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1  |   INTRODUCTION

There has been growing interest in the development of better 
technologies to improve the heat dissipation, thermal reliability, 
and efficiency of switching‐mode power electronic products. 
Thermal issues have become critical in the design of power 
conversion systems. With increases in temperature, the on‐re-
sistance of a MOSFET (Rds,on), and the resistance and leakage 
current of a diode increase. High temperature also degrades 
the performance of passive devices such as inductors, capaci-
tors, and resistors. Conventional systems using a printed circuit 
board (PCB) require additional cooling elements for heat dissi-
pation, thereby increasing the overall size of the system.

The thermal conductivity of low‐temperature co‐fired 
ceramic (LTCC) is more than 10 times higher than that of 
an FR‐4 PCB in power electronics applications. Notably, 
through‐hole vias in a conventional PCB are electroplated 
with copper, while embedded vias used in LTCC are filled 
with silver. This enables an improvement in the power effi-
ciency and optimizes the system volume. LTCC multilayer 
technology can further reduce the size of a system through 
three‐dimensional high integration, embedding both active 
and passive devices. Table 1 compares the properties of a 
traditional PCB and the proposed LTCC substrate material.

Our group has studied discrete power device packages with 
an embedded cavity in multilayer LTCC to reduce the parasitic 
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We propose a substrate with high thermal conductivity, manufactured by the low‐
temperature co‐fired ceramic (LTCC) multilayer circuit process technology, as a 
new DC/DC converter platform for power electronics applications. We compare the 
reliability and power conversion efficiency of a converter using the LTCC substrate 
with the one using a conventional printed circuit board (PCB) substrate, to dem-
onstrate the superior characteristics of the LTCC substrates. The power conversion 
efficiencies of the LTCC‐ and PCB‐based synchronous buck converters are 95.5% 
and 94.5%, respectively, while those of nonsynchronous buck converters are 92.5% 
and 91.3%, respectively, at an output power of 100 W. To verify the reliability of the 
LTCC‐based converter, two types of tests were conducted. Storage temperature tests 
were conducted at −20 °C and 85 °C for 100 h each. The variation in efficiency after 
the tests was less than 0.3%. A working temperature test was conducted for 60 min, 
and the temperature of the converter was saturated at 58.2 °C without a decrease in 
efficiency. These results demonstrate the applicability of LTCC as a substrate for 
power conversion systems.
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inductance caused by wire bonding [1,2]. Virginia's Polytechnic 
Institute and State University has studied planar inductors using 
magnetic tape and a multilayer LTCC manufacturing process 
to implement small‐size non‐isolated point‐of‐load (POL) con-
verters [3‒6]. However, their maximum output power achieved 
is below 50 W, and the maximum output efficiency is 92.5% at 
an output power of approximately 6 W [3].

The 48‐V system including a 48‐to‐12 V converter is applied 
in various fields, such as vehicles, servers, industrial power 
supplies, telecom, etc. In automotive applications, a 48‐V sys-
tem can achieve high efficiency and reduces wiring and com-
ponent weight. Meanwhile, a 48‐to‐12 V converter is required 
for providing power to different types of electrical loads [7‒9] 
for example, servers in data centers require 48‐to‐12 V convert-
ers with high efficiency and power density [10‒12].

This paper discusses the applicability of a substrate with 
high thermal conductivity fabricated with LTCC process 
technology as a new DC/DC converter platform in power 
electronics applications. It also details the design of a 48‐
to‐12 V converter, provides an efficiency comparison to four 

other converters, and describes the results of a reliability 
test of the proposed LTCC‐based nonsynchronous buck con-
verter. The following four types of converters are designed 
and discussed in this paper:

1. (Type I) synchronous buck converter on LTCC
2. (Type II) synchronous buck converter on PCB
3. (Type III) nonsynchronous buck converter on LTCC
4. (Type IV) nonsynchronous buck converter on PCB

Section 2 of this paper discusses the design of a 48‐to‐12 V 
synchronous buck converter and compares the efficiencies of 
the proposed LTCC‐ and conventional PCB‐based converters. 
Section 3 discusses the design of a 48‐to‐12 V nonsynchronous 
buck converter and compares the efficiencies of the proposed 
LTCC‐ and conventional PCB‐based converters in a higher heat 
generation scenario. Finally, we report the reliability tests of the 
proposed LTCC‐based converter.

2  |   PROPOSED LTCC‐BASED 
SYNCHRONOUS BUCK CONVERTER

We designed a synchronous converter and manufactured two 
converters, one using LTCC (Type I) and the other using 
a conventional PCB (Type II) for the substrates. Figure 1 

T A B L E  1   Comparison of substrate material properties

  PCB LTCC

Thermal Conductivity (W/mK) 0.2−0.4 4−5

Coefficient of thermal expansion 
(ppm/°C)

13−17 5−7

Heat dissipation Low High

Circuit Layer Cu foil Ag paste

Thermal 
Conductivity  
(W/mK)

385 419

Electrical Resistivity 
(μΩ‐cm)

1.7 1.55

Substrate layer FR‐4 Ceramics

Cost Low Medium

F I G U R E  1   Simplified circuit diagram 
of the 48‐to‐12 V synchronous buck 
converter

T A B L E  2   Major design parameters of the synchronous buck 
converter

  Model/parameters

FET GS61008P (Rds,on = 10 mΩ)

L 10 μH (27 mΩ)

Cout 594.11 μF

Cin 23.6 μF

Controller LM5116
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shows a simplified circuit diagram of the 48‐to‐12 V syn-
chronous buck converter.

