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This paper explores new techniques that are based on a hidden‐layer linear trans-
formation for fast speaker adaptation used in deep neural networks (DNNs). Con-

ventional methods using affine transformations are ineffective because they

require a relatively large number of parameters to perform. Meanwhile, methods

that employ singular‐value decomposition (SVD) are utilized because they are

effective at reducing adaptive parameters. However, a matrix decomposition is

computationally expensive when using online services. We propose the use of an

extended diagonal linear transformation method to minimize adaptation parame-

ters without SVD to increase the performance level for tasks that require smaller

degrees of adaptation. In Korean large vocabulary continuous speech recognition

(LVCSR) tasks, the proposed method shows significant improvements with error‐
reduction rates of 8.4% and 17.1% in five and 50 conversational sentence adapta-

tions, respectively. Compared with the adaptation methods using SVD, there is an

increased recognition performance with fewer parameters.
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1 | INTRODUCTION

Over the past few years, deep neural networks (DNNs)
[1,2] which are used to learn acoustic models (AMs), have
significantly improved the performance of speech recogni-
tion systems. In particular, for large‐vocabulary continuous
speech recognition (LVCSR) tasks, a DNN requires tens of
millions of parameters to increase the accuracy using thou-
sands of hours of training data. Owing to deep multi‐layer
and fully connected weights used with a non‐linear activa-
tion function, a DNN systematically and discriminatively
performs and overcomes the barrier of a Gaussian mixture
model (GMM)‐based performance. To prevent a degrada-
tion in accuracy owing to differences between speakers,
there is a need for speaker adaptation using limited data
relative to large parameters.

Fast speaker‐adaptation methods can be broadly divided
into feature‐based and model‐based adaptations. Feature‐
based adaptation methods extract features by minimizing
an individual speaker's characteristics using feature trans-
formation methods [3,4], whereas a model‐adaptation is a
method for transforming a speaker‐independent (SI) model
into a more speaker‐dependent (SD) version. Model‐adapta-
tion methods include regularization methods [5,6] that
decrease the overfitting by preventing many deviations
from the SI model; learning speaker information such as a
speaker code [7], bases [8], and i‐vectors [9,10] that can
effectively combine with general features and other adapta-
tion methods; and transformation‐based techniques that
convert the DNN layer into a speaker adapted layer. In par-
ticular, whereas feature adaptation affects all senones, by
applying relatively small transformation parameters to the
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input layer, a model adaptation can be applied to all other
layers. In addition, because the hidden‐layer operation of a
DNN can be a process of feature extraction and regression
in abstract feature representations, model‐adaptation meth-
ods using various layers may be more effective than feature
adaptation applied solely to the input layer.

Previously, linear‐transformation methods [11–13] have
introduced an additional linear layer to a particular layer,
such as the input and output layers, or to the top hidden
layer. In [14] and [15], an affine transformation has also
been proposed to adapt the hidden layer by converting an
additional scale matrix and bias vector. In particular, [15]
showed how to combine Kullback‐Leibler divergence
(KLD) regularization [16,17]. However, to prevent overfit-
ting, only a diagonal matrix was adapted in the evaluation.
In addition, in [18], amplitude adaptation of the activation
function in a hidden layer was proposed using fewer
parameters under limited conditions.

The fundamental problem of model‐adaptation is that
there are many parameters to be converted relative to the
amount of data. Approaches that use singular‐value decom-
position (SVD) are able to reduce the transformation
parameters using low‐rank matrices [19]. In [20], the han-
dling of an intermediate layer for an SVD‐based DNN
adaptation shows a better performance than using the input
and output layers. Nevertheless, the combined performance
of each hidden layer, which has a relatively independent
nature, is not shown, and only the adaptation of individual
layers is investigated. In [21], the authors present a low‐
rank plus diagonal (LRPD) method combined with decom-
posed SVD matrices and a diagonal matrix, which consid-
ers the data gathered around the diagonal elements of the
transformation layer. However, this SVD operation is com-
putational costly, and slows down the online adaptation
process, especially when using a large dimensionality of
the matrix.

