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A B S T R A C T

Background: Major depressive disorder (MDD) is one of the leading causes of disability; however, current MDD

diagnosis methods lack an objective assessment of depressive symptoms. Here, a machine learning approach to

separate MDD patients from healthy controls was developed based on linear and nonlinear heart rate variability

(HRV), which reflects the autonomic cardiovascular regulation.

Methods: HRV data were collected from 37 MDD patients and 41 healthy controls during five 5-min experi-

mental phases: the baseline, a mental stress task, stress recovery, a relaxation task, and relaxation task recovery.

The experimental protocol was designed to assess the autonomic responses to stress and recovery. Twenty HRV

indices were extracted from each phase, and a total of 100 features were used for classification using a support

vector machine (SVM). SVM-recursive feature elimination (RFE) and statistical filter were employed to perform

feature selection.

Results: We achieved 74.4% accuracy, 73% sensitivity, and 75.6% specificity with two optimal features selected

by SVM-RFE, which were extracted from the stress task recovery and mental stress phases. Classification per-

formance worsened when individual phases were used separately as input data, compared to when all phases

were included. The SVM-RFE using nonlinear and Poincaré plot HRV features performed better than that using

the linear indices and matched the best performance achieved by using all features.

Conclusions: We demonstrated the machine learning-based diagnosis of MDD using HRV analysis. Monitoring

the changes in linear and nonlinear HRV features for various autonomic nervous system states can facilitate the

more objective identification of MDD patients.

1. Introduction

Major depressive disorder (MDD) is characterized by persistent ir-

ritability, fatigue, altered appetite, insomnia, and physical aches [1,2].

Furthermore, the World Health Organization (WHO) predicts that de-

pression will be the most common disease in the world by 2020 [1].

Untreated depression increases the mortality rate and may cause sui-

cidal behavior, which is a serious public health problem [3]. Severe

symptoms can also disrupt work performance, thereby generating sig-

nificant economic and social burdens [4]. Therefore, it is important to

accurately diagnose and treat patients in the early stages of depression.

To date, clinicians have been following the guidelines provided by

the Diagnostic and Statistical Manual of Mental Disorders (DSM) to

diagnose depression [5]. However, this conventional method mainly

relies on clinical interviews and subjective self-reporting with test

scales, and an objective and systematic method of assessing the biolo-

gical aspects of depression is lacking [6]. Moreover, major depression is

a heterogeneous syndrome, and patients may exhibit multiple sources

of variance, rendering the correct diagnosis difficult. In previous stu-

dies, even highly trained clinicians agreed on MDD diagnoses in only

4–15% of the cases [7–9]. As a result, researchers have been working to

develop a more reliable method of diagnosing depression.
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Heart rate variability (HRV), which has been used to evaluate car-

diac autonomic regulation, has attracted much attention in connection

with depression. As previous studies have suggested, MDD is associated

with a dysregulated autonomic nervous system (ANS) [10,11]. The

HRV analysis can be used as a non-invasive tool to evaluate the auto-

nomic modulation of the cardiovascular system and investigate various

psychiatric disorders, such as bipolar disorder, anxiety disorder, schi-

zophrenia, and posttraumatic stress disorder [11–14]. In general, the

resting HRV is reduced in MDD patients, indicating a sympathovagal

imbalance toward sympathetic dominance [10,11,15,16]. A recent

meta-analysis also suggests that MDD is associated with reduced HRV,

and that HRV decreases with increasing depression severity [17].

Based on these findings, recent studies have developed an auto-

mated diagnosis system for MDD using HRV features and machine

learning methods [18–22]. For example, Zhang et al. [18] used a neuro-

fuzzy approach to differentiate 10 MDD patients from 10 controls and

achieved 95% accuracy. Matsui et al. [20] classified 13 MDD patients

and 28 controls with 88% accuracy using linear discriminant analysis.

Roh et al. [19] applied a support vector machine (SVM) algorithm to

HRV features obtained from 23 subjects and classified the subjects’

depression scale with 71% accuracy. However, these studies relied on a

small number of samples [18,19], lack descriptions of the cross-vali-

dation method [18–21], or depended entirely on linear HRV features,

which were calculated in the traditional time and frequency domains

[18,20,21]. As heart rate fluctuation is a complex behavior originating

from nonlinear regulatory processes, adaptation of nonlinear dynamics

and information theory for HRV analysis has been suggested [23–25].

