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ABSTRACT One of the major challenges in cybersecurity is the provision of an automated and effective
cyber-threats detection technique. In this paper, we present an Al technique for cyber-threats detection,
based on artificial neural networks. The proposed technique converts multitude of collected security events
to individual event profiles and use a deep learning-based detection method for enhanced cyber-threat
detection. For this work, we developed an AI-SIEM system based on a combination of event profiling
for data preprocessing and different artificial neural network methods, including FCNN, CNN, and LSTM.
The system focuses on discriminating between true positive and false positive alerts, thus helping security
analysts to rapidly respond to cyber threats. All experiments in this study are performed by authors using two
benchmark datasets (NSLKDD and CICIDS2017) and two datasets collected in the real world. To evaluate
the performance comparison with existing methods, we conducted experiments using the five conventional
machine-learning methods (SVM, k-NN, RF, NB, and DT). Consequently, the experimental results of this
study ensure that our proposed methods are capable of being employed as learning-based models for network
intrusion-detection, and show that although it is employed in the real world, the performance outperforms
the conventional machine-learning methods.

INDEX TERMS Cyber security, intrusion detection, network security, artificial intelligence, deep neural

networks.

I. INTRODUCTION
With the emergence of artificial intelligence (Al) techniques,
learning-based approaches for detecting cyber attacks, have
become further improved, and they have achieved signifi-
cant results in many studies. However, owing to constantly
evolving cyber attacks, it is still highly challenging to protect
IT systems against threats and malicious behaviors in net-
works. Because of various network intrusions and malicious
activities, effective defenses and security considerations were
given high priority for finding reliable solutions [1]-[4].
Traditionally, there are two primary systems for detecting
cyber-threats and network intrusions. An intrusion prevention
system (IPS) is installed in the enterprise network, and can
examine the network protocols and flows with signature-
based methods primarily. It generates appropriate intrusion
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alerts, called the security events, and reports the generating
alerts to another system, such as SIEM. The security informa-
tion and event management (SIEM) has been focusing on col-
lecting and managing the alerts of IPSs. The SIEM is the most
common and dependable solution among various security
operations solutions to analyze the collected security events
and logs [5]. Moreover, security analysts make an effort to
investigate suspicious alerts by policies and threshold, and to
discover malicious behavior by analyzing correlations among
events, using knowledge related to attacks.

Nevertheless, it is still difficult to recognize and detect
intrusions against intelligent network attacks owing to
their high false alerts and the huge amount of security
data [6], [7]. Hence, the most recent studies in the field of
intrusion detection have given increased focus to machine
learning and artificial intelligence techniques for detecting
attacks. Advancement in Al fields can facilitate the investiga-
tion of network intrusions by security analysts in a timely and
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automated manner. These learning-based approaches require
to learn the attack model from historical threat data and use
the trained models to detect intrusions for unknown cyber
threats [8], [9].

A learning-based method geared toward determining
whether an attack occurred in a large amount of data can
be useful to analysts who need to instantly analyze numer-
ous events. According to [10], information security solu-
tions generally fall into two categories: analyst-driven and
machine learning-driven solutions. Analyst-driven solutions
rely on rules determined by security experts called ana-
lysts. Meanwhile, machine learning-driven solutions used to
detect rare or anomalous patterns can improve detection of
new cyber threats [10]. Nevertheless, while learning-based
approaches are useful in detecting cyber attacks in sys-
tems and networks, we observed that existing learning-based
approaches have four main limitations.

First, learning-based detection methods require labeled
data, which enable the training of the model and evaluation of
generated learning models. Furthermore, it is not straightfor-
ward to obtain such labeled data at a scale that allow accurate
training of a model. Despite the need for labeled data, many
commercial SIEM solutions do not maintain labeled data that
can be applied to supervised learning models [10].

Second, most of the learning features that are theoretically
used in each study are not generalized features in the real
world, because they are not contained in common network
security systems [3]. Hence, it makes difficult to utilize to
practical cases. Recent efforts on intrusion detection research
have considered an automation approach with deep learning
technologies, and performance has been evaluated using well-
known datasets like NSLKDD [11], CICIDS2017 [12], and
Kyoto-Honeypot [13]. However, many previous studies used
benchmark dataset, which, though accurate, are not general-
izable to the real world because of the insufficient features.
To overcome these limitations, an employed learning model
requires to evaluate with datasets that are collected in the real
world.

Third, using an anomaly-based method to detect network
intrusion can help detect unknown cyber threats; whereas it
can also cause a high false alert rate [6]. Triggering many false
positive alerts is extremely costly and requires a substantially
large amount of effort from personnel to investigate them.

Fourth, some hackers can deliberately cover their
malicious activities by slowly changing their behavior
patterns [10], [14]. Even when appropriate learning-based
models are possible, attackers constantly change their behav-
iors, making the detection models unsuitable. Moreover,
almost all security systems have been focused on analyzing
short-term network security events. To defend consistently
evolving attacks, we assume that over long-term periods,
analyzing the security event history associated with the gen-
eration of events can be one way of detecting the malicious
behavior of cyber attacks.

These challenges form the primary motivation for
this work. To address these challenges, we present an
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AI-SIEM system which is able to discriminate between true
alerts and false alerts based on deep learning techniques. Our
proposed system can help security analysts rapidly to respond
cyber threats, dispersed across a large amount of security
events.

For this, the proposed the AI-SIEM system particularly
includes an event pattern extraction method by aggregating
together events with a concurrency feature and correlating
between event sets in collected data. Our event profiles have
the potential to provide concise input data for various deep
neural networks. Moreover, it enables the analyst to handle
all the data promptly and efficiently by comparison with long-
term history data.

The main contributions of our work can be summarized as
follows:

o Our proposed system aims at converting a large amount
of security events to individual event profiles for pro-
cessing very large scale data. We developed a generaliz-
able security event analysis method by learning normal
and threat patterns from a large amount of collected
data, considering the frequency of their occur-rence.
In this study, we specially propose the method to charac-
terize the data sets using the basepoints in data prepro-
cessing step. This method can significantly reduce the
dimensionality space, which is often the main challenge
associated with traditional data mining techniques in log
analysis.

o Our event profiling method for applying artificial intel-
ligence techniques, unlike typical sequence-based pat-
tern approaches, provides featured input data to employ
various deep-learning techniques. Hence, because our
technique is able to facilitate improved classification for
true alerts when compared with conventional machine-
learning methods, it can remark-ably reduce the number
of alerts practically provided to the analysts.

« For the applicability, we evaluate our system with real
IPS security events from a real security operations cen-
ter (SOC) and validate its effectiveness through per-
formance metrics, such as the accuracy, true positive
rate (TPR), false positive rate (FPR) and the F-measure.
Moreover, to evaluate the performance comparison
with existing methods, we conducted experiments
using the five conventional machine-learning methods
(SVM, k-NN, RF, NB and DT). And we also perform an
evaluation by applying our method to two benchmark
datasets (i.e., NSLKDD, CICIDS2017), which are most
commonly used in the field of network intrusion detec-
tion research.

In this study, to decompose a large amount of collecting
events into individual event occurrence profiles, we apply
the TF-IDF mechanism. We also generate the event profiles
by computing the similarity value among each TF-IDF event
sets and appointed basepoints. The generated event profiles
are fed into the input-layer of the FCNN, CNN, and LSTM
models, which are executed in AI-SIEM. Consequently, using
two well-known benchmark datasets and two real datasets
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collected from operating IPS, we aim to show the applicabil-
ity of our system for defending IT systems against the cyber
threats.

For evaluation, we are aware of the limitation of NSLKDD
and CICIDS2017 datasets, but they remain widely used
benchmarks for comparing machine-learning methodologies.
Hence, we also conduct a performance comparison with
existing methods using the real datasets and additional two
benchmark datasets. Above all, machine-learning approaches
obtained a good performance using benchmark datasets,
also need to achieve satisfactory performance for the real
data.

The remainder of this paper is structured as follows.
In Section II, we introduce the background information for
the proposed system. Section III provides existing works on
learning-based intrusion or attack detection. In Section IV,
we describe the overview for our proposed system and data
labeling. In section V, we specify the methodology used in
this study in more detail. Section VI provides the implemen-
tation of the FCNN, CNN, and LSTM models for this study.
Section VII introduces datasets for experiments. Section VIII
presents the detailed evaluation results of experiments and
comparison with other methods. Finally, the conclusion and
future work discussed in Section IX

Il. PRELIMINARIES

In this section, we shortly discuss the background informa-
tion for our study. We start by describing the overview of
the IDS/IPS and the SIEM, and introduce the deep learning
techniques. Finally, we describe our big data platform for the
proposed AI-SIEM system.