In this study, we first examine the effects of each layer
in a DNN model adaptation, after which we investigate the
relationship between the performance and adaptation
parameters using the basic hidden‐layer adaptations. We
also attempt to use LRPD methods by changing the posi-
tion of the additional linear layer, while finding the best
rank of the SVD matrix. Then, based on the preceding
methods, we propose a hidden‐layer‐based extended diago-
nal adaptation as a scale matrix and a bias vector for a fast
speaker adaptation. Experiments were conducted in both
supervised and unsupervised manners for LVCSR tasks.

The rest of this paper is organized as follows: Section 2
describes the hidden‐layer DNN adaptation method. Then,
Section 3 introduces the LRPD method, which has a
change in position. Section 4 describes the extended diago-
nal transformation method, while Section 5 provides the

experimental results. Finally, Section 6 concludes the
paper.

2 | HIDDEN LAYER‐BASED DNN
ADAPTATION

A DNN requires a sequence of observation vectors
extended with left‐right window frames as the input. The
output layer of the activation function is then used to esti-
mate the posterior probabilities, which are as many as the
number of senones that are constructed during the GMM
process. A DNN has many layers, and each fully connected
layer has the following operation:

vlt ¼ f ðzltÞ ¼ f ðWlvl�1
t þ blÞ; (1)

where vlt is a current l layer output vector at sample frame
t. In addition, zl is a l layer input vector estimated using
the previous layer output vector, vl−1, weight matrix, Wl,
and bias vector, bl. The activation function, f(·), can be
either a sigmoid, hyperbolic tangent, or rectified linear unit
function. The model parameters such as the weight and
bias are estimated using an error back‐propagation (BP)
algorithm as an iterative fine‐tuning operation through the
cross‐entropy, J(·), criterion [22,23]:

JðW; b; o; yÞ ¼ 1
T
∑T

t ∑
c
c¼1y

c
t log pðcjot;W; bÞ; (2)

where yct is the empirical target probability of the senone
(context‐dependent phone state), c, aligned to observation,
ot, at frame t, while p(c | ot; W, b) is the same hypothesis
output probability estimated from the DNN.

Such a BP algorithm is used for fundamental adaptation
as well as training. Speaker adaptation differs from AM
training because it needs to update large model parameters
using a relatively small amount of data. In particular, the
output layer that conducts the classification has many
parameters that depend on the number of senone nodes.
When using a limited amount of adaptation data, the large
parameters of the output layer can cause biased changes
and an overfitting. Hence, in [20], parameter updates in the
hidden layers, where there are relatively few parameters for
each layer compared to the output layer, have been studied.

The basic form of a DNN with one hidden layer is
shown in Figure 1A. It consists of a fully connected linear
layer and a nonlinear layer as an activation function. Dur-
ing adaptation, only the linear parameters of the hidden
layers are updated, while the other layers are fixed. How-
ever, because this method changes the parameters of the SI
model, it must be adapted for each speaker using a copy of
the SI model. To reduce the storage space, only the
adapted layer is stored for each speaker, and the adapted
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W and b of the layer parameters that transfer to the SI
model are used as the SD parameters. Similar to the trans-
fer learning in [24,25], this is referred to as hidden layer
transfer (HLT) adaptation. Although this method is simple,
it has sufficient functions for speaker adaptation.