Notably, Schulz et al. [26] have shown that nonlinear HRV indices

allow more reliable discrimination of MDD patients from controls than

linear HRV features, as the latter exhibit high inter-subject variability.

Kuang et al. [22] used a 10-fold cross-validation to evaluate the feature

prediction performance and extracted 16 features, which included

linear and nonlinear HRV features, but only female subjects partici-

pated in that study. To date, HRV-based automated recognition has not

been comprehensively studied for major depression as it has for other

diseases, such as cardiovascular diseases, bipolar disorder, and diabetes

[27–29].

In this study, we aim to investigate the feasibility of automated

MDD detection based on linear and nonlinear HRV features using a

classification and feature selection algorithm. We employed an SVM as

the classifier and a leave-one-out (LOO) procedure as the validation

method. A support vector machine–recursive feature elimination (SVM-

RFE) and a statistical filter were used as feature selection methods.

Twenty HRV features—13 linear, five nonlinear, and two Poincaré

plot—were extracted from electrocardiogram (ECG) recordings. In ad-

dition to the baseline measurement, we adopted laboratory stress

testing to examine ANS reactivity and recovery to stimuli; this approach

may improve the discrimination power of the HRV features [21]. For

example, previous studies have reported impaired autonomic reactivity

responses to external stimuli such as emotion and stress, manifesting as

attenuated or exaggerated HRV reactivity [30–34]. In another study,

MDD patients exhibited weaker stress recovery than control subjects

[35].

In the present study, HRVs were measured during five experimental

phases: the baseline, a mental stress task, stress recovery, a relaxation

task, and relaxation task recovery (Fig. 1A), with the expectation that

the incorporation of multiple alterations in the ANS activity would

improve the prediction performance [36]. A total of 100 HRV features

(20 features from five phases) were used as input data. We examined

the effect of multiple autonomic alterations on the differentiation of

depressive symptoms. Finally, we evaluated the performance of the

SVM classifier when linear and nonlinear features were used separately

as input data.

2. Materials and methods

2.1. Participants

All subjects were recruited at the Samsung Medical Center in Seoul,

Korea. The participants consisted of 37 MDD patients and 41 healthy

controls, who were matched for age and gender. A board-certified

psychiatrist evaluated the patients based on the DSM-IV criteria to

verify those experiencing current major depressive episodes. The de-

pressive episode severity was assessed based on the 17-item Hamilton

depression rating score (HAMD) [37]. The exclusion criteria for both

the control and MDD groups included any psychotic disorders, such as

schizophrenia or delusional disorder; bipolar affective disorders; de-

lirium; dementia; mental retardation; personality disorders; a serious

risk of suicidal act; neurological illnesses or brain damage; alcohol/

substance abuse or dependence; or serious medical conditions such as

cardiovascular disease or cancer. Healthy subjects with no history of

psychiatric disorder or significant medical conditions were recruited as

the control group. The subjects were instructed to avoid substances

affecting cardiovascular activity, such as alcohol and caffeine, before

the examination. All the patients received standard pharmacotherapy

using antidepressant medications, including selective serotonin re-

uptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors

(SNRIs), norepinephrine dopamine reuptake inhibitors, and tricyclic

antidepressants (TCAs) [38]. The experiment was explained to all

subjects, who provided signed informed consent to participate in the

study. In addition, $50 compensation was paid to each subject. This

study was approved by the Institutional Review Board of the Samsung

Medical Center, Seoul, Korea (No. 2015-07-151) and performed ac-

cording to the relevant guidelines.

2.2. Experimental procedure

All participants were welcomed into a room in which the tem-

perature was maintained at 23 °C, and the humidity was below 50%.

Because the temperature, humidity, and atmospheric pressure are

known to affect the HRV measurements [39–41], the environmental

Fig. 1. A. Experimental protocol for ECG measurement. ECG readings were

obtained during five consecutive phases, each of which had 5min duration. B.

