the image encoder‐decoder model [1], 
the proposed model includes both a CNN model to transform 
an image into its image feature vector and an RNN model to 
generate a caption from the image feature vector. Whereas the 
image classifier and image captioner learn independently of 
each other in the image encoder‐decoder model, the proposed 
model leads to both learning at the same time. Therefore, the 
proposed model can obtain both the class label and caption 
for a given image in parallel. In addition, the intermediate 
layer mediates between the image classifier and image cap-
tioner in the proposed model.

3.2  |  End‐to‐end learning algorithm
The proposed image classification and captioning model uti-
lizes the intermediate multimodal layer as a key component 
of joint learning. According to the end‐to‐end learning algo-
rithm presented in Algorithm 1, the proposed model updates 
the intermediate layer fmedi, image classifier fclass, and image 
captioner fcaption. For the learning algorithm using mini‐batch 
training, the training set S* is divided into M mini‐batch 
training subsets, where each mini‐batch training set Si con-
sists of N pairs of an image, its class label, and its caption, as 
Si =

{(
imgj, classj, captionj

)}
. Given a mini‐batch training 

set Si, the proposed model encodes each input image based on 
both the image encoder fencode and intermediate layer fmedi, as 
described in lines 6 and 7 of Algorithm 1. The encoded vec-
tor can potentially represent the relations between the image, 
its class, and its caption by embedding both the latent image 
representation and latent text representation simultaneously. 
As presented in lines 8 and 9 of Algorithm 1, the image clas-
sifier fclass and image captioner fcaption predict the class label 
and caption candidates, respectively. We optimize the inter-
mediate layer in terms of three criteria. First, the intermediate 

F I G U R E  1   Proposed image classification and captioning models
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layer represents the aspects of an image. Second, it also rep-
resents the aspects of the image's matching visual descrip-
tions. Third, the class discriminative information should be 
contained in the embedding. An objective function reflecting 
these criteria is defined as follows:

The respective summations denote objective functions 
for the image classification, image captioning, and disagree-
ment function. In Algorithm 1 and summations (1), (2), and 
(3), N indicates the number of pairs in the batch training set. 
In addition, classj and captionj represent the predicted class 
label and caption for the jth image imgj, respectively. Here, 
cam(imgj) is the CAM of imgj. The subscript a indicates that 
the target class of the CAM output is the answer class, and 
p indicates that the target class is the model prediction. The 
superscripts c and l indicate that the CAM output is generated 
by the captioning or classification model, respectively. That 
is, camc

a
(imgj) and caml

p
(imgj) represent the CAMs of the cor-

rect caption and the classification model prediction for the jth 
image, respectively.

To consider class discriminative information, we ensure that 
the model's rationale is the same for the ground truth and pre-
dicted labels. Because the CAM outputs of the models highlight 
the most discriminating visual parts of each model's prediction, 
these can be utilized as the model rationale. To enable the two 
tasks to positively affect one another, we cross compared the 
rationale, as in summation (3).

To maximize the objective functions, the proposed model 
optimizes the intermediate layer, image classifier, and image 
captioner as described in lines 15–17 of Algorithm 1. Given 
the entire training set, the image classifier fclass learns to max-
imize the log probability term in (1), and the image captioner 
fcaption simultaneously learns to maximize the log probability 
term in (2). Likewise, the intermediate layer fmedi learns to 
maximize the log probability term in (3), where the weight 
of the class discriminative neuron can be influenced by the 
text features and that of the text descriptive neuron can be 
influenced by the image features in the intermediate layer.

3.3  |  CAM‐based disagreement loss
For both the image classification and image captioning tasks, 
it is important to detect the discriminative parts of the given 
image. Nevertheless, it has proven difficult to reach a train-
able consensus on the discriminative parts for the image clas-
sification and image captioning tasks. Fortunately, CAM 
[23] approaches can highlight the discriminative visual parts 
detected by the CNN. By comparing the heat maps of each 
model using CAM, we measure the agreement between the 
two models in the training direction. The neurons in the con-
volutional layers tend to seek class‐specific information from 
the given image. To analyze which neurons conclusively in-
fluence the final decision, CAM utilizes the gradient informa-
tion extracted from the final convolutional layer of the CNN.