3 | DNN ADAPTATION WITH
LOW‐RANK

The HLT method shown in Figure 1A may actually update
certain parameters more strongly than others may, but stor-
age problems arise because these parameters are not distin-
guishable. Therefore, transformation‐based approaches have
also applied an additional linear layer to generate speaker‐
specific parameters without changing the SI model. In tra-
ditional methods [14,15], an additional layer is introduced
in a linear layer portion to convert an input vector, vl−1,
and (1) is replaced as follows:

vl ¼ f ðWlðαl�1
s vl�1 þ βl�1

s Þ þ blÞ; (3)

where αl�1
s is a transformation matrix and βl�1

s is a bias
vector for speaker s with l − 1 layer dimension. These
speaker‐specific parameters can be effectively reduced
using an SVD. Recently, [21] reported an LRPD adapta-
tion, which is a method for applying low‐rank matrices and
a diagonal matrix together, as shown in Figure 1B. The αs

matrix is decomposed as follows:

αs;n�n ≈ Ds;n�n þ Ps;n�kQs;k�n; (4)

where Ds;n�n is an n by n dimensionality of a diagonal
matrix for a speaker transformation. In addition, Ps;n�k and
Qs;k�n are low‐rank matrices decomposed using an SVD
from αs without Ds and are truncated into k elements with
k « n. In general, the additional matrix for adaptation

shows a diagonal dominant distribution, and thus the use
of an SVD with only an off‐diagonal matrix can make a
low‐rank matrix better for reducing the SD parameters.

Alternatively, we tried to apply an additional layer on
top of a linear layer to convert all linear parameters using
the layer dimensions by performing the following equation:

vl ¼ f ðαl
sðWlvl þ blÞ þ βlsÞ: (5)

The main difference with the conventional method is
that this method can set the transformation matrix, αl

s to
affect the entire linear layer, including the weight and bias,
and can even add bias factor βls; as shown in Figure 1C,
whereas the LRPD only affects the weight matrix, Wl. If
the previous LRPD method is termed a down‐LRPD, this
method can be referred to as an up‐LRPD.

4 | DNN ADAPTATION USING
EXTENDED DIAGONAL LINEAR
TRANSFORMATION

As mentioned previously, SVD‐based adaptation methods
have helped to reduce storage requirements, but are com-
putationally costly when applied to online services. They
may even require a graphic processing unit (GPU) com-
putation rather than a central processing unit (CPU) to
speed up the operation. Thus, we examined the linear
transformation in [14] and [15], and proposed an extended
diagonal linear transformation (EDLT) method with an
upward linear layer added to the hidden layer, as shown
in Figure 1D. This proposed method begins with the idea
that the two closely linked nodes, locally between the
lower and upper layers, have a relatively more effective
connection than the two far‐linked nodes. One reason for
this is the time difference as the input data expands to

(A) (B) (C) (D)

FIGURE 1 Illustration of a DNN structure with one hidden layer using different methods: (A) layer full transfer, (B) down–LRPD, (C) up–
LRPD, and (D) linear extended diagonal

KIM AND KIM | 111



include the left‐right frames. Another reason is that linear
transformations using square matrices tend to dominate
diagonally, as described in [21].

Therefore, the proposed method uses limited connec-
tions of a left‐right window size instead of having fully
connected weights in the additional linear layer, as shown
in Figure 2. This is equivalent to using an extended diago-
nal matrix, which deviates from traditional methods that
use only the diagonal elements. The value of J(·) included
in (5) is differentiated using the extended diagonal matrix,
ext diagðαL�1

k Þ, below the last L layer as follows:

@Jðαs; βsÞ
@ext diagðαL�1

s Þ ¼ ext diag
@Jðαs; βsÞ
@αL�1

s

� �
(6)

¼ext diag
y
vL

�@f ðz
LÞ

@zL
�WL �@f ðz

L�1Þ
@zL�1 � ðWL�1vL�2þbL�1ÞT

� �
:

(7)

Similar to the formula in [14] using Equation (3), this
equation finds the gradient, and then uses it to update αs.
The value of βs is also obtained in this manner. This
method can be applied to both a full‐sized DNN and a
low‐rank DNN [19,21], although we evaluated it only for a
full‐sized DNN.