A. IDS / IPS AND SIEM

1) IDS / IPS

An intrusion detection system (IDS) monitors the net-
work activity and reports on observation of any security
violations [6]. Unlike the IDS, an intrusion prevention system
(IPS) can block a detected network connection by closing
port or dropping the packets. An IPS has become an indis-
pensable system for most types of organizations or indus-
tries owing to the wide growing nature of data and the
internet. Nevertheless, intelligent network attacks still persist
in today’s network, and there are limitations to detect and
respond network intrusions by an IPS system [15]. This is
because they mainly use less-capable signature-based detec-
tion, as opposed to anomaly detection methods. Meanwhile,
speedy attacks are occurring more frequently with new intru-
sion methods [6], [16]. Most of all, the majority of IPS
solutions have a high false positive rate and are limited in
detecting any unknown or new attacks. In addition, in [14],
the authors presented six limitations for an IPS such as the
challenges of volume, accuracy, diversity, dynamics, low-
frequency attacks, and adaptability. These limitations lead
to seriously restrict precise decision by an SOC security
analyst.
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2) SIEM

A SIEM has been considered an important component of
enterprise networks and security infrastructures, with a focus
on enterprise information technology (IT) security, which
provides an overall view of the security management. In gen-
eral, SIEM collects relevant data produced in an organization
from various sources, making it possible to detect cyber
threats by matching patterns [17]-[19]. The SIEM system
allows the consolidation and comprehensive evaluation of
security alerts and logs collected from network security sys-
tems (e.g., firewall and IDS / IPS). Particularly with analyzing
IDS/IPS alerts (security events) in SIEM, the analyst make an
effort to find cyber attacks using pre-defined security policies
and threshold. Moreover, to discover consolidated malicious
behavior, they carry out analyzing correlations between secu-
rity events and relevant situations based on already known
patterns of cyber threats.

Security events are continually generated from many types
of network security systems (e.g., IPS and FW); thus, they are
heterogeneous with an extremely diverse distribution. This
brings challenges to discriminate true positive alerts from
false ones in a traditional policy-based threat detection sys-
tem. Moreover, practice shows that this method of analyzing
is extremely complex, high costly and only operable with
large personnel effort [18].

For cyber-threat detection, the SIEM analysts spend an
immense amount of effort and time to differentiate between
true security alerts and false security alerts in collected events.
Hence, in recent years, to address this challenge, one of
the main focuses within the development of SIEM has been
the application of machine-learning and artificial-intelligence
(AD)-learning techniques, which is referred to here as
Al-based SIEM. Although the application of these techniques
has offered improvement in reducing human labor, there are
still several challenges for an Al-based SIEM. As mentioned
above, there are major limitations such as (1) the compara-
tively high level of analyst interaction required, (2) lack of
labeled data, and (3) constantly evolving attacks [10], [14].

B. DEEP LEARNING TECHNIQUES

In recent years, the deep learning technique has been greatly
advanced in many areas, and it is ongoing in many industries
beyond an area of machine learning that applies neurons as
mathematical structures similar to human neural network.
The most widely used deep neural network are convolutional
model and recurrent model.

CNNs are generally effective to learn the spatial features
of data such as image processing, and RNNs are the more
suitable method that can learn using time-continuously dif-
ferentiable features of data. CNNs are architectures espe-
cially designed to deal with spatial data. Because of the
awareness of the partially specific feature of the input, spe-
cific local characteristic, and shared parameter schemes,
CNNs are employed in many fields [20]-[22]. CNNs have
already yielded remarkable outcomes in many fields such as
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FIGURE 1. The architecture of our big data platform for Al-based SIEM.

image classification [23], biomedical text analysis [24], and
malware classification [3], [25]-[29]. For network intrusion
detection, many studies showed the feasibility of CNN for the
identification of malicious events, network flow and connec-
tion in the network [30], [31].

Recurrent structures are capable of learning the sequence
information in the data. The well-known recurrent structures
are RNN and LSTM [32], [33]. LSTM has a special recurrent
architecture designed to advance the storage ability, com-
pared to RNNs. This is mainly because RNN is able to store
past input information for short time, that degrades its ability
to model a long-term structure for the input sequence [34].
Hence, LSTM networks have an additional component called
the forget gate. Because LSTM can effectively perform to
learn long sequence data, it also has enabled successfully
empirical results in areas such as speech recognition and
machine translation [3], [10].

C. BIG DATA PLATFORM

Typically, a big data platform is used to collect data on
security events from IPS and maintain security logs over
long-term periods. The big data platform can also be spe-
cialized in analyzing data and quickly recognizing cyber
threats [35], [36]. This is because historical data collected
over long-term periods in the platform can help investigate
and respond to cyber threats. For this, we have developed
the scalable big data platform based on distributed computing
technologies, particularly for collecting, processing, storing,
correlating, and analyzing the security event logs.

Figure 1 shows the system architecture of our big data
platform. The platform mainly consists of a data collection
system, data processing system, data analysis and data stor-
age system to analyze cyber-threat information using long-
term security data. Using the techniques for large-scaled data
processing, this platform is capable of continually collecting
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the numerous streamed security events and processing the
datain real-time [37]. Based on the big data platform, our pro-
posed methods can be coupled with Al-based SIEM. In this
work, by adopting Al technique to the platform, true alerts
can be better differentiated from false alerts in the real world.

Ill. RELATED WORKS

In this section, we discuss previous studies for deep learning-
based intrusion detection and real security event analysis
research. In recent years, many studies in cybersecurity
focus on Al-based intrusion detection, and different Al and
machine learning-based techniques have been proposed to
improve the ability of cyber threat detection [1]-[3], [15],
[38], [39]. Although these studies have achieved significant
result using Al and machine learning-based techniques, they
are still limited to specific test datasets such as NSLKDD.
Other research studies however, have used security events
and logs collected from the real world [8], [10], [40]-[42].
These studies are closer to our study for addressing the
above-mentioned challenges. Especially, Du et al. [39],
Liao and Vemuri [40], and Zhang et al. [42] have used the
TE-IDF mechanism like our method.

A. DEEP LEARNING-BASED INTRUSION DETECTION
Naseer et al. [1] proposed, implemented and trained intrusion
detection models using different deep neural network archi-
tectures including CNNs, Autoencoders, and RNNs. These
models were trained on the NSLKDD training dataset and
evaluated on both test datasets provided by NSLKDD. DCNN
and LSTM models showed a performance of 85% and 89%
accuracy, respectively, on test dataset.

Zhang et al. [2] divided methods for network intrusion
detection into two types: direct methods using single algo-
rithm and combination method by combination of several
methods. The author proposed a new detection model based
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on a directed acyclic graph (DAG) and a belief rule base
(BRB). The results showed that compared with conventional
detection models, the DAG-BRB combination model had a
higher detection rate using KDD 99 dataset.

Wang et al. [3] proposed a hierarchical spatial and temporal
features-based intrusion detection system (HAST-IDS) that
automatically learns network traffic features. The main idea
is that the spatial features of network traffic are first learned
using deep CNNs and then learns the temporal features are
learned LSTM networks. The experiments were conducted
by DARPA and ISCX datasets.

Vinayakumar et al. [15] developed a hybrid intrusion
detection system which has the capability to analyze the net-
work and host-level activities. It employed distributed deep
learning model with DNN for processing and analyzing very
large scale data in real-time. The DNN model was selected by
comprehensively evaluating their performance in comparison
to classical machine learning classifiers on various bench-
mark IDS datasets such as NSLKDD and UNSW-NB15.

Khan er al. [38] propose a novel two-stage deep learning
model, based on a stacked auto-encoder with a soft-max clas-
sifier, for efficient network intrusion detection. The authors
conducted several experiments on two public datasets: the
benchmark KDD99 and UNSW-NB15 datasets. This study
achieved results, up to 99.9% for the KDD99 dataset and
89.1% for the UNSW-NB15 dataset.

Duet al. [39] proposed a new algorithm based on the k-NN
classifier method using TF-IDF for modeling program behav-
ior in intrusion detection regarding system calls. In [29], with
the k-NN classifier, the frequencies of system calls are used
to describe the program behavior. For this, text categoriza-
tion techniques, such as TF-IDF, are adopted to transform
each system call data to a vector and measure the similarity
between two program system call activities. Authors report
that the TF-IDF-based k-NN classifier appears to be well
applicable to the domain of intrusion detection in the field
of malware detection.

B. REAL SECURITY EVENT ANALYSIS

Shen et al. [8] developed the system for predicting secu-
rity events through deep learning, which is called Tiresias.
Authors presented a system that leverages RNNs to predict
future events on a machine, based on previous observations.
It tested on a dataset of 3.4 billion security events collected
from a commercial IPS, and showed that its approach is
effective in predicting the next event that will occur on a
machine with a precision of up to 0.93. In addition, the system
also accomplished a high precision for a complex situation
and maintained stable results.