Sample RRI data from the measurement. RRIs extracted from a healthy

control (female, 47-years-old) and an MDD patient (female, 46-years-old) are

shown.
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factors were maintained constant for all the participants. Therefore, we

assume that the measurement artifact caused by the fluctuations in

these environmental cues was negligible. The subjects were asked to sit

in a comfortable armchair with a headrest. While attaching the elec-

trodes for the physiological sensors, the experimenter explained the

measurement procedure to the subjects in detail. Then, the subjects

were allowed to adapt to the laboratory environment. The experimental

protocol used in this study was designed to evaluate the autonomic

responses to mental stress and relaxation tasks (Fig. 1A). The entire

procedure consisted of five experimental phases: the baseline (P1),

mental stress task (P2), stress task recovery (P3), relaxation task (P4),

and relaxation task recovery (P5) phases. Each phase lasted for 5min.

During P1, the subjects were instructed to rest while minimizing their

movement to facilitate the measurement of the ANS basal activity.

During P2, a mental arithmetic test was conducted to induce stress in

the subjects [42]. During this test, the subjects were required to sub-

tract serial 7's beginning from 500 and to verbally report answers. If a

subject made an error, the experimenter asked the subject to repeat that

calculation. During P3, the subjects were asked to relax as much as

possible to allow autonomic recovery from the mental stress of the

previous task. Then, during P4, the subjects were asked to relax while

watching 10 consecutive images of natural scenery, which were pre-

sented on a PC monitor. Each image lasted 30 s. In the fifth and final

phase (P5), the image presentation ceased, and the subjects were asked

to rest to recover from the relaxation task.

2.3. Physiological measurement

ECG data were recorded using the ProComp Infiniti system

(SA7500, Thought Technology, Canada). Three disposable Ag/AgCl

electrodes were positioned in a lead II configuration. The ECG signal

was amplified, band-pass filtered, and sampled at 256 Hz. R-peak to R-

peak (RR) interval data from the ECG signals were analyzed using

Kubios HRV Premium software (Kubios, www.kubios.com), which de-

tects R-peaks using an in-house-developed QRS detection algorithm

based on the Pan-Tompkins method [43,44]. All the RR interval (RRI)

data were visually inspected, and artifacts were corrected using a pie-

cewise cubic spline interpolation method. The entire analysis was

conducted by the same operator to ensure consistency. Then, the HRV

features were separately calculated from the RRI data of the individual

phases. Fig. 1B shows sample RRIs extracted from a healthy control

(female, 47-years-old) and an MDD patient (female, 46-years-old).

2.4. HRV features

A standard HRV analysis based on international guidelines was

conducted [45,46]. Twenty HRV features were extracted from the RRI

data of each phase, using time, frequency, and nonlinear domain ana-

lyses (Table 1). A total of 100 HRV features (i.e., 20 features from five

phases) were extracted from the entire ECG recording for a single

subject.

Time-domain HRV features can be calculated directly from the time

series of RRIs. We extracted six features using the time domain analysis:

the mean of the RRIs, the standard deviation of the RRIs (SDNN), the

root mean square of successive RR interval differences (RMSSD), the

percentage of successive RRIs differing by more than 50m s (pNN50),

the integral of the histogram of the RRI divided by its height (TRI), and

the baseline width of the RRI histogram (TINN).

Seven features were calculated based on the frequency domain

analysis. The RRI data were converted to equidistantly sampled data

using cubic spline interpolation (4 Hz). Then, a power spectral density

(PSD) was estimated for the RRI data using a Welch's periodogram-

based fast Fourier transform (FFT). Absolute powers in very low-fre-

quency (VLF, 0–0.04 Hz), low-frequency (LF, 0.04–0.15 Hz), and high-

frequency (HF, 0.15–0.4 Hz) bands were calculated. Relative powers of

the LF and HF bands in normalized units and the LF/HF power ratio

were also calculated. The absolute powers were expressed by their

natural logarithms to reduce skewness in the distribution. A wavelet

transform is another method for frequency domain analysis, which has

been proposed to overcome the stationary assumption of the Fourier

transform [47,48]. However, a previous study demonstrated that dif-

ferences in HRV values calculated using the Fourier and wavelet

transform methods were very small for both stationary and non-sta-

tionary data, suggesting that the wavelet method is only superior when

additional analyses in the time-frequency domain are required [49]. In

addition, since the Fourier transform has been primarily implemented

for the frequency domain analysis in previous studies [45], we selected

this method for the current study.