We used gallium nitride (GaN) FETs as the power 
switches. The fast switching speed, and low switching and 
conduction losses of a GaN‐based power semiconductor en-
able small‐size, highly efficient power conversion systems 
to be implemented [13‒18]. Several research groups have 
reported highly efficient and small‐size power conversion 
systems such as buck converters, boost converters, and in-
verters using GaN switching power devices [6,12,19‒21]. In 
our design, an LM5116 was used as a pulse width modula-
tion (PWM) controller to drive the high‐ and low‐side power 
switches simultaneously.

Table 2 summarizes the major design parameters used in 
the synchronous buck converter, where L, Cin, and Cout are 
selected using (1)−(3). Here, ΔI is an inductor ripple current, 
fsw is the switching frequency, and ΔV  is the maximum out-
put voltage overshoot.

Figure 2 shows the breakdown of the power losses cal-
culated by (4)−(8) in the synchronous buck converter. The 
expected efficiency of the 48‐to‐12 V synchronous buck con-
verter is 95.44% at a maximum output power of 120 W.

Figure 3 shows the simplified manufacturing process of 
the proposed LTCC‐based converter. Unlike the through‐
hole vias used in a conventional PCB process, which are 
electroplated with copper, vias used in the LTCC process 
are filled with silver. This reduces the parasitic inductance 
and improves the electrical and thermal conductivities. 
Because the standard thickness of LTCC tape is 100 μm, 
and many layers are used in power electronics applications, 
a substantial amount of substrate noise reduction and high 
design flexibility of the control block, power, and ground 
planes can be achieved.

Figure 4 shows top and bottom views of the manufactured 
synchronous converter using an LTCC substrate. The size of 
the nonsynchronous converter is 55 mm × 40 mm and the 
thickness of the LTCC substrate is 1000 µm.

To compare the performance of the LTCC and PCB, 
we manufactured two converters, one using LTCC (Type I) 
and the other using a conventional PCB (Type II), using the 
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F I G U R E  2   Breakdown of the calculated power losses in the 
synchronous buck converter

F I G U R E  3   Simplified manufacturing process of the proposed 
LTCC‐based converter
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circuit schematic of Figure 1. Figure 5 shows the waveforms 
of the gate voltage of the high‐/low‐side FETs, source volt-
age of the high‐side FETs, and inductor current. Because the 
proposed Type I using the embedded metal planes and vias in 
the multilayer LTCC substrate has low parasitic inductance 
and capacitance, the noise and voltage spikes of the Type I 
are lower than those of the Type II.

Figure 6 shows the measured power conversion efficiency 
at an input voltage of 48 V. The efficiencies of the LTCC‐ and 
PCB‐based converters are 95.5% and 94.5%, respectively, at 
an output power of 100 W. As the output power increases, the 
difference in their efficiencies increases owing to the increased 
heat generation in the active elements.

3  |   PROPOSED LTCC‐BASED 
NONSYNCHRONOUS BUCK 
CONVERTER

To compare the efficiency under higher heat generation, we 
designed a 48‐to‐12  V nonsynchronous buck converter, as 
shown in Figure 7.

A GaN‐based FET and Schottky barrier rectifier (SBR) are 
used as the power switch and freewheeling diode, respectively. 
We used an LM5088 as the PWM controller. The output of the 
LM5088 is fed to an LM5113 used as a gate driver. A low drop 

F I G U R E  4   (A) Top and (B) bottom views of the manufactured 
LTCC‐based synchronous buck converter

F I G U R E  5   Measured voltage and current waveforms of the (A) Type I and (B) Type II systems
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out (LDO) regulator, TPS7A1601‐Q1, is used to supply 5 V to 
the gate driver. During the on‐state, the LM5113 provides 5 V 
at the gate of the FET. Table 3 summarizes the major design 
parameters used in the nonsynchronous buck converter.

Figure 8 shows the breakdown of the power losses cal-
culated by (4)–(7) and (9) for the nonsynchronous converter. 
The expected efficiency of the designed 48‐to‐12 V nonsyn-
chronous buck converter is 92.82% at a maximum output 
power of 120 W. Although the diode has a superior forward 
performance with a low Vt of 0.43 V and a forward current of 
10 A at a forward voltage of 0.6 V, the diode power loss of 
4.5 W makes up the largest portion of the total power loss of 
the converter. The inductor power loss is caused by a DC re-
sistance (DCR) of 27 mΩ. This is directly proportional to the 
inductor size, and is therefore not discussed further.