Veeramachaneni et al. [10] developed end-to-end machine
learning techniques that predict cyber attacks significantly
better than existing systems by continuously incorporating
input from human experts. The analyst directly labeled data
with a ranked metric over several months, and these labeled
data were provided to the supervised learning module to
predict whether an attack would occur. This study showed
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that the technique, using six anomaly detection methods, can
detect 85 percent attacks, which is roughly three times better
than previous benchmarks, while also reducing the number
of false positives by a factor of 5. The system was tested on
3.6 billion pieces of data known as “log lines,” which were
generated by millions of users over a period of three months.
Specially, the hybrid approaches of auto-encoders have been
recently proposed for anomaly detection.

Liao and Vemuri [40] proposed DeepLog, a deep neural
network model employing LSTM to train a system’s log
patterns (e.g., log key patterns and corresponding parameter
value patterns) from normal execution. This work uses the
term frequency inverse document frequency (TF-IDF) vector
to the log key and parameter value anomaly detection models
for identifying abnormal log entries. The author showed that
DeepLog outperformed existing log-based anomaly detection
methods, achieving an F-measure of 96% in HDFS data and
an F-measure of 98% in OpenStack data.

Oprea et al. [41] used belief propagation to detect early-
stage enterprise infection from DNS logs. They proposed a
new framework based on belief propagation inspired from
graph theory. They demonstrated that the techniques perform
well on two large datasets. The authors achieved high accu-
racy on two months of DNS logs. Moreover, they apply the
algorithms to 38TB of web proxy logs collected at the border
of a large enterprise. This framework used “hints” data that
was manually provided by the SOC security analysts.

Zhang et al. [42] proposed a novel system that automatic-
ally parses streamed console logs and detects early warning
signals for IT system failure prediction. The system used
an automation approach with text mining techniques, such
as term frequency - inverse document frequency (TF-IDF)
and it employed LSTM for deal with specific labeled data
in the training process. The paper compared proposed tech-
nology with state-of-the-art machine learning approaches and
showed the advantage and potentials of the system in predic-
tion of complex IT failures.

The closest study to this paper is Tiresias [8]. Tiresias
focused on anomaly detection for prediction of event in
a noisy environment with a wide variety of events. How-
ever, in order to improve the accuracy for event prediction,
Tiresias used the sequence-based approach with RNN for
occurred security events. Whereas we adopt the concurrency-
based approach with deep-learning to address the limitation
of sequence-based method, which is detailed in the next
Section.

IV. SYSTEM OVERVIEW

This section describes the architecture of the proposed
AI-SIEM system for artificial intelligence-based threat detec-
tion. The AI-SIEM system employs not only deep learn-
ing techniques but also data preprocessing mechanism that
enables the handling of very large-scale network events.
Specially, the main goal of the AI-SIEM is to automati-
cally analyze network security events related to true alerts
for detecting cyber-threats and execute multiple analysis
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engines. It also utilizes the processing capability of the several
graphical processing unit (GPU) cores for faster and parallel
analysis.

Figure 2 presents the workflow and architecture for the
developed artificial intelligent (Al)-based SIEM system. The
AI-SIEM system comprises three main phases: The data pre-
processing, artificial neural networks-based learning engine,
and real-time threat detection phase.

The first preprocessing phase in the system, termed event
profiling, aims at providing concise inputs for various deep
neural networks by transforming raw data. In the data prepro-
cessing phase, data aggregation with parsing, data normal-
ization stage using TF-IDF mechanism, and event profiling
stage are consecutively performed in the AI-SIEM system.
Each stage generates event data sets, event vectors, and event
profiles, respectively, and the output is utilized in next each
stage, as shown in Figure 2. This phase not only precedes
the data learning stage but also precedes the conversion of
raw security events to the deep-learning engine’s input data
when the system operates on detecting network intrusions in
real time. The second Al-based learning engine employs three
artificial neural networks for modeling. For the data learning
stage, the preprocessed data are fed into the three artificial
neural networks, and each ANN performs learning to find the
most accurate model. Finally, in real-time threat detection,
each ANN model mechanically classifies each security raw
event using the trained model, and the dashboard shows the
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only recognized true alerts to security analysts for reducing
false ones.

Each stage for data preprocessing is detailed in Section V,
and second ANNs for data learning phase are described
in Section VI.

A. DATA LABELING FOR LEARNING

In this subsection, we discuss the data labeling of secu-
rity events for supervised learning. As mentioned above,
to employ the supervised learning method, a labeled data
is essential. For this, analysts should be able to label sev-
eral months of data heuristically. In other words, analysts
need to label the raw events as ‘“Normal” or as “Threat,”
based on whether it belongs to a type of attack by ana-
lyzing correlations among raw security events. However,
owing to a rapidly growing number of security events and
unknown cyber threats, the labeling of numerous data is time-
consuming and costly. In addition, it is difficult to acquire
the labeled security event dataset based on the action of
SOC security experts in the real world.

By investigating occurred cyber attacks, most of detected
attacks can be categorized as system hacking, denial of
service, network attacks, scanning attacks, and suspicious
authenti-cation activities. These attack types are determined
by the SOC security analysts based on correlation among
attack duration time, the number of attacker’s IP, and impor-
tance of victim system.

VOLUME 7, 2019



J. Lee et al.: Cyber Threat Detection Based on Atrtificial Neural Networks

IEEE Access

In our study, to provide an available dataset for supervised
learning, we had to carry out dataset labeling according to
utilizing recorded information in the threat detection report
list (e.g., attack start time, attack end time, and attacker’s ip
address information). The threat detection reports are made
by the SOC analysts during raw data collecting periods. The
labeling operation is automatically performed by the data
labeling module in our system. First, the system extracts
timestamps and network information from the threat detec-
tion report, for each recorded threat detection result. Next,
the data labeling tool in the system, investigates correlation
of extract-ed threat information on raw security event, with
each threat using the big data platform. The security events
that are correlated with IP address and time of each threat are
labeled as “THREAT (Attack name),” and others are labeled
as “NORMAL.” The labeled result of our collected datasets
is explained in Section VIIL.

V. METHODOLOGY

In this section, we describe an event profiling method for
preprocessing. The method is composed of data aggregation
and decomposition, TF-IDF normalization, and generating
event profile. we first present an event set extraction method
for the data preprocessing. Then, the event vectorization
using TF-IDF for event profiles is described in detail. Finally,
we present the event profiling method for inputs into three
deep learning models. The proposed method was basically
motivated by the observation that raw event data can be
profiled by concurrent event sets. By combining each pro-
posed method sequentially, the preprocessing for Al engine
is operated as shown in Figure 2:

A. DATA AGGRERATION AND DECOMPOSITION

Finding a profiling method to represent a pattern in a large
amount of data can help to summarize much information from
the event data and utilize the inputs for deep learning.

To deal with a large amount of streaming event data in the
real world, we needed a method to find one representative
data set that identifies several events; thus, we generate the
statistical event sets. The basic idea of our method is to extract
the occurrence information regarding other events simultane-
ously generated with it. Once the raw events are collected in
the big data platform, each event is mapped into one event set
using the sliding window by predefined interval, which can
belong to overlapping sets by configuration. In other words,
the sliding window allows overlapping of one log over mul-
tiple profiles. In this, we apply a concurrency-based pattern
instead of a sequence-based pattern [8], and the number of
concurrency event name types in each event set is regarded
as deterministic features for true-positive events. This is pri-
marily because the ordering of events can change slightly
based on unknown situations. For example, if there are two
event sequences, a = 4—5—6—4—5—6, and sequence b
= 4—5—6—5—4—06, the ordering of the two sequences
is clearly different; however, the event occurrences of the
two sequences are the same. However, in the real world,
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T; $ES T5= {es=2, e;5=3, e,5=1...}
sES T=i= {e13=3, ecs=2, ey5=1}
21 ES T=H1 = {e,5=2, e13=1, ees=1}

Tit )
s2ES T = {es=1, e13=3, e;5=1}

FIGURE 3. Data aggregation and data decomposition by source and
destination address using sliding window.

the sequence may be changed in IPS by system processes,
resources, and network,; therefore we adopt the concurrency-
based method that depends on co-occurrence information,
which is not as tight as the sequence, but allows the calibration
of the gap of changeable sequence.

Whenever the window slides at an interval of the pre-
defined time_interval, each raw event data in the window is
aggregated into several event sets ES Zj:t by source address S;
and destination address Dj.

Consequently, a number of event data sets are produced
for one window time in our system. Figure 3 shows data
aggregation and data decomposition by source and desti-
nation address using sliding window. For example, in case
of first window T;, occurred event set {es = 2, e;3 =
6, e17 = 1,es = 2,e,8 = 2,...} is decomposed
to g1 ES = {e17 = l,e13 = 1l,e05 = 1...}, LES =
{65 = 2, €13 = 3, er;s = l...}, and s3ES = {813 = 3,
e6s = 2, eag = 1...} by connection unit. This operation is
continuously performed on learning data.