Five nonlinear measures were extracted to evaluate nonlinear

dynamics in heart rate signals. Approximate entropy (ApEn), first

suggested by Pincus to measure irregularity in relatively short and

noisy time-series data, does not involve any assumptions concerning

the underlying system dynamics [24]. Higher values of ApEn in-

dicate that the data are more irregular and unpredictable. In the

present study, the embedding dimension and the tolerance value for

the ApEn calculation were set to 2 and 0.2, respectively. Sample

entropy (SampEn) was developed to reduce bias in ApEn, which is

caused by self-comparison [50]. SampEn can be used and interpreted

in the same manner as ApEn but is more reliable than ApEn for

shorter time series. The parameters for SampEn were set to the same

values as those for the ApEn calculation. Detrended fluctuation

analysis (DFA) was proposed by Peng et al. [51] to assess fractal

scaling properties of short-term RRI signals. In DFA, time-series data

are integrated and detrended, and then a root-mean-square fluctua-

tion is measured at a different time scale. The fluctuation is defined

by α1 and α2, which represent short-range and long-range correla-

tion, respectively. In this study, α1 was evaluated between the data

length of 4 and 16, and α2 was evaluated between the length of 17

and 64. The correlation dimension (CorDim) was developed by

Grassberger and Procaccia to estimate the number of independent

variables required to model the underlying system in the signals

[52]. CorDim is defined as the slope of the linear region of a corre-

lation integral plot. Higher CorDim values indicate a greater number

Table 1

HRV features used in the present study. Twenty HRV features were extracted

from each phase.

Domain Parameter Unit Description

Time RRI ms Mean of RR intervals

SDNN ms Standard deviation of RR intervals

RMSSD ms Root mean square of successive RR interval

differences

pNN50 % Percentage of successive RR intervals differing

more than 50m s

TRI Integral of the histogram of the RR interval

divided by its height

TINN ms Baseline width of the RR interval histogram

Frequency logVLF s2 Log of absolute power in the VLF band

(0–0.04 Hz)

logLF s2 Log of absolute power in the LF band

(0.04–0.15 Hz)

LFnu nu Relative power of the LF band

logHF s2 Log of absolute power in the HF band

(0.15–0.4 Hz)

HFnu nu Relative power of the HF band

LF/HF Ratio between LF and HF band powers

logTot s2 Log of total power

Nonlinear ApEn Approximate entropy

SampEn Sample entropy

α1 Short term fluctuation slope of DFA

α2 Long term fluctuation slope of DFA

CorDim Correlation dimension

Poincaré plot SD1 ms Standard deviation of the Poincaré plot

perpendicular to (SD1) and along (SD2) the

line of identity

SD2 ms

S. Byun, et al.



of variables required to predict the signal and hence greater com-

plexity [53].

Two features were extracted from the Poincaré plot analysis. The

Poincaré plot graphically represents the correlation between successive

RR intervals, in which each RR interval is plotted against the next in-

terval. SD1 and SD2 represent the standard deviations of the Poincaré

plot perpendicular to and along the line of identity, respectively.

Although SampEn is basically ApEn without the bias, ApEn was

included in the feature set because previous studies on HRV in MDD

patients have suggested that ApEn may serve as an important feature in

classifying MDD and control groups [59,65,66]. In particular, ApEn was

significantly reduced in MDD patients compared to healthy controls

[59,65]. Valenza et al. [66] suggested that ApEn, not SampEn, was

significantly reduced in MDD patients during an emotional task. These

studies suggest that including ApEn in the feature set would be bene-

ficial for classifying the MDD and control subjects. In addition, SampEn

showed mixed results in differentiating MDD patients: SampEn showed

a significant correlation with geriatric depression scale, but some stu-

dies suggested a non-significant relationship between SampEn and

MDD [67–69]. Therefore, ApEn was included as a complementary role

for SampEn because ApEn might provide additional information on

depression symptoms.