Figure 9 shows top and bottom views of the manufactured 
nonsynchronous converter using LTCC. The size of the con-
verter is 55 mm × 40 mm, and the thickness of the LTCC 
substrate is 1000 µm.

To compare the performances of the LTCC and PCB 
devices, we manufactured two converters, one using 
LTCC (Type III) and the other using a conventional PCB 
(Type IV), using the circuit design of Figure 7. Figure 10 
shows the power conversion efficiency at an input voltage 
of 48 V. The efficiencies of the two converters are 92.5% 
and 91.3%, respectively, at an output power of 100 W. As 

Ploss,diode =

(

1−
Vout

Vin

)

× Iload×VF.

F I G U R E  6   Measured efficiency as a function of output power

F I G U R E  7   Simplified circuit diagram of the 48‐to‐12 V 
nonsynchronous buck converter

T A B L E  3   Major design parameters of the nonsynchronous buck 
converter

  Model/parameters

FET GS61008P (Rds,on = 10 mΩ)

Diode MBR12U100L (Vt = 0.43 V)

L 10 μH (DCR = 27 mΩ)

Cout 594.11 μF

Cin 23.6 μF

Controller LM5088

Gate driver LM5113

LDO TPS7A1601‐Q1

F I G U R E  8   Breakdown of the calculated power losses in the 
nonsynchronous buck converter

F I G U R E  9   (A) Top and (B) bottom views of the manufactured 
LTCC‐based nonsynchronous buck converter

(9)
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with the synchronous buck converters, we can see that as 
the output power increases, the difference in their effi-
ciencies increases owing to the increased heat dissipation.

To verify the reliability of the LTCC based converter, 
two types of tests were conducted on the Type III con-
verter: two storage temperature tests and a working tem-
perature test. Storage temperature tests were conducted to 
compare the efficiency under normal operating conditions 
before and after storage in a chamber at −20 °C and 85 °C, 
respectively, during a 100‐h period. Figure 11 shows the 
variations in efficiency before and after the two storage 
tests. The observed variation in efficiency is less than 
0.3%, demonstrating that the proposed converter achieves 
outstanding reliability.

Figure 12 shows the temperature variation of the converter 
as a function of the working time under an input voltage of 
48 V, output voltage of 12 V, and output power of 100 W. 
The temperature variation was measured for 60 min, and the 
working temperature was increased from 27.2 °C to 58.2 °C. 
During the test, the efficiency of the converter remained con-
stant, at approximately 92%.

Table 4 summarizes the performance comparison of 
previously reported LTCC‐based converters with those 
presented in this work. Although the reported LTCC‐based 
converters used a very high switching frequency of above 

1 MHz to achieve a small form factor, their maximum out-
put power is below 50 W, and their maximum output effi-
ciency is 92.5% at an output power of approximately 6 W 
[3‒6,12].

4  |   CONCLUSION

We proposed a new platform using multilayer LTCC sub-
strates for power electronics applications. Four types of buck 

F I G U R E  1 0   Measured efficiency as a function of output power

F I G U R E  1 1   Measured storage temperature test results of the 
proposed LTCC‐based converter (Type III)

F I G U R E  1 2   Temperature variation of the LTCC‐based 
converter (Type III) as a function of the working time at an input 
voltage of 48 V, output voltage of 12 V, and output power of 100 W

 
Vin 
(V)

Vout 
(V)

Max. Pout 
(W)

fsw 
(kHz)

Max.η (@Pout) 
(%)a

[3] 5 1.2 24 1300 92.5 (@6 W)

[4] 5 1.2 18 1500 89 (@8.4 W)

[5] 5 1.2 48 1500 89 (@24 W)

[6] 12 1.2 18 1000 91 (@9.6 W)

[12] 12 1.8 36 2000 88 (@19.8 W)

This Work Type I 48 12 120 200 95.5 (@100 W)

Type III 48 12 120 200 92.5 (@100 W)
aExpected maximum efficiency based on measured graphs. 

T A B L E  4   Comparison of LTCC‐
based converters
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converters, operating at 48‐to‐12 V, were manufactured using 
the proposed LTCC‐ and conventional PCB‐based substrates 
to compare their efficiencies at high output power. The effi-
ciencies of the LTCC‐ and PCB‐based synchronous converters 
(Type I and Type II), and LTCC‐ and PCB‐based nonsyn-
chronous converters (Type III and Type IV) were 95.5% and 
94.5%, and 92.5% and 91.3%, respectively, at an output power 
of 100 W. It was observed that as the output power increases, 
the difference in efficiency of the proposed LTCC‐ and con-
ventional PCB‐based converters increases owing to the in-
crease in heat generation. Storage temperature and working 
temperature tests were carried out to evaluate thermal reliabil-
ity. The LTCC substrate exhibited outstanding thermal reli-
ability, which is approximately 10 times higher than that of a 
traditional PCB substrate. Based on a performance comparison 
between the proposed LTCC‐ and conventional PCB‐based 
converters, we have demonstrated the potential of a multi‐layer 
LTCC substrate for use in power electronics applications.
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