B. TF-IDF DATA NORMALIZATION
In this subsection, event sets, which contain the frequency
of unique event name such as event set ES;, are transformed
into a representation suitable for the learning algorithm and
classifiers. For this, we use the vector space model which is
the most commonly used document representation in the field
of information retrieval.

We seek to adopt this technique to make an intrusion
detection model. The occurrences of IPS events can be used to
characterize the IPS pattern and transform each event set into
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TABLE 1. Various symbols and notations used.

TF-IDF For THIDF for Substitution of
Terms Common Text Detection in TF_ISDthCIE our
Categorization Liao et al. [39] yste
m total number of total number of total number of
documents processes event sets
total number of total number of
total number of . .
n s distinct system unique event
distinct words
calls names
. .| number of times number of times
number of times i . .
n; i th system call i th event was
th word occurs . .
was issued issued
frequency of i th | frequencyofith | frequency ofith
tfi; word in the j th system call in event in
document process j event set j
D, Jj th training Jj th training Jj th training
J document process event set
X test document test process test event set

a vector. Moreover, it is assumed that event sets belonging to
the same concurrency will be nearby in vector space. Hence,
as shown in Table 1, we substitute a different factor in threat
detection for the concept of each factor in text categorization
to apply the vector space model.

In the applied model, each event set is represented by a
vector of occurred events. Note that m indicates the number
of rows in the learning dataset, and » indicates the number of
event name types. An m-by-n matrix E denotes the collection
of event sets belonging to the learning dataset, where each
entry represents the occurrence of an event in an event set,
ie., E = (¢;), where ¢;; is the weight of event j in event set i.
There are several ways of determining weight e;;.

Let ffj; be the frequency of j th event in event set i, m the
number of event sets in the entire dataset A, n is the number
of unique event names in the entire dataset A, and #; is the
total number of times event j occurs in the entire collection.

Although there is simple Boolean weighting and frequency
weighting, i.e., e;j = if ;, the particular weighting approach
is the so-called term frequency - inverse document frequency
(TF-IDF) weighting as follows :

m
ejj = tfij x log <—> €))
1

TF-IDF is a statistical technique to index the term accord-
ing to their importance, as it is based on vectors that represent
the term frequency as well as term presence [43]. In this
manner, the numerical value of a repeatedly occurring event
exhibits a low weight, while the value of a very rarely occur-
ring event will receive a high weight.

As a result of TF-IDF, matrix A is constructed, of which
the columns length corresponds to the number of events M in
the data collection, and the number of rows correspond to the
number of event sets. Matrix A is composed of event vectors.

As mentioned in section III, Du et al. [39] employed the
TF-IDF for learning program behavior in malicious activities
detection based on the frequencies of system calls invoked
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during a program execution time. Table 1 presents the substi-
tution concept of TF-TDF for our AI-SIEM system.

Let a;; denote the j th column TF-IDF value in the i th
row of the dataset. To convert input data for deep learning
with the above pre-processed dataset to corresponding event
profile, our goal is to create mapping F:E — EP, where EP
represents the event profile dataset corresponding to E and
E = {E,};"_,, the entity of which is E; = {ey,e2, e3, ... e}
Hence, the number m indicates the number of rows in the
dataset, and the number n is the number of event categories e;.
The dimension of the TF-IDF event set vector equals the size
of n columns in the collection, which has a dependency on
what kind of event occurred. Hence, whereas there could be
thousands of different types, it is necessary that overfitting
caused by a high dimension is reduced.

For dimensionality reduction, the well-known principal
component analysis (PCA) and singular value decomposi-
tion (SVD) methods are used in many deep-learning fields.
However, we developed a new method based on basepoints
as presented in next subsection. The primary reason is we
assume that network intrusion data is broadly located in high-
dimensional space. In addition, we also assume that mali-
cious security events had high deviations among their value
and they are mixed together with normal data. Particularly,
we perform experiment for comparison with SVD, and the
result is presented in Section VIII.

C. TRANSFORM EVENT PROFILE

In this subsection, for transforming event vectors to event
profile data, we first calculate the similarity of the entire
event set with each basepoint set. The basic idea of our data
preprocessing to reduce the high dimensionality is to calcu-
late the cosine similarity between each data in the collections
(training data) and the data of k basepoints and the measured
cosine similarities are used to characterize event patterns.

For this, in this step, our method first appoints k basepoints,
the number of which is given within 0.20-0.30 percent of n,
in the training data set.

To appoint k basepoints, we need to find the particular
event vectors that have rarely occurred over the dataset. This
is mainly because the similarity value may be diverse when
comparing a rarely occurring event set with other events,
while the similarity value among repeatedly occurring event
sets resemble. The latter case is not effective for deep learn-
ing. Hence, for appointing k basepoints, first, the 10-20 most
rare event list is prepared, the event set that contains events in
the rare list, is only selected for the basepoint. Next, to reduce
redundancy among basepoints, if there is a redundant base-
point after calculating similarities among k basepoints, it is
substituted by another event vector. By iteratively perform-
ing this procedure, sets of k basepoints are constructed.

Next, we define a set BV, which consists of k unique
basepoints with different attributes, as the reference points
for measuring similarity, and calculate the cosine similarities
sim(E, BV) between each training data E and each data in the
basepoint set BV. The sim(A, B) function is measured by the
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cosine similarity value between two event-set vectors. The
cosine similarity is defined as follows:

d- Y digi
s, ) = i = == @
N N
1 \/Zi:l diz\/Zi=l a;
Given k basepoints in the form of BV = [bv,bvs,

bvs, --- , bvt], where bv; = {ej,er,e3,...ey} and bv; € E,
BV C E, and the converted dataset is the similarity matrix
EP = [epl, epy, epz, -+ ,epm], where it is an ordered set
of ep; = {sim(E;, bvy), sim(E;, bvy), sim(E;,bv3),..., sim(E;,
bvy,) } and i is from 1 to m. The final transformed dataset EP
is produced as follows:

E p—
a1 aip a3 ain
a1 azp a3 -+ Ap
— | a1 a3z as3 asp
L 4m,1 am,2 am,3 ce Am,n
BV
bin b bia
by1 b3 by
= : . : ©)
L bka bka o0 bkn
simM (E BVT>
CEW | ey, T
(Ey )" i
2=l bva )iy
. (E&i i=1 (bvs )rll 4
= simM (Esl, | . Jj=1 4)
' by )
_(Em,i):'lzl n ( Vk’-/)J:1
[ ain a1 a3 ain
a) ap a3 - g
— simM as] azy a3 a3 |
L Am,1 am,2 am,3 ce Am,n
bri bar 0 b
bip b bi2
: . ) (5)
bl,n b2,n te bk,n
s(E1, bvi) s(Ey, bvp) s(Eq, bvs) s(E1, bvy)
s(E, bvi) s(Ep, bvy) s(Ez, bvs) s(Ez, bvy)
— | s(E3,bv1) s(E3,bvy) s(E3, bvs) s(E3, bvy)
S(Em, bv1) s(Em, bv2) s(Ep, bvs) -+ s(Ep, bvi)
( s denotes cosine similarity. (6)

Result matrix (6) of the similarities between each event
set and k basepoints is provided to FCNN, CNN, and LSTM
in the next section as an important part of the input data.
In practice, the matrix data are formatted as a csv file.
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Each data row in one csv file becomes one input data that
is fed into the first layer of artificial neural networks.

Moreover, owing to resource exhaust problem by
insufficient memory of most systems, dealing with a
matrix or collection with numerous data requires particular
matrix operation mechanisms such as data dividing.

VI. DEEP LEARNING MODELS

In this section, we present the artificial neural networks
(ANNs) that compose the AI-SIEM system. As mentioned
above, our deep-learning engine consists of a multi-learning
engine such as FCNN, CNN, and LSTM which are collec-
tively named EP-ANN.

A. FCNN MODEL

The FCNN is the most common deep learning network,
in which each node in fully connected layers is connected to
every node of next layer. In an FCNN, each node is connected
to all the nodes in the previous layer, and each connection
has respectively different and specific weight, which is not
shared by each node. In past, while the FCNN is simpler
than common CNNs and RNNs, it had been known that
the degrading of performance for accuracy was caused by
the problem of vanishing gradient during backward propa-
gation. However, the back-propagation problem, which had
restricted the development of an artificial neural network, was
resolved by the emergence of the rectified linear unit (ReLU)
activation function.