Figure 2 presents CAM visualization examples, in which 
the image classifier and image captioner focus on different vi-
sual components for the same given image. In the top two im-
ages of Figure 2, the image classifier fails to classify the bird 
into the correct class, because the image classifier on focuses 
on the wings of the bird, although the image captioner ap-
propriately focuses on its crown, bill, back, and wings. In the 
bottom two images of Figure 2, the image captioner fails to 
generate a suitable caption, because it only focuses on a par-
tial component of the wrinkled petal of the flower, although 
the image classifier focuses on its yellow style and red petals.

To obtain the class activation map, the score yc for class  
c is differentiated with respect to feature map Ak of the last 
convolutional layer. These gradients are summed over to ob-
tain the weight ac

k
 for the feature map k and target class c:

(1)
1

N

N∑
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log P
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Equation (5) represents a combination of forward activation 
maps using the weights, for the purpose of obtaining a class 
activation map value Lc

CAM
 for class c:

Given the same image, we assume that the same visual 
component is focused upon by both the image classifier and 
the image captioner. To reduce the disagreement between 
these two visual components, this assumption is represented 
by minimizing the disagreement loss from (6). This equation 
is calculated by comparing caml

p
(imgj) and camc

a
(imgj), as 

well as caml
a
(imgj) and camc

p
(imgj). For the disagreement loss 

optimization, the disagreement loss from (6) is calculated 
using the cosine distance loss [24].

In (6), caml
p
(imgj) and camc

a
(imgj) represent the CAMs of 

the predicted class label of the image and the correct caption, 
respectively. In addition, caml

a
(imgj) and camc

p
(imgj) repre-

sent the CAMs of the correct class label and the predicted 
caption, respectively.

For the back propagation algorithm, the cosine similarity 
is derived as shown above. In these equations, li represents 
the i‐th value of the class label vector l and ci represents the 
i‐th value of the caption vector c.

4  |   EVALUATION

4.1  |  Experimental dataset
To verify the classification and captioning performance of 
the proposed model, we utilized two datasets: the Oxford 
Flowers 102 [15,36] and Caltech UCSD Birds 200–2011 [37] 
datasets. The Flowers dataset contains 8,189 flower images 
with 102 classes, while the Birds dataset includes 11,788 bird 
images with 200 different classes. Each dataset contains sen-
tences describing each image, such as “this bird has a pointed 
black bill, with a blue back,” or “this flower has red petals, a 
yellow style, and a green stigma.” For a fair evaluation, the 
dataset is divided into a training, validation, and test set, as 
shown in Table 1, where each cell includes the number of im-
ages and the number of classes is written within parentheses.

4.2  |  Evaluation measures
To evaluate the image classification performance of each 
model, we measure the top‐1 and top‐5 accuracies, where the 
accuracy indicates the number of correct candidate class la-
bels in the top 1 or top 5, divided by the number of images 
in the test set. For the image captioning performance of each 
model, we measure the following four metrics: BLEU [38], 
ROUGE [39], METEOR [40], and CIDEr [41].

(5)Lc
CAM

=
∑

k

ac
k
Ak.
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F I G U R E  2   CAM highlights the 
discriminative visual parts of each model. 
In the above example, the image captioning 
and image classification models fail to reach 
a consensus on the key parts of the object in 
each image. By imposing a penalty in such 
case, we can improve the performances of 
both models

Ground truth sentenceImage Captioning

the crown, back and wings are blue with a 
white throat with a black stripe along the 
throat.

this flower has red petals, a yellow style and
a green stigma.

a dark orange colored flower with a long
yellow pollen tube

this flower has a large red petal and a long
yellow stigma

Image Classification 

this bird has a pointed black bill, with 
a blue back.
this bird has wings that are blue and has
a white belly
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BLEU measures the geometric average of the n‐gram 
precisions, based on the positive uniform weights wn, pre-
cision Pn, length r of the reference answer, and length c of 
the candidate answer. The precision Pn is calculated as the  
number of matched n‐grams divided by the number of candi-
date n‐grams in the candidate answer, where the precision Pn 
is based on n‐grams of up to length n.