5 | EXPERIMENT RESULTS

In our research, we focused on data and adaptation meth-
ods to improve the performance of personal speech recog-
nition. In particular, we aimed to improve spontaneous
speech recognition using a small amount of data on mobile
devices such as smartphones. Therefore, training and evalu-
ation were conducted using conversational data recorded in
mobile conditions.

The experiments were performed using a Korean
LVCSR system, which includes a trigram language model
with a 400K vocabulary for automatic speech transcription,
and uses a weighted finite‐state transducer as a language
network. By collecting over several billion sentences, we

have created the LM corpus primarily by combining the
daily life with the tourism domain dialogue. To train the
AM of a DNN hidden‐Markov‐model (DNN‐HMM), the
modeling of the GMM‐HMM is processed as the first
step. This step generates 7,981 senone states and 256K
Gaussians. In the second step, the same training data are
force‐aligned to obtain senone state labels for DNN train-
ing. The DNN input features, which are log filter‐banks
with 40 coefficients distributed on a mel‐scale, have a
context window of 15 frames to incorporate acoustic con-
text information of a speech signal. After splicing, the fea-
tures of the input layer are transformed using linear
discriminant analysis (LDA) to reduce the correlated vari-
ables of the log filter‐bank. On top of this input layer,
there are six hidden layers with 2,048 nodes each. The
output layer has as many nodes as the number of HMM
senone states.

We trained a DNN acoustic model, which includes var-
ious Korean datasets for the transcription of conversational
Korean speech, using more than 1,500 hour of speech
data. Most speech data are spontaneous speech recorded
using 16‐KHz sampling various smartphones in clean and
noisy added environments using various additive noises,
and the rest is read speech recorded using the same sam-
pling general condense‐microphone. We utilized the Kaldi
open‐source based toolkit [26] to model the SI DNN in
these experiments. Under the same smartphone speech
condition as in the office environment, the evaluation data
are a Korean travel‐guide dataset with 4,000 utterances,
which comprises spontaneous conversations about the
tourism domain. This data includes an average length
adaptation of 2.1 seconds, and a test data length with
3.6 seconds per utterance. With more than 30K words, we
used 40 speakers for adaptation and testing with 50 sen-
tences per speaker, and there was no overlap between the
training, adaptation, and testing sets under a supervised
manner.

5.1 | Hidden‐layer transfer adaptation

We first observed the recognition results using an HLT
adaptation of 50 utterances for various hidden layers. The
base word accuracy rate (WAC) is 94.68%, as shown in
Table 1. The word error‐reduction rate (WERR) of a one‐
layer adaptation is relatively good in the middle layer, and
using several hidden layers together, such as HLT‐345L, is
better than using a few layers only. Updating all hidden
layers (HLT‐All) yields the best performance, and thus it
seems to have a combined effect.

Although the HLT uses the basic BP algorithm, such as
to retrain the SI DNN while freezing the input and output
layers, it shows a maximum WERR of 17.62% with all
hidden layers. Nevertheless, the drawback is that too many

FIGURE 2 Illustration of a limited connection with left‐right
window‐size link
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parameters for each speaker will need to be stored in an
online service.

5.2 | SVD‐based adaptation

For this experiment, we evaluated the recently proposed
LRPD method [21], which uses an SVD with relatively
few parameters for adaptation of all hidden layers. This
is a down‐LRPD (D‐ LRPD), whereas our proposed
method is an up‐LRPD (U‐LRPD). To reduce the SD
parameters, the experiment only conducted various rank
dimensions of about 3% or less of the full‐rank matrix.
The adaptation performs best during three epochs of
iterations, computing, and updating the SVD for each
run.

We evaluated several rank dimensions of the U‐LRPD
adaptation for 50 utterances, as shown in Table 2. The per-
formance gradually increases from rank 6 to rank 25, but
then decreases at rank 50. The U‐LRPD has a maximum
WERR of 15.62% at rank 25, which is better than the D‐
LRPD at the same rank. In addition, at peak performance,
the SD parameters are only 1.6% of the total model with
612K parameters.