Consequently, to avoid the vanishing gradient problem by
Sigmoid function, most deep-learning methods generally use
the ReLU activation function. We also adopted the leaky
rectified linear unit (leaky ReLU) scheme as the activation
function, similar to RELU. The softmax function with a cross
entropy cost function at the last layer, generate the final result
for each input data. The common formulas for sigmoid, ReLU
and Leaky ReLU, softmax activation function are as follows:

1
Si id = 7
igmoi e (7)
ReLU — 0 forx <0 @)
x forx=>0
.01
LeakyReLU — {O Olx forx <0 ©)
X forx >0
et
Softmax(xi) = W (10)

In FCNN, three-layer multi-layer perceptron (MLP) with
a softmax function in the final layer is same as a multi-class
logistic regression model. In general, an MLP with n hidden
layers can be mathematically formulated as follows [15]:

H (x) = Hy(Hp—1(Hp—2(- - - (H1(x)))))) (1)

In this study, we designed and implemented the FCNN
for AI-SIEM platform. Parameters for building neural net-
works such as the number of hidden layers, output class, and
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FIGURE 4. The architecture of implemented fully connected neural
network (FCNN).

activation function types for each layer can be dynamically
configured in the platform.

After performing repetitive testing, we adopted a multi-
layer perceptron (MLP) model with eleven layers comprising
one input layer, nine hidden layers, and an output layer.
In particular, we built a suitable architecture that has one
input layer and, nine hidden layers that had 1650, 1850,
2048, 1792, 1536, 1280, 1024, 768, and 512 nodes, respec-
tively. We composed the activation functions using the leaky
rectified linear unit (leaky ReLU) scheme as the activation
function, instead of Sigmoid. The softmax function with a
cross entropy cost function at the output layer, produces the
final outputs, as shown in Figure 4. The softmax layer, which
is composed of a cross-entropy cost function at the output
layer, produces the final multiple outputs.

To train our FCNN, the preprocessed data were fed to the
FCNN, and training was performed by tuning the param-
eter configuration to over 1000 epochs with a learning
rate of 0.001. The implemented FCNN diagram is shown
in Figure 4.

B. CNN MODEL

CNNs are neural network architectures especially designed
to deal with spatial data. For CNN, the data of input layer
consists of 2D or 3D array such as the pixel value of the image
information. The core layers of CNN are convolutional layers
(Conv) and max pooling layers. A Conv layer receives input
as a unit and convolves it using filters to produce an ongoing
data to transfer into next layers.

In a Conv layer, the filters read overall inputted data by the
slicing and extract the key features. In addition, convolution
is performed by calculating the scalar product between the
input chunk and each filter. The features that are extracted by
each filter are aggregated to a new feature set, which is called
the feature map. Because the convolutional layer consists of a
group of filters, it produces a feature map for each filter, and
the data of feature maps are aggregated together to generate
data for output [8], [22].

The designed and implemented CNN was comprised an
input layer, four convolutional layers, three max pooling
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layers, and an output layer with one fully connected layer.
Each of the front three convolutional layers in CNN was
followed by max pooling layers for subsampling. We placed
the dropout layer at the front of each convolutional layer
except for the last.

The input layer in the implemented CNN is dynami-
cally shaped. Because the CNN is generally specialized for
2D or 3D pixel data of the processing image, we need
to transform each pre-processed event profile row into a
2D array. Hence, we transform each element of the input data
vector into an N x N 2D array form, where empty positions
in the 2D array are replaced with zero. Each input layer can
then be variously shaped by the size of defined features for
learning based on CNN. The implemented architecture for
CNN is described in Figure 5, and the depicted CNN can be
used to learn the data where the features ranging from number
of features is 169-196.

C. LSTM MODEL
An LSTM has a special recurrent architecture designed to
advance the storage ability.

Figure 5 presents the constructed architecture of the recur-
rent neural network in our deep learning model. An input
layer’s vector sequence X = {X;—L4+1,Xr—L,-..X—1,X¢}
with length L is passed with weighted connections to
a layer of multiple recurrently connected hidden lay-
ers to compute first the hidden layer’s vector sequences
h = h_py1,h—r,...h—1, hy, and then the output vec-
tor sequence y = {y;—r+1,Yi—L,---Yi—1,Y¢}. In common
LSTM, each output vector y, is used to parameter-
ize the probability distribution Pr(x;y1]|y;) of the next
inputs x; 41 [42], [44].

Given the temporal dependencies between the event pro-
files, in this work, we employ LSTM to model the temporal
correlations of event profiles. An RNN is a connectivity
pattern that computes on a sequence of vectors xp, x2, - - - , Xp,
using a recurrence formula of the form h; = fy(hi—1, x¢),
where f, an activation function and 6, a parameter, are used
at each timestamp to process. To avoid the vanishing gradient
problems with RNNs, gradient clipping and gating concepts
are introduced [33].

An LSTM is an upgraded network of RNN. Unlike classi-
cal RNNs, LSTM tries to address the problem of long-term
dependencies by introducing a purpose-built memory cell to
store information of previous time steps [42].

Within this model, instead of propagating the state without
multiplicative updates at each step, it is stored in memory
cell C;, which receives additive updates, merged with a
method for removing irrelevant inputs from the memory
cell of previous time steps [45]. Following the notation in
Shin et al. [45], Zaremba et al. [46] the computation of
LSTM unit at time step ¢ is formally represented as follows:

fi = oWy - [hy—1; %] + by)
& = tanh(Wg - [hy—1; x;] + bg)
o (Wi [hi—1; x:] + by)

iy
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FIGURE 5. The architecture of implemented convolutional neural network (CNN).

CG=(0Ca+i0g
o (W, - [hi—1; %1+ by)
0y © tanh(Cy) (12)

Ot

h

Here, ® represents element-wise multiplication. where x;
denotes an input vector, &; denotes hidden state vector, C;
denotes cell state vector, o, denotes output vector, i; denotes
input vector, and f; denotes forget state vector, while terms W
and b denote weights and biases, respectively.

Gates of memory cells consist of “input,” “output,” and
“forget” gates. In principle, these gates enable the gradient to
propagate when the model propagates through multiple steps
for a long time. This is because the LSTM removes irrelevant
information through the input gate i;, memorizes information
only until necessary using the forget gate f;, and outputs only
relevant information using the output gate o;.

In our study, we constructed LSTM with 1-8 multi-layers
and N hidden layers; an example of the architecture is shown
in Figure 6. It must be noted that if there is one multi-layer,
the neural network is an RNN. The RNN cell and LSTM
cell can be easily substituted for each other because they
both support in TensorFlow. To construct a suitable LSTM
network with the optimal number of multi-layers and hidden
layer, we used several dynamic configurations until the best
performance was obtained. Consequently, we observed that
the optimal number of multi-layers is 2—4 and optimal the
number of hidden layers is 256-512. Although the multi-
layers are deeper, this accuracy is not considerably advanced.
However, a longer training period is required. Moreover,
because our proposed AI-SIEM system can model the LSTM
through dynamic configuration, the optimal LSTM network
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FIGURE 6. The architecture of implemented long short-term memory.

related to each learning data can be constructed by our
system.

VIl. DATASETS

This section describes the datasets. The four datasets used
for testing, are NSLKDD, CICIDS 2017, and the two real
datasets collected in the SOC.

A. NSLKDD

The NSLKDD dataset is the new revised version of the
KDDCUP99. Tavallaee et al. [47] had discovered a number
of duplicated records in the original KDDCUP99 dataset,
which had an impact on the performance of model training
and evaluation on the dataset. NSLKDD is a refined version
of the dataset to address discovered statistical problems.
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Some advantages over KDDCUP99 are that the complexity
can be reduced and bias toward frequent records by machine
learning algorithms can be prevented. However, this new
version of the dataset still suffers from some of the problems
discussed by McHugh [48] and may not be a perfect rep-
resentation of existing real networks. Because recent NIDS
research still uses this dataset for performance evaluations,
we believe it is regarded as an effective benchmark to help us
compare different methods.

The training is performed on KDDTrain data which
contain 22 attack types and testing is performed on KDDTest
data which contains 17 additional attack types. These attacks
can be categorized into four different types with some com-
mon properties for training and testing. The four categories
of attacks are: Denial of Service (DoS), Probe, Remote to
Local (R2L) and User to Root (U2R).

B. CICIDS 2017

In 2017, the Canadian Institute for Cybersecurity (CIC)
published an intrusion detection dataset named
CICIDS2017 [12]. This dataset provides the labeled data for
the field of network intrusion detection research and contains
benign activities and attacks, which was collected for five
days log (from Monday to Friday). While the first day log
contains normal activity and only includes the benign data,
the other days contain the data points for various attacks
together with benign data. The number of data points is
approximately 2.8 million with 85 features including the label
information.

The implemented attacks include Brute Force FTP, Brute
Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Bot-
net and DDoS. The dataset has used the B-Profile system
(Sharafaldin et al. [12]) to profile the abstract behavior of
human interactions and generate naturalistic benign back-
ground traffic.

C. REAL DATASETS

Our dataset has been collected from two large enterprise sys-
tems, named ESX-1 and ESX-2. The security raw events were
collected over 5 months for ESX-1, over 30 days for ESX-2,
respectively, in which the detecting threat information was
separately recorded by the SOC security analysts whenever
a network intrusion occurred. The list of threat detection
information contains threat occurrence time, related attacks,
category of attack, respond contents, attack IP address, and
victim network information.