ROUGE measures the geometric average of the n‐gram 
recalls, where n denotes the length of the n‐gram, and the 
recall Rn is calculated as the number of matched n‐grams 
divided by the number of candidate n‐grams in the refer-
ence answer.

METEOR measures the harmonic mean Fmean between 
the precision P and recall R using a penalty p, as shown in 
(13). Unlike BLEU, METEOR accepts synonyms based on 
WordNet as matched words.

CIDEr measures the average cosine similarity between the 
candidate and reference answers, based on the TF‐IDF weighted 
n‐grams. In (14), gn(ci) is the n‐gram vector of the candidate an-
swer for the i‐th image, and ∥gn(ci)∥ is the norm of the vector. 
Likewise, gn(rij) is the n‐gram vector of the j‐th sentence in the 
reference answer for the i‐th image, and ∥gn(rij)∥ is the norm 
of the vector.

4.3  |  Implementation
For the purpose of carefully examining the performance 
per module in the proposed image classification and cap-
tioning model, we implement four models: a CNN‐based 
image classifier [42], an LRCN‐based image captioner [1], 
the proposed model with an intermediate layer, and the pro-
posed model with a CAM‐based disagreement loss. First, the 
CNN‐based image classifier consists of both a CNN‐based 
image encoder and a single‐layer perceptron‐based image 
classifier, without an intermediate layer. Inception v.4 [42] 
is employed as the CNN‐based image encoder, the image 
classifier consists of a 1024‐dimensional single‐layer per-
ceptron, and an image is represented by 1024‐dimensional 
image features. The image classifier is updated as shown in 
lines 11 and 15 of Algorithm 1.

Second, the LRCN‐based image captioner [1] consists of 
both a CNN‐based image encoder and an LSTM‐based image 
captioner, without an intermediate layer. The LSTM‐based 
image captioner is learned using 1024 hidden units. The 
image captioner is learned as described in lines 12 and 16 of 
Algorithm 1.

Third, the proposed model with an intermediate layer 
consists of a CNN‐based image encoder, an intermedi-
ate layer, an image classifier, and an LSTM‐based image 
captioner. The intermediate layer and image classifier is a 
1024‐dimensional single‐layer perception. This model is 
updated as shown lines 11–17 of Algorithm 1. Unlike the 
proposed model with the CAM‐based disagreement loss, this 
model replaces the equation in line 14 of algorithm 1 with 
Lmedi ⇐Lclass+Lcaption, without L′

medi
 representing the CAM‐

based disagreement loss.
Finally, the proposed model with the CAM‐based dis-

agreement loss consists of a CNN‐based image encoder, 
an intermediate layer, an image classifier, and an LSTM‐
based image captioner. This model is updated as described 
in lines 11–17 of Algorithm 1. Unlike the proposed model 
with an intermediate layer, this model utilizes the equation 
Lmedi ⇐Lclass+Lcaption+L�

medi
 in line 14 of Algorithm 1.

These models are learned based on PyTorch [43], and the 
model hyperparameters are determined based on the valida-
tion set. Stochastic gradient descent is adopted with the base 
learning rate of 0.1, and the size of each mini‐batch in train-
ing consists of 128 images.

(11)Pn =

∑
c∈C∗

∑
n-gram∈C

countmatch(n-gram)

∑
C∈C∗

∑
n-gram∈C

count(n-gram)
.

(12)Rn =

∑
R∈R∗

∑
n-gram∈R

countmatch(n-gram)

∑
R∈R∗

∑
n-gram∈R

count(n-gram)

(13)

METEOR=Fmean× (1−p)

=
10×R×P

R+9×P
×

(
1−0.5×

(
chunk

unigrams

)3
)

.

(14)CIDErn(ci,ri)=
1

m

∑

f

gn(ci)×gn(rij)

∥gn(ci)∥×∥gn(rij)∥
.