SD1 and SD2 from the Poincaré plot can be obtained by combining

the time-domain features, RMSSD and SDNN, suggesting that they may

not provide indices that are independent of linear features. Indeed, SD1

is equivalent to RMSSD, and SD2 is strongly correlated with SDNN

[54–56]. However, the metrics from the Poincaré plot have been pri-

marily considered as nonlinear indices [46] and reported in previous

studies on nonlinear biomarkers of psychiatric disorders [57]. For ex-

ample, SD1 and SD2 have been reported as nonlinear HRV metrics in

depressed patients [26,58,59]. In some studies, SD1 and SD2 were re-

ported with their time-domain counterparts, RMSSD and SDNN

[22,26]. SD1 and SD2 were also used as nonlinear input features in

machine learning-based diagnoses of various medical conditions, in-

cluding MDD, seizure, and cardiovascular diseases [22,60–64]. All

these studies also included RMSSD and SDNN as linear input features.

Therefore, despite the potential risk of redundant data usage, we in-

cluded SD1 and SD2 as separate HRV metrics to compare our results to

those in previous studies.

2.5. Statistical analyses

Statistical analyses were performed using MATLAB R2018a and

SPSS 25 (SPSS Inc., Chicago, IL, USA). As the age, body mass index

(BMI), and HAMD factors were not normally distributed, these factors

were compared between the MDD and control groups using the

Mann–Whitney U test. The sex and marital status were compared be-

tween the two groups using chi-square tests. The HRV features from the

two groups were compared using the Mann–Whitney U test. A total of

100 HRV features were compared because there were 20 features ex-

tracted from each of the five phases. To control the type I error from

multiple comparisons, p-values were adjusted for the false discovery

rate (FDR) using the Benjamini–Hochberg method at the 0.05 sig-

nificance level [70,71]. In all statistical tests, a p-value less than or

equal to 0.05 was considered to indicate significance.

2.6. Leave-one-out procedure and feature selection

Fig. 2 shows an overview of the data processing pipeline. We adopted

the LOO method to develop and evaluate a classifier. The entire dataset

was split into two subsets: a test set (one subject) and a training set (the

remaining 77 subjects). The training set was used to train the classifiers

and assess feature rankings. The test set was used as unseen data to

evaluate the performance of the classifier developed. During the entire

LOO procedure, the HRV data were normalized by subtracting the

median and dividing it by the mean absolute deviation (MAD).

The LOO was chosen as a cross-validation method because it has

been reported to perform well when the sample size is small (< 100),

compared to other methods, such as 10-fold, 5-fold, and repeated k-fold

[72]. Leave-k-out (LKO) cross-validation is the general case where k

samples are selected as the test set. LKO has been shown to exhibit

superior performance compared to LOO [73]. However, this method

requires the evaluation of all possible
n
k subsets, where n is the total

number of samples, leading to considerable computational complexity.

For these reasons, LOO-CV was used in this study.

We used two feature selection methods, SVM-RFE and a statistical

filter method, to reduce the dimensionality of the feature space. An RFE

is a wrapper method for feature selection that evaluates a selected

subset of features based on their usefulness in predicting the class [74].

In the present study, the feature importance was determined by the

weights from a linear SVM, and the least relevant features were

eliminated one by one during each iteration (backward sequential se-

lection). A linear SVM-RFE has been known to perform well when the

number of samples is smaller than the number of features and has been

applied to various types of selection problems, such as genes and gas

sensor data [74,75]. A statistical filter method filters out redundant

features using a statistical test between features without involving a

learning algorithm. In this study, the feature ranking was determined

during each iteration by the statistical comparison of HRV features

between the control and MDD groups, using the Mann–Whitney U test.

The features were ranked in ascending order of the p-values [71]. All

analyses were performed using MATLAB R2018a (MathWorks, Natick,

MA). The SVM-RFE algorithm is available online from Mathworks File

Exchange [75]. In addition, a Library for Support Vector Machines

(LIBSVM) was used to perform the feature selection [76].

2.7. Classification and performance evaluation

We implemented an SVM algorithm to classify the control and MDD

groups using the HRV features as input data. An SVM is based on the

margin maximization principle [77]. It maps input data into a high-

dimensional feature space. An optimal separating hyperplane is con-

structed in this space to maximize the interclass distances [78]. In the

present study, a linear kernel function was used for the classifier model.

The regularization parameter C was optimized by performing a grid

search in the range of 0.1–10.