In our datasets, we investigated 798 detecting cyber threats
in ESX-1, which are dispersed across the entire collection
period. Looking at the type of occurred attacks in recorded
cyber threats, there are 240 scanning, 547 system hack-
ing, and 11 worm attacks. Similarly, in ESX-2 there are
941 scanning, 3,077 system hacking, and 51 worm attacks.
This categorizing of attack type was manually performed
by SOC analysts. By category, the system hacking attack
includes a cross site script, DDoS, brute force attack, and
injection attack. A trojan and backdoor attack belongs to
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TABLE 2. Distribution of security events in ESX-1 dataset.

1D Prefix of Event name count percentage

ez UDP Packet Flooding 1,048,926 21.9

e4 UDP Source-IP Flooding 718,788 15.2

e40 SIP Vulnerability Scanner 644,683 13.5

e7 TCP Connect DOS 553,362 11.6

el6 TCP Invalid port 291,985 6.1

Psyber Streaming
ers Server(4000/tcp) 156,750 33
e7 HTTPD Overflow 115,477 2.4
NTP Amplification DDoS

e Attack BOT.B 107,617 23

Total 4,782,342 100

TABLE 3. The summarized description for each dataset used to evaluate
the performance.

CICIDS
NSLKDD 2017 ESX-1 ESX-2
Collecting In 1999 03/Jul2017 —  01/Jul/2017 —  01/Aug/2018 —
Periods n 07/Jul/2017 31/Dec/2017 31/Aug/2018
# of raw 148.4K 698 K 4,552 K 18,955 K
data (Train (1259K/ (593K/105 (3,870K  (16,112K/
/ Test) 22.5K) K) /682 K) 2,843 K)
Percentage
of Threat 5.4, 83 % 48% 5.9%
Alerts in
test Data
# of Atta‘ck 4 7 3 3
Categories

scanning attack. Overall the number of attacks were found
4,079 cyber-threats.

On two datasets, we correlated each occurred attack with
raw IPS security events using the above-mentioned times-
tamps and network information. It results that the correlated
230,026 (4.8 %) raw events are labeled as “THREAT,” and
the others 4,552,315 are labeled “NORMAL” in ESX-1.
Moreover, in ESX-2, the correlated 1,122,636 (5.9%) raw
event data are labeled as “THREAT” and 17.8 million raw
event are labeled as “NORMAL.”

Table 2 shows statistics of event name which collected
in the ESX-1 dataset. Looking at the distribution in entire
dataset, the top three events e2, e4, and e40 comprise nearly
50 percent of the collected data. The false positive rate of very
frequently occurred event is relatively high, which lead to
show a large amount of data to security analysts, and seriously
restrict precise decision.

Table 3 presents the summarized description for NSLKDD,
CICIDS 2017, ESX-1, and ESX-2 datasets which are used
to evaluate the performance. Table 3 describes the summary
which includes raw data collecting periods, the number of raw
data, a percentage of threat (abnormal) data, and the number
of attack categories.
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TABLE 4. Result of event profiling of the ESX-2 dataset for different
window configurations.

ESX-2
Window # of #of
interval . . generated Average .
. Window Size event ) Processing
(Sampling logs in .
interval) p roﬁl'es each event Time
(learning
data) profile
1 min 193,158 6.36 440 s
2 min 278,157 8.95 443 s
60 sec 5 min 482,945 13.09 704 s
10 min 782,056 16.41 1,323 s
20 min 1,305,667 19.12 2,855 s
1 min 96,646 6.35 381s
2 min 139,661 9.14 396s
120 sec 5 min 241,796 13.10 546's
10 min 391,866 16.67 854 s
20 min 646,254 20.06 1,338 s
1 min 45,720 6.38 397s
2 min 61,031 8.77 378 s
300 sec 5 min 96,875 13.06 434 s
10 min 156,413 16.65 573s
20 min 258,409 19.88 819s

Table 4 shows the results of event profiling for the ESX-2
dataset for various window time intervals and sizes. The
number of generated event profiles and the processing time
demonstrates that when the Window Interval is increased,
the number of generated event profiles and the processing
time are reduced. This is because a shorter window time inter-
val leads to further operation of the event profile processing.
By contrast, if the Window Size is further increased, the num-
ber of generated event profiles and the processing time also
increased. Hence, Window Interval and Window Size need
to be optimally chosen for modeling. We did not determine
the window interval and size for performance evaluation only
based on the results of Table 4. In addition, we conducted the
test by changing the window Interval and Window Size for
finding the optimal values in terms of accuracy, TPR, and
FPR besides the result of Table 4. For effective evaluation,
we empirically applied a configuration using a Window Inter-
val of 60 s and a Window Size of 10 min for the experiments
conducted in this paper. Our proposed method aims to per-
form modeling by learning all the data, and consequently,
we tried to perform profiling for all data without any missing
portion of it. For this, all security events can be included in
the event profile if and only if the window interval is less
than or equal to the window size. This configuration can be
modified in real environments based on the volume of data
and system performances.

D. DATA VISUALIZATION WITH t-SNE

Figure 7 and Figure 8 present the distributional character-
istic of the dataset used in this study. For this, we adopted
t-Stochastic Nearest Neighbor (t-SNE) mechanism.
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FIGURE 7. t-SNE visualization of CICIDS2017 dataset.
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FIGURE 8. t-SNE visualization of ESX-2 dataset.

The t-SNE is not only commonly utilized for vector data
visualization but also considered as embedding tools to visu-
alize high-dimensional data. The t-SNE is able to visual-
ize high-dimensional data into two-dimensional maps by
learning two-dimensional embedding vectors that preserves
neighbor structures among high-dimensional data. The N data
rows in dataset are randomly selected, which are visualized
by performing analysis in t-SNE [3], [49]. Figure 7 and
Figure 8 represent the maps that are visualized by t-SNE
for CICIDS 2017 and ESX-2, respectively. The t-SNE plots
in the figure show that the normal and attack data points
located nearby in the same space, which makes it very hard
to classify them into either normal or attack. Although the t-
SNE plots of normal and attack data are clustered, it clearly
finds out that those are not linearly separated. In general, it is
known that deep learning is then effective at dealing with
high-dimensional data with non-linearity [50], which is one
of the reasons we employ deep learning approaches to detect
cyber threats.

In addition, as shown in Figure 7 and Figure 8, the data
distribution visually seen by t-SNE regarding our dataset
means that the dataset is not to be easily categorization in
comparison with the benchmark datasets.
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VIIl. EXPERIMENTS AND RESULTS

In this section, we report the experimental results are per-
formed with the two benchmark datasets and our two col-
lected real datasets. We start by describing test environ-ment
with testbed. We then present the metric for experiment.
Continually, we present the SVD and conventional machine-
learning methods for various comparison of evaluation the
performance. we discuss the experimental results in sub-
section E, and finally we present the implemented system by
our proposed methods.

A. TEST EVIRONMENTS

For testing, we constructed the purpose-built testbed where
for conducting performance evaluations. This testbed consists
of the big data platform and the AI-SIEM system. Moreover,
in the SOC, we also had collected real-world IPS data over
several months.

After minor data filtering, we constructed the dataset using
collected data for performance evaluations as described in the
previous section. In general, the format of security event of
IPS/IDS is different between devices or vendors, but majority
of events always contain timestamp, source ip address, des-
tination ip address, port information, protocol, flow informa-
tion, and rule names. When these security events are stored in
conventional SIEM, they are stored in a standardized format
with minor additions such as data tagging and data enrich-
ment. Because the collected ESX-1, ESX-2 is a set of several
types of IPS / IDS data stored through this process, it can
be considered that it is sufficiently applicable to other SIEM
and SOC.

For real environments when we conduct the test, we imple-
mented a sensor emulator that can substitute for a real
IPS system. It uses the syslog protocol to send to the AI-SIEM
system, by reading security event dataset and synthetically
generating syslog packets. For the two benchmark datasets,
the sensor emulator also reads the learning data and testing
data in the local system, and sends them to the AI-SIEM
system.

Our proposed EP-ANN in AI-SIEM was implemented
using TensorFlow [51]. The hardware used to evaluate the
performance of the EP-ANN methods are clusters of server
with Intel Xeon with 2.5 GHz (32 CPU cores) and 128GB
memory. Two Nvidia Tesla P100 GPUs are used as the
accelerator.