5.3 | Extended‐diagonal linear
transformation

The proposed EDLT method was devised as a solution for
excessive SD parameters of the HLT and the computational
cost of matrix decomposition of the LRPD. This EDLT
uses all the hidden linear layers considering the advantages
shown through the HLT experiments, and applies the trans-
formation matrix added to the upper position of the hidden
layer like an up‐LRPD. Experiments were conducted on 50
adaptation utterances in the same supervised manner
described above, and the proposed method was shown to
perform best during seven epochs of iterations.

Figure 3 shows the relationship between the recognition
accuracy and number of SD parameters while increasing
the left‐right window size of the extended diagonal matri-
ces. Increasing the window size from 7 to 25 gradually
improves the performance of the EDLT, recording a maxi-
mum WERR of 17.10% for a window size of 21. As the
number of SD parameters associated with the window size
increases from 200K to 600K, the performance graph grad-
ually shows a convergence curve.

Figure 4 compares the performance of fast adaptation
with the incremental adaptation data from five to 50 utter-
ances for each representative adaptation method. The U‐
LRPD method has a better performance than the D‐LRPD
method, and as the performance increases, it can be
expected to improve with even more data. Although HLT‐
All using all parameters of the hidden layer achieves the
best performance for 50 utterances, the proposed EDLT
has a better accuracy in fewer utterances, and it therefore
appears to be more appropriate for a fast adaptation.
EDLT‐17 and EDLT‐21 each use 428K and 522K fewer
SD parameters than U‐LRPD‐25.

TABLE 1 Recognition results and a number of footprint of
parameters using the hidden‐layer transfer of 50 adaptation utterances

HLT‐layer WAC (%) WERR (%) Footprint (#)

No adaptation 94.68 0 37.3M

HLT‐3L 95.09 7.67 4.0M

HLT‐4L 95.21 9.92 4.0M

HLT‐5L 95.08 7.52 4.0M

HLT‐6L 95.00 5.95 4.0M

HLT‐56L 95.17 9.19 8.0M

HLT‐345L 95.52 15.82 12.0M

HLT‐456L 95.44 14.33 12.0M

HLT‐All 95.62 17.62 21.8M

TABLE 2 Recognition results and the number of footprints of
parameters using SVD‐based LRPD of 50 adaptation utterances

HLT‐layer WAC (%) WERR (%) Footprint (#)

No adaptation 94.68 0 37.3M

Up‐LRPD‐6 95.23 10.38 156K

Up‐LRPD‐12 95.39 13.37 300K

Up‐LRPD‐25 95.54 15.62 612K

Up‐LRPD‐50 95.10 7.82 1,184K

Down‐LRPD‐25 95.45 14.44 554K

Down‐LRPD‐28 95.41 13.70 620K
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FIGURE 3 Comparison of EDLT performance and footprint
variation with increasing left‐right window‐size
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We also compared the LRPD and EDLT in an unsuper-
vised adaptation manner using 20 and 50 utterances,
respectively, for an online speaker adaptation service, as
shown in Table 3. Despite the unsupervised adaptation, the
performance degradation is relatively small owing to a high
recognition rate. The EDLT still shows a better perfor-
mance than LRPD, and is particularly effective for short
adaptation data such as 20 utterances. In addition, it may
be suitable for an online service when considering rela-
tively low footprints and fast processing.

5.4 | Combined adaptation using i‐vector
features

In order to improve the performance of the acoustic model,
i‐vector based methods have been proposed which add a
feature representing the characteristics of the speaker iden-
tity to the input data [27]. Adaptation methods that utilize
additional features use a different approach than transfor-
mation‐based adaptations, so they can be combined to
reflect each adaptive effect. As shown in [9,10], i‐vector
extractor and an acoustic model using i‐vector features as
the input must be trained first to perform the adaptation.