We selected an SVM as the classification method because SVMs

exhibit good generalization performance with high-dimensional data

[79]. In addition, SVMs can reduce the risk of overfitting by choosing

appropriate regularization parameters. To further prevent overfitting,

we implemented a linear SVM model. Nonlinear kernel methods tend to

show higher risk of overfitting because these types of algorithms have

more flexibility in building a model, which results in falsely high

training accuracy from an unrealistic model. This can be prevented by

using a linear algorithm, such as a linear SVM.

The accuracy, sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV) were used as performance

Fig. 2. Overview of data processing pipeline.
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measures (Table 2). The prediction performance of the SVM classifier

was evaluated using the unseen test set. This process was repeated

N=78 times, and the results from all folds were averaged to obtain

performance measure estimates. Cross-validation was implemented

externally to the feature selection process to accurately assess the

prediction performance. We also computed the median rank for each

feature over all folds to determine the relative importance of the fea-

ture.

For all classifications, we fixed the threshold (or cutoff) value to 0.5

to determine the positive and negative classes. The best performance

and the optimal feature sets were determined using the accuracy as an

evaluation measure. Therefore, we compared the classifier outputs

based on different feature selection methods (e.g., SVM-RFE vs. statis-

tical filter) and different sets of input data (e.g., linear vs. nonlinear/

Poincaré features) using the same fixed threshold. After obtaining the

best feature set, we applied a receiver operator characteristic (ROC)

curve analysis to this optimal model. The area under the ROC curve

(AUC) was also evaluated for each case.

3. Results

3.1. Demographic and clinical characteristics of subjects

The participants in the present study included 41 healthy controls

(30 females) and 37 MDD patients (28 females). Descriptive statistics of

the demographic and clinical characteristics of the participants are

summarized in Table 3. No significant differences were observed in sex,

age, BMI, or marital status data among the subjects. As expected, the

MDD group exhibited a significantly higher HAMD than the control

group.

3.2. Statistical comparison of HRV features

HRV features were statistically compared between the control and

MDD groups using the Mann–Whitney U test. Among the 100 HRV

features considered, 20 exhibited significant differences between the

two groups (Table 4 and Fig. 3). Note that all these features were sig-

nificantly decreased in the MDD group compared to the control. SDNN

and SD2 were significantly different between the two groups in all

phases except P2 (stress task). Descriptive statistics and the p-values of

the entire set of HRV features are summarized in the Supplementary

Information (Table S1).

3.3. Classification of control and MDD participants using HRV features

An SVM learning algorithm was implemented to classify the healthy

and MDD participants using HRV features. A total of 100 features (i.e.,

20 features from five phases) were used as input data. The SVM-RFE

and the statistical filter methods were used to perform feature selection,

Table 2

Performance measure formulae.

Performance measure Formula

Accuracy +

+ + +

TP TN
TP TN FP FN

Sensitivity
+

TP
TP FN

Specificity
+

TN
TN FP

Positive predictive value
+

TP
TP FP

Negative predictive value
+

TN
TN FN

Abbreviations: TP, true positive; TN, true negative; FP, false positive;

FN, false negative.

Table 3

Demographic and clinical characteristics of control and MDD groups. The

factors of the two groups were compared using the Mann–Whitney U test

(*p < 0.05), except for the sex and marital status, which were compared using

chi-square tests (χ2). The data are expressed as median and MAD for continuous

variables and as count and percentage for categorical variables.

Factors Control (N=41) MDD (N=37) p-value

Sex (%) 0.800 (χ2)

M 11 (27%) 9 (24%)

F 30 (73%) 28 (76%)

Age (MAD) 35 (12) 40 (14) 0.948

BMI (MAD) 22.3 (2.56) 22.4 (2.4) 0.980

Marital status (%) 0.064 (χ2)

Single 20 (49%) 16 (43%)

Married 21 (51%) 15 (41%)

Divorced 0 3 (7%)

Bereavement 0 3 (7%)

HAMD (MAD) 1 (1) 18 (2) <0.001*

Table 4

HRV features that differ significantly between the control and MDD groups. The features were compared using Mann–Whitney U tests, and p-values were

corrected for the FDR (p-FDR) using the Benjamini–Hochberg method. The data are expressed as median and MAD (* p-FDR < 0.05). Statistical comparisons of the

entire set of HRV features are summarized in Table S1.