B. METRICS AND EXPERIMENTAL SETUP

1) FOUR meTRICS

To evaluate the performance, four metrics are adopted: accu-
racy, TPR, FPR, and F-measure, which are all commonly
used for learning-based methods in the field of intrusion
detection. TPR is used to evaluate the system’s performance
with respect to its threat detection. FPR is used to evaluate
misclassifications of normal data. F-measure is the harmonic
mean of the precision and TPR(recall), where Precision =
TP / (TP+FP) is the percentage of true attacks among all
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attacks classified, where TP (True Positive) is the number
of attack data that is correctly classified as an attack, and
FP (False Positive) is the number of normal data that is
incorrectly classified as an attack. TN (True Negative) the
number of normal data that is correctly classified as normal,
and FN (False Negative) is the number of attack data that is
incorrectly classified as normal. The definitions for accuracy,
TPR, FPR, and F-measure are presented below:

TP
TPR(Recall) = ——— (13)
TP + FN
FP
FPR = ————— (14)
TN + FP
TP + TN
Accuracy = + (15)
TP+ FN + FP+ TN
2 - Precison - Recall
F — measure = (16)

Precision + Recall

2) ROC

In order to evaluate the quality of detection performance,
we show a receiver operating characteristic (ROC) curve
and measure an area under curve (AUC) value as significant
comparison metrics.

ROC curve is a plot of FPR against TPR of binary classi-
fiers. FPR corresponds to the proportion of normal data points
incorrectly predicted as attack to all normal data points. TPR,
also called sensitivity or recall, corresponds to the proportion
of attack data points that are correctly predicted attack to
all attack data points. ROC curve shows a trade-off between
sensitivity and FPR. The closer the ROC curve is to the
top-left border, the better the quality of predictions by the
prediction model and vice versa [1]. Additionally, AUC is
defined as area under the ROC curve, which is a measure of
how well a binary classifier can perform predictions of labels.
A perfect binary classifier has an AUC = 1, and a greater
value of AUC shows better performance. Any AUC value less
than 0.5 means poor performance of the classifier [1].

C. COMPARISON WITH SVD

As singular value decomposition (SVD) is the one of the
most commonly used methods for dimensionality reduction
in machine learning, we compare the performance of our
method with SVD.

SVD is the method to diagonalize a matrix as in eigen-
value decomposition. Note that eigenvalue decomposition by
eigenvalues and eigenvectors is applicable only to square
matrices, and is also a diagonalization method applicable
only to some square matrices [52]. Whereas, SVD is useful
because the technique is applicable to all m x n matrices
whether they are square matrices or not. SVD for an m x
n matrix in real space is defined as follows:

A=UxxzxVvT (17)

where U is an m-by-m orthonormal matrix, V is an n-by-
n orthonormal matrix and ¥ is an m-by-n diagonal matrix.
Here, an orthogonal matrix is a matrix in which the result of
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TABLE 5. Test results of accuracy for various conventional machine-learning methods and our proposed.

Accuracy

NSLKDD CICIDS2017 ESX-1 ESX-2
SVM 0.897 0.968 0.901 0.867
k-NN 0.909 0.978 0.905 0.858

Conventional
Random Forest 0.930 0.979 0.900 0.858

Machine Learning

Naive Bayes 0.698 0.621 0.692 0.616
Decision Tree 0.919 0.979 0.900 0.858
EP-FCNN 0.958 0.995 0.933 0.947

Our Proposed
EP-CNN 0.952 0.988 0.952 0.936

Method

EP-LSTM 0.950 0.986 0.923 0.926

multiplication of itself or its transposed matrix or the result
thereof is an identity matrix.

A diagonal matrix is a matrix in which the entries outside
the main diagonal are all zero. The value of the diagonal
element of the diagonal matrix derived from the SVD is called
the singular value of matrix A. For dimensionality reduction,
a k-by-k submatrix ¥’ can be extracted from the m-by-n
diagonal matrix ¥, and m-by-k submatrix U’ can be extracted
from m-by-m orthonormal matrix U.

According to SVD, the dimensionally reduced matrix m-
by-k A’ of m-by-n matrix A is defined as A’ = U’ x ¥’,
where k is the size of the reduced dimensionality for n.
That is, we can obtain A" where the dimension is reduced
from original dimension n to dimension k. To evaluate the
performance comparison with SVD, we conducted accuracy
comparison regarding the cases which the reduced dimension
k of SVD is equal to the number of basepoints in our proposed
method, as shown in Table 11.

D. COMPARISON WITH CONVENTIONAL ML METHODS
Before the emergence of deep learning technology, many con-
ventional machine learning methods were adopted in intru-
sion detection systems for anomaly detection. Recently, it is
also used in progressing. To evaluate the performance com-
parison with existing methods, we conducted experiments
using well-known conventional machine-learning methods
such as support vector machine (SVM) [53], k-nearest neigh-
bor (k-NN) [54], random forest (RF) [55], naive Bayes (NB)
[56], and decision tree (DT) [57]. Each conventional method
is implemented in the WEKA library and Libsvm pack-
age [58] and all methods used the default parameters provided
by the WEKA and Libsvm libraries.

E. EXPERIMENT RESULTS

In this subsection, we discuss the experimental results which
is performed for evaluating the performance metrics such as
accuracy, TPR, FPR, and F-measure. In addition, we present
that the result with our proposed method achieved better per-
formance in comparison with SVD for reducing the dimen-
sionality space.
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First, Table 5 shows the experimental result of accuracy for
NSLKDD, CICIDS, ESX-1, and ESX-2 respectively. Over-
all, the proposed methods achieved superior performance
comparison with the conventional machine-learning meth-
ods. For the NSLKDD dataset, EP-FCNN model delivered
top accuracy of 0.958, EP-CNN remained runner-up in mod-
els with 0.952, in three EP-ANN model, respectively. For
CICIDS 2017, in all experimented methods except the naive
Bayes, the accuracy of each model was close to 0.98, and we
could see that the performance of accuracy was similar.

Next, in Table 5, looking at our collected real ESX-1
and ESX-2 datasets, we can see that the proposed EP-ANN
modes outperform the conventional existing machine-
learning methods in overall experiment cases on the accuracy.
In details, the result of EP-FCNN, EP-CNN and EP-LSTM
achieved 0.933, 0.952, and 0.923 for ESX-1 respectively,
while the experimental results of the conventional machine-
learning methods remained near 0.90. For EDX-2, where the
number of data is approximately four times of data in the
ESX-1, the gap of performance appears a larger difference.
Although both EP-FCNN and EP-CNN achieved accuracy
scores of 0.947 and 0.936, the other conventional methods
results near 0.85. On the whole, the overall best accuracy was
delivered by the proposed EP-ANN models with accuracy
score of 0.93-0.99 in four experiment datasets.

The detailed results are shown in Table 6 and Table 7.
The results for benchmark dataset NSLKDD and CICIDS
2017 are presented in Table 6, and for real dataset ESX-1,
ESX-2 are presented in Table 7. The objectives of testing as
shown as Table 6 aims to compare our methods with conven-
tional machine-learning methods using benchmark datasets.
In contrast, the testing result as shown as Table 7 aims to
report whether each method is able to achieve satisfactory
performance for the real data.

In Table 6, for NSLKDD, TPR was 0.905 for the k-NN,
0.891 for the RF, and 0.941 for the proposed EP-FCNN.
For FPR, the EP-LSTM yielded the best performances with
0.025 (Although NB was the lowest 0.013, it is meaningless
because of the lowest accuracy). Whereas 0.819 TPR of SVM
is relatively low. In particular, EP-FCNN performs better than
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TABLE 6. Detailed Test results for various conventional machine-learning methods and our proposed methods using benchmark datasets.

NSLKDD CICIDS2017
TPR FPR ACC F-Measure TPR FPR ACC F-Measure

SVM 0.819 0.035 0.897 0.881 0.925 0.023 0.968 0.912
k-NN 0.905 0.088 0.909 0.903 0.986 0.023 0.978 0.944

Conventional
Random Forest 0.891 0.036 0.930 0.923 0.987 0.022 0.979 0.946

Machine Learning

Naive Bayes 0.301 0.013 0.698 0.457 0.994 0.463 0.621 0.492
Decision Tree 0.868 0.036 0.919 0.910 0.987 0.022 0.979 0.946
EP-FCNN 0.941 0.029 0.958 0.952 0.982 0.002 0.995 0.987

Our Proposed
Method EP-CNN 0.926 0.028 0.952 0.945 0.985 0.011 0.988 0.971

etho
EP-LSTM 0.919 0.025 0.950 0.943 0.978 0.011 0.986 0.967
TABLE 7. Detailed Test results for various conventional machine-learning methods and our proposed methods using real datasets.
ESX-1 ESX-2
(# of raw data : 4,783,342 ) ( # of raw data 18,955,737 )
TPR FPR ACC F-Measure TPR FPR ACC F-Measure

SVM 0.926 0.105 0.901 0.786 0.379 0.030 0.858 0.503
k-NN 0.928 0.101 0.905 0.791 0.382 0.031 0.858 0.505

Conventional
Random Forest 0.926 0.106 0.900 0.785 0.382 0.031 0.858 0.505

Machine Learning

Naive Bayes 0.873 0.352 0.692 0.527 0.489 0.376 0.616 0.141
Decision Tree 0.928 0.106 0.900 0.783 0.382 0.030 0.858 0.505
EP-FCNN 0.885 0.059 0.933 0.781 0.899 0.049 0.947 0.688

Our Proposed
Method EP-CNN 0.902 0.041 0.952 0.833 0.895 0.061 0.936 0.643

etho

EP-LSTM 0.982 0.086 0.923 0.773 0.929 0.073 0.926 0.620

other methods for the F-Measure. For CICIDS 2017 dataset,
although the performance of all the methods except Naive
Bayes was almost equal, the scores TPR, FPR, and F-measure
of the proposed EP-ANNSs are better than others as shown
in Table 6. From these results, we conclude that EP-ANNSs
are more effective methods for the benchmark datasets.