Considering the low computational cost for online process-
ing, we used a GMM‐based recipe of i‐vector learning in
the Kaldi toolkit [26,28].

In this experiment, we made a diagonal matrix‐based
universal background model (UBM) using 512 Gaussians,
and trained the i‐vector extractor using the UBM's poste-
rior. Then, 100‐dimensional i‐vector sequences recom-
mended by [9,27] were extracted using 650 hour of Mel‐
frequency cepstral coefficients (MFCCs) data which are a
subset of the total training data with speaker information.
The input data of the DNN is converted from 600‐dimen-
sional features containing left and right context frames for
40‐dimensional log filter‐banks to 700‐dimensional features
with the addition of an i‐vector. For comparison with the
previous DNN, we first generated an LDA matrix of the
input layer that receives the 700‐dimensional features, and
then used 650 hour of the input data to make an i‐vector‐
added DNN (i‐vec DNN) that is re‐trained based on the
baseline DNN.

Using the i‐vector features, we evaluated the utterance
adaptation under the supervised manner. As shown in
Table 4, the i‐vec DNN had an improved performance to
4.51% WERR compared to the baseline DNN. In addition, i‐
vector adaptation based on the i‐vec DNN for 20 and 50
utterances per speaker showed an increased accuracy of
7.87% and 14.17% WERR, respectively. Although this adap-
tation method has a less WERR than the proposed transfor-
mation‐based method for the fast adaptation, the added i‐
vector features contribute to the overall improvement by
increasing the accuracy of the baseline model. The combined
adaptation of i‐vector and the EDLT showed a larger
improvement than the i‐vector only adaptation and the previ-
ous EDLT by only one. Therefore, it may be deduced that
the speaker identity feature and the proposed condensed
transformation method affect each other in this evaluation.

6 | CONCLUSIONS

In this study, we researched various techniques for the fast
adaptation of a DNN for a Korean LVCSR system. First,
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W
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FIGURE 4 Performance comparison of various methods with
increase in adaptation data

TABLE 3 Recognition results of 20 and 50 adaptation utterances
under unsupervised adaptation conditions

Method (#utter.) WAC (%) WERR (%) Footprint (#)

No adaptation 94.68 0 37.3M

U‐LRPD‐25 (20) 95.31 11.84 612K

EDLT‐21 (20) 95.46 14.66 522K

U‐LRPD‐25 (50) 95.49 15.23 612K

EDLT‐21 (50) 95.55 16.35 522K

TABLE 4 Recognition results of 20 and 50 adaptation utterances
using i‐vector features under supervised adaptation conditions

Method (#utter.) WAC (%) WERR (%)

Baseline DNN 94.68 N/A

Re‐trained i‐vec DNN 94.92 0

i‐vec. adaptation (20) 95.32 7.87

i‐vec. + EDLT‐21 adaptation (20) 95.70 15.35

i‐vec. adaptation (50) 95.64 14.17

i‐vec. + EDLT‐21 adaptation (50) 95.90 19.29
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the simplest HLT method was investigated to explore the
characteristics of each hidden layer. In fact, this method
also strongly updates only certain parameters, but has a dis-
advantage in terms of the storing of the parameters because
it uses an intact SI structure. Therefore, we applied the
LRPD method using an SVD to reduce the SD parameters.
By doing this, we found that the upper position of the
LRPD is better than the lower position of the conventional
method. This paper proposed an EDLT method, which
applies an extended diagonal matrix to the upper position
of a linear hidden layer and adapts fewer parameters with-
out using an SVD. The proposed EDLT method exhibits a
fast adaptation performance when using five to 50 utter-
ances for 40 speakers, and has a maximum 17.10% WERR
with fewer parameters than the LRPD method. In addition,
the EDLT performance improved when it used i‐vector fea-
tures. EDLT combined with i‐vector adaptation increased
the WERR by up to 19.29%.
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