Phase Feature Control MDD p p-FDR

P1 (baseline) SDNN 33.2 (12) 25.5 (8.76) 0.006 0.032*

SD2 45.3 (17.4) 34.3 (11.6) 0.005 0.032*

P3 (recovery from the stress task) SDNN 42.1 (10.6) 27.1 (9.48) < 0.001 0.004*

RMSSD 27.2 (7.53) 19.2 (8.41) 0.001 0.010*

pNN50 6.69 (5.83) 0.568 (0.568) 0.001 0.010*

TRI 10.2 (2.3) 7.22 (2.44) < 0.001 0.004*

TINN 203 (42) 126 (36) < 0.001 0.010*

SD1 19.3 (5.34) 13.6 (5.96) 0.001 0.010*

SD2 58.3 (14.3) 36.4 (12) < 0.001 0.004*

CorDim 1.67 (1.14) 0.523 (0.399) 0.001 0.010*

P4 (relaxation task) SDNN 36.2 (11.7) 30.7 (10.3) 0.004 0.032*

TRI 9.44 (2.46) 6.74 (2.16) 0.003 0.030*

SD2 48.3 (15.3) 35.8 (15.1) 0.004 0.032*

P5 (recovery from the relaxation task) SDNN 45.9 (9.97) 26.5 (8.25) 0.005 0.032*

RMSSD 26.7 (8.48) 19.9 (8.46) 0.005 0.032*

TRI 10.6 (2.64) 7.24 (1.93) 0.001 0.010*

TINN 185 (55) 125 (40) 0.007 0.039*

SD1 18.9 (6) 14.1 (6) 0.005 0.032*

SD2 61.7 (14.8) 36.5 (10.7) 0.005 0.032*

SampEn 1.42 (0.122) 1.33 (0.156) 0.008 0.042*
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Fig. 3. Median ± MAD of HRV features listed in Table 4, which differ significantly between the control and MDD groups. Asterisks represent the statistical

significance of the Mann–Whitney U tests (* p-FDR < 0.05).
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which ranked the features based on their relevance. The performance

measures were assessed using the LOO procedure (Fig. 2).

Fig. 4A shows the average prediction accuracy as a function of the

number of features selected by the SVM-RFE and the statistical filter

methods. The best performance results for each feature selection

method are summarized in Table 5. Training accuracy and test accuracy

at the best performance were similar to each other, indicating that the

SVM classifier did not overfit a model to the training set (Table S2).

SVM-RFE marginally outperformed the statistical filter and achieved

74.4% accuracy, 73% sensitivity, and 75.6% specificity using only the

two most relevant features. The best performance measures identified

with the statistical filter used as the feature selection method were si-

milar to those identified by SVM-RFE but were based on the five op-

timal features. When all 100 features were utilized for classification, the

SVM classifier achieved only ~50% accuracy, demonstrating that the

feature selection procedure substantially improved the classifier per-

formance. Fig. 4B shows the ROC curves of the SVM classifiers during

the use of optimal feature sets selected by the SVM-RFE and the sta-

tistical filter methods. The AUCs for SVM-RFE and statistical filter were

0.742 and 0.734, respectively (Table 5).

The top 10 features in the order of the median rank evaluated by the

SVM-RFE and the statistical filter methods are listed in Table 6. In

addition, the features that differ significantly between the control and

MDD groups, which are listed in Table 4, are marked with asterisks. For

both selection methods, the most relevant feature was SDNN from P3

(stress task recovery). SD2 from P3 (stress task recovery) was selected

as the third and the second most relevant feature by the SVM-RFE and

the statistical filter methods, respectively. As expected, all 10 most

relevant features selected by the statistical filter method exhibited

significant group differences. In contrast, only two features from SVM-

RFE ranking exhibited significant group differences.