In Table 7, we observed that F-measure of all the methods
degraded more than the results of NSLKDD and CICIDS
2017. However, for ESX-2, the TPR of the conventional
machine-learning methods is close to 0.38. Whereas TPR
scores of our methods retained near 0.90. Moreover, as shown
in Figure 9, the result of AUC based on the ROC curve shows
excellent results. The AUC values of our method were 0.967,
0.970, and 0.963 by EP-FCNN, EP-CNN, and EP-LSTM,
respectively, without degradation. The AUC values for the
conventional machine learning method were 0.777, 0.595,
and 0.811 by SVN, NB, and DT, respectively; these exhibit
remarkably degraded the performance for a large amount of
data.

Based on the results of this experiment, we are able
to arrive at two meaningful conclusions. First, our mech-
anisms are capable of being employed as learning-
based models for network intrusion detection. When the
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performance evaluations were conducted using two well-
known benchmark datasets such as NSLKDD and
CICIDS2017, the result proved as capable as the conventional
machine-learning models. This means that our proposed
methods, employed in the AI-SIEM system, have applica-
bility for learning-based network intrusion detection. Sec-
ond, when the conventional learning-based methods, which
accomplish a good result by benchmark dataset, are employed
in the real world, the performance of overall accuracy is
not as reliable as those of benchmark datasets. Nevertheless,
the accuracy performance of our three EP-ANN models were
not significantly degraded, despite the large amount of data
and a lack of benchmark dataset features, such as seen in the
result for ESX-2. By contrast, the accuracy of conventional
methods had degraded from approximately 0.90 to 0.85.

To evaluate classification performance of multi-
categorization, TPR is measured for each data class of
NSLKDD and ESX-2, as shown in Table 8 and Table 9,
respectively. In Table 8 and Table 9, when examining detailed
classification for each class, the classification accuracy for
“DoS”, “Normal” in NSLKDD, and “System hacking,
Scanning” in ESX-2 are fairly superior. Hence, we analyze
that it can’t be performed sufficient data learning regarding
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TABLE 8. Detailed multi-classification performance for NSLKDD.

TABLE 11. The result of accuracy for comparison our method with SVD.

Classification of NSLKDD ( TPR)

DoS Probe R2L U2R Normal
SVM 0.933 0.784 0.000 0.230 0.965
k-NN 0.990 0.856 0.348 0.650 0.912

Random Forest 0.990 0.915 0.000 0.600 0.964
Naive Bayes 0.139 1.000 1.000 0.000 0.987
Decision Tree 0.979 0.851 0.001 0.550 0.964

EP-FCNN 0.984 0.834 0.210 0.050 0.971
EP-CNN 0.985 0.774 0.453 0.730 0.972
EP-LSTM 0.934 0.886 0.737 0.672 0.975

TABLE 9. Detailed multi-classification performance for ESX-2 dataset.

Classification of ESX-2 (TPR)

System
Scanning Worm Normal
Hacking
EP-FCNN 0.892 0.816 0.983 0.951
EP-CNN 0.897 0.918 0.920 0.939
EP-LSTM 0.931 0.912 0.000 0.927

TABLE 10. Learning time and response time for each method.

Dataset : ESX-2

Average Response

Learning Time Time in Real-Time
SVM 85m32s 24 ms
Random Forest Imli2s <1ms
EP-FCNN 28m12s 4.2 ms
EP-CNN 17m20s 2.3 ms
EP-LSTM 14m23s 1.3 ms

“R2L” because there are very few, if any, data instances that
are included as “R2L” type in the learning data. However,
the proposed AI-SIEM system presents relatively promis-
ing results in terms of accurate classification performance,
when compared with conventional machine-learning meth-
ods. In addition, we need to improve our learning methods to
model, not only for major attack data, but also for infrequent
attack data, as shown as Table 9.

Table 10 shows learning time and response time for the
ESX-2 dataset. By this result, average response time is near
3 microseconds, which means that our system is capable of
analyzing hundreds of event profiles for one second. This
capacity is considered sufficient performance to operate our
system for detection in real-time.

The results obtained by our method are compared with
those of the SVD, which is known as the conventional reduc-
ing dimensionality, in Table 11. Note that q indicates the
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Accuracy (dataset = ESX-1)

Our method SVD
EP-FCNN (q=20) 0.912 0.726
EP-FCNN (q=40) 0.933 0.863
EP-FCNN (q=80) 0.943 0.856
EP-CNN (q=20) 0.912 0.751
EP-CNN (q=40) 0.952 0.922
EP-CNN (q=80) 0.923 0.877
EP-LSTM (q=20) 0.907 0.691
EP-LSTM (q=40) 0.923 0.826
EP-LSTM (q=80) 0.941 0.892

ROC curve for ESX-1 dataset

— SWM (AUC=0.955)
— k-NN (AUC=0.968)
—— RF (AUC=D.958)

—— NB (AUC=0.839)

— DT [AUC=0.966]

— EP-FCNN (ALC=D.968)

EP-CNM [AUC=0.976)

— EP-LSTM (AUC=0.979)

—= random
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ROC curve for ESX-2 dataset
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— T (AC=0.811]

- —— EP-FCNN [AUC=0.967)
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FIGURE 9. Comparison of ROC curves and AUC of experiment for
ESX-1 and ESX-2 datasets.

number of basepoints in our method, and the reduced dimen-
sionality in SVD. For the experiment, the ESX-1 dataset was
used, and the input data for deep learning were in the same
format, which consisted of m rows and q columns. From
Table 11, it can be seen that our method outperforms the
SVD method in each experiment.

F. SYSTEM DEPLOYMENT

As explained above, the AI-SIEM system consists of event
profile and artificial neural networks (EP-ANN). This system
aims at protecting a number of IT systems and servers in an
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FIGURE 10. The dashboard screen-captures of the Al-based SIEM system
for real-time monitoring. (a)threat detection visualization, (b) normal
state visualization (c) The view for event profiles and cyber threat lists.

enterprise network, and does not have to be co-located with
an IPS and the asset systems.

For system operations in practice, this is typically placed
either on the access network of an enterprise with an IPS, or in
the external SOC. The system is either used by a security
manager of enterprise in the former case or the SOC analysts
in the latter case. Thus, each module for data learning, model
deployment, and real-time threat detection needs a dashboard
GUI, and such a dashboard is depicted in Figure 10.

Figure 10 shows examples of dashboard screen-captures.
When the AI-SIEM system detects the cyber threat using
EP-ANN models, the result of the analysis is positioned in
the red-zone part as shown in Figure 10-(a). Whereas, in the
case of normal status, the result is depicted in the blue-zone
as in Figure 10-(b). With this dashboard, the AI-SIEM system
can provide intuitive monitoring for SOC analysts. Moreover,
only true positive alerts detected by the AI-SIEM system are
shown to the SOC security analysts through the dashboard
GUIL. This enables the number of alerts that need investigation
to be reduced, thus decreasing the cost of false positive alerts.

IX. CONCLUSION

In this paper, we have proposed the AI-SIEM system using
event profiles and artificial neural networks. The novelty of
our work lies in condensing very large-scale data into event
profiles and using the deep learning-based detection methods
for enhanced cyber-threat detection ability. The AI-SIEM
system enables the security analysts to deal with significant
security alerts promptly and efficiently by comparing long-
term security data. By reducing false positive alerts, it can
also help the security analysts to rapidly respond to cyber
threats dispersed across a large number of security events.
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For the evaluation of performance, we performed a perfor-
mance comparison using two benchmark datasets (NSLKDD,
CICIDS2017) and two datasets collected in the real world.
First, based on the comparison experiment with other meth-
ods, using widely known benchmark datasets, we showed that
our mechanisms can be applied as one of the learning-based
models for network intrusion detection. Second, through the
evaluation using two real datasets, we presented promis-
ing results that our technology also outperformed con-
ventional machine learning methods in terms of accurate
classifications.

In the future, to address the evolving problem of cyber
attacks, we will focus on enhancing earlier threat predictions
through the multiple deep learning approach to discovering
the long-term patterns in history data. In addition, to improve
the precision of labeled dataset for supervised-learning and
construct good learning datasets, many SOC analysts will
make efforts directly to record labels of raw security events
one by one over several months.
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