Set Task Train Validation Test

Flower Image classification 4222 (82) 1406 (82) 1406 (82)

Image captioning 5878 (62) 1156 (20) 1155 (20)

Bird Image classification 5313 (150) 1771 (150) 1771 (150)

Image captioning 5894 (100) 2961 (50) 2933 (50)

T A B L E  1   Training, validation, and 
test sets
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4.4  |  Quantitative experimental results
Table 2 shows the performances of the models on the Flowers 
and Birds datasets, as measured according to the evaluation 
metrics. The models comprise the CNN‐based image clas-
sifier (CNN), LRCN‐based image captioner (LRCN), pro-
posed model with an intermediate layer, and proposed model 
with the CAM‐based disagreement loss. These are measured 
in terms of BLEU, METEOR, ROUGE, and CIDEr.

For the image classification task, the baseline perfor-
mance of the CNN‐based image classifier is already very 
high, and thus it can be claimed to be significant that the 
proposed model with the CAM‐based disagreement loss im-
proves the performance by 1.53% for the top‐1 accuracy on 
the Birds dataset. The best top‐1 accuracy for the Flowers 
dataset (99.38%) is higher than the best top‐1 accuracy for 
the Birds dataset (87.12%), because the Flowers dataset con-
tains 102 classes, whereas the Birds dataset has 200 classes. 
In addition, the Flowers dataset consists of relatively easy to 
distinguish classes. Because the performance differences are 
within 0.8%, there are insignificant performance differences 
between the proposed model with the intermediate layer and 
that with the CAM‐based disagreement loss. For the top‐1 for 
the Flowers dataset, the performance of the proposed model 
with the intermediate layer is 0.07% higher than that of the 
proposed model with the CAM‐based disagreement loss. 
For the top‐1 for the Birds dataset, the performance of the 
proposed model with the CAM‐based disagreement loss is 
0.88% higher than that with the intermediate layer.

In the image captioning task, the proposed model with the 
intermediate layer yields a better performance on all evalua-
tion metrics compared with the LRCN‐based image captioner. 
Specifically, it achieves a 12.43% improvement in the CIDEr 
for the Birds dataset, and 3.33% for the Flowers dataset. This 
shows that the proposed model with the intermediate layer 
can effectively utilize important words, because the CIDEr 
metric measures the similarity between the TF‐IDF weighted 
n‐grams. Ultimately, the intermediate layer affects the image 
captioning task, although this model does not consider the 
CAM‐based disagreement loss.

Compared with the proposed model with the interme-
diate layer, that with the CAM‐based disagreement loss 
yields a better performance on all evaluation metrics. It 
achieves clear improvements in the CIDEr of 8.31% for the 
Birds dataset and 3.23% for the Flowers dataset. In addi-
tion, it achieves 20.74% and 6.56% improvements for Birds 
and Flowers datasets, respectively, compared with the 
LRCN‐based image captioner. These results show that the 
proposed model with the CAM‐based disagreement loss 
is highly effective for the image captioning task, because 
it generates more appropriate caption sentences for each 
image as the disagreement loss modifies the erroneous 
judgment criteria. T
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In summary, by embedding both the latent image and text 
representations at the same time, the multimodal learning 
model with the intermediate layer consistently outperformed 
the baseline model. In addition, the disagreement loss also 
yields a consistent improvement in the performance, be-
cause the similar criteria help to improve the performance 
for related tasks such as image classification and image 
captioning. Specifically, the disagreement loss method with 
CAM and the cosine distance provides a similar useful cri-
teria. In addition, the proposed model improved the perfor-
mance on the image captioning task more compared with the 
image classification task, because the baseline performance 
is already very high on the image classification task. This 
indicates that the higher performance on the image classi-
fier led to an improvement in the performance on the image 
captioner.

4.5  |  Qualitative experimental results
To carefully analyze the causes of the performance differences 
among the models, Figures 3 and 4 present heat‐map visuali-
zations generated by CAM based on the following models: the 
CNN‐based image classifier, LRCN‐based image captioner, 
proposed classifier with the CAM‐based disagreement loss, 
and proposed captioner with the CAM‐based disagreement 
loss. Figures 3 and 4 distinguish between the proposed classi-
fier and captioner, because each module yields an individual 
answer. The heat maps describe the areas in the given image 
focused upon by each model when yielding an answer. For 
both the bird and flower images, the proposed model focuses 
on more appropriate points compared with the other models.

In the first image in Figure 3, the CNN‐based image classifier 
focuses on the abdomen of the bird, whereas the proposed classi-
fier focuses on its yellow shoulders with the aid of the image cap-
tioner. Intuitively, the yellow shoulders are more discriminative 
features of the bird in the image. In the second image, the CNN‐
based image classifier focuses on the wing of the bird, whereas the 
proposed classifier focuses on both the black stripe on the throat 
and the wing. In the third image, the CNN‐based image classifier 
focuses on the feet of the bird, whereas the proposed classifier fo-
cuses on the body. For the flower images, the proposed classifier 
focuses on the pistil, stamen, and petals, whereas the CNN‐based 
image classifier does not focus on the petals at all. Because the 
proposed model includes an intermediate layer, considering the 
synergy between the image classifier and image captioner, the 
proposed classifier can focus on useful components for the image 
classification task.

In Figure 4, we qualitatively compare the results of the 
proposed and baseline captioners. In the first image of 
Figure 4, compared with the reference caption written by a 
human, the proposed captioner generates a caption describ-
ing the red crown and black wings of the bird, whereas the 
LRCN‐based image captioner misses the “red crown” phrase 

because it focuses on the beak and head of the bird rather 
than the red crown. In the third image, the proposed cap-
tioner generates a caption describing the yellow style and 
red petals of the flower, whereas the LRCN‐based image 
captioner cannot represent these significant words because 
it focuses on the component of the wrinkled petal rather 
than the yellow style. For the second bird and fourth flower 
images, the LRCN‐based image captioner focuses on highly 
inappropriate components, whereas the proposed captioner 
focuses on appropriate components by utilizing the interme-
diate layer, which is influenced by both the image classifier 
and image captioner.

Ultimately, the proposed model can successfully perform 
both image classification and captioning tasks simultane-
ously, because it utilizes an intermediate layer that is influ-
enced by feedback from both the image classification and 
image captioning tasks. The proposed classifier achieves a 
superior classification performance to the CNN‐based classi-
fier because it can be aided by the proposed image captioner 
through the intermediate layer. Compared with the LRCN‐
based captioner, the proposed captioner generates an image 

F I G U R E  3   CAM visualizations for the image classification task

Proposed classifier CNNNRCNOriginal Image
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caption with fewer errors, because it focuses on the more 
distinctive components through the influence of the image 
classifier during training.

5  |   CONCLUSION

In this study, we proposed an image classification and cap-
tioning model considering a CAM‐based disagreement loss. 
The proposed model has the following characteristics.

First, it can learn the modules for different tasks concur-
rently and optimize the performance, because it utilizes an 
intermediate layer between the image classifier and image cap-
tioner. In the proposed model, the weight of the class discrimi-
native neuron can be influenced by the text features, while that 
of the text descriptive neuron can be influenced by the image 
features. Experimental results demonstrate that the proposed 
model with the intermediate layer achieves 12.43% and 3.33% 
improvements in the CIDEr on the Birds and Flowers datasets, 
respectively, compared with the previous LRCN‐based image 
captioner. In addition, the proposed model with the intermedi-
ate layer achieves 0.76% and 0.65% improvements in the top‐1 

accuracy for the Flowers and Birds datasets compared with the 
previous CNN‐based image classifier.

Second, the proposed model using the CAM‐based dis-
agreement loss can consider the synergy in various relations: 
those between the image and its class, the image and its cap-
tion, and the class and its caption. Experimental results show 
that the proposed model with the CAM‐based disagreement 
loss achieves 20.74% and 6.56% improvements in the CIDEr 
on the Birds and Flowers datasets, respectively, compared 
with the previous LRCN‐based image captioner. In addition, 
the proposed model with the CAM‐based disagreement loss 
achieves 1.53% and 0.69% improvements in the top‐1 accu-
racy on the Birds and Flowers datasets compared with the 
previous CNN‐based image classifier.
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