To investigate the role of autonomic arousal and recovery during

the measurement in detecting MDD, we performed a classification using

features from an individual phase. For this classification, we only used

SVM-RFE for feature selection because SVM-RFE outperformed the

statistical filter method. Table 7 shows the classification results for

different sets of input features. All performance measures decreased

when individual phases were used as input data compared to when all

phases were included, except for the specificity achieved with the fea-

tures from P4 (relaxation task). Using the P2 features (stress task) re-

sulted in the lowest accuracy (56.4%). In addition, the number of fea-

tures required to achieve the best accuracy increased substantially

when only one phase was used, except for the results from P3 (stress

task recovery). Table 8 lists the top five features ranked by SVM-RFE

when a single phase was used as input data. Note that a Poincaré plot

feature, SD2, was selected as the most relevant feature in all five in-

dividual phases, suggesting that SD2 played an important role in dif-

ferentiating the MDD patients from the healthy controls. The ROC

curves of the SVM classifiers using optimal features from individual

phases are shown in Fig. S1. The AUC values ordered in the same way as

the accuracy, were the lowest with the P2 features (stress task) and

highest with the P5 features (relaxation task recovery) (Table 7).

Based on these results, we tested the performance of the classifier

using the linear and nonlinear/Poincaré features separately and using

SVM-RFE as the feature selection method. Thirteen linear, five non-

linear, two Poincaré plot features were extracted from each phase

(Table 1); therefore, a total of 65 linear features and 35 nonlinear/

Poincaré features were used separately as input data. Using the non-

linear/Poincaré features led to 74.4% accuracy, 73% sensitivity, and

75.6% specificity, which was the same as the best performance

achieved with all the features included (Table 7). In contrast, when the

Fig. 4. A. Average accuracy as a function of the number of selected features. The features were ranked by SVM-RFE and statistical filter (STAT). B. ROC curves

of the SVM classifiers during the use of optimal feature sets selected by SVM-RFE and statistical filter.

Table 5

Best performance of the SVM classifier achieved with the SVM-RFE and sta-

tistical filter as feature selection methods.

Feature

selection

NF ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) AUC

SVM-RFE 2 74.4 73.0 75.6 73.0 75.6 0.742

Statistical filter 5 73.1 67.6 78.0 73.5 72.7 0.734

Abbreviations: NF, number of features; ACC, accuracy; SEN, sensitivity; SPE,

specificity.

Table 6

Top 10 HRV features in order of median rank as evaluated by the SVM-RFE

and statistical filter methods. The features with asterisks are those that differ

significantly between the control and MDD groups, as shown in Table 4.

Rank SVM-RFE Statistical filter

Phase Feature Phase Feature

1 P3 SDNN* P3 SDNN*

2 P2 TINN P3 SD2*

3 P3 SD2* P3 TRI*

4 P3 α1 P3 TINN*

5 P5 LFnu P3 CorDim*

6 P5 LF/HF P5 TRI*

7 P5 logHF P3 RMSSD*

8 P2 RRI P3 SD1*

9 P5 logVLF P3 pNN50*

10 P1 HFnu P4 TRI*

Abbreviations: P1, baseline; P2, stress task; P3, stress task recovery; P4, re-

laxation task; P5, relaxation task recovery.
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linear features were used, the best accuracy was 70.5%, which was

achieved with 23 features (Table 7 and Fig. 5A). The most relevant

features selected from the linear and nonlinear/Poincaré datasets were

SDNN and SD2 from P3 (stress task recovery), respectively (Table 8).

Fig. 5B shows the ROC curves of the SVM classifiers using optimal

features selected from linear and nonlinear/Poincaré feature pools se-

parately. The AUCs for the linear and nonlinear/Poincaré feature sets

were 0.753 and 0.730, respectively (Table 7).

4. Discussion

We demonstrated that patients with MDD can be differentiated from

healthy controls with 74.4% accuracy, 73% sensitivity, and 75.6%

specificity using the two most relevant HRV features. Two feature se-

lection methods, SVM-RFE and a statistical filter, selected SDNN from

the P3 phase (stress task recovery) as the most important feature in the

classification. The value of the performance measures decreased when

individual phases were considered separately as input data, suggesting

that combining HRV features measured during autonomic arousal and

recovery may enhance the discriminative power of this technique.

We compared the HRV features between the MDD and control

groups. The values of 20 of the 100 tested HRV features significantly

decreased in the MDD group compared to the control (Table 4, Fig. 3).

These results are consistent with those of the previous studies that have

reported reduced HRV in MDD patients [10,11,15–17]. Two features,

SDNN and SD2, were significantly different between the two groups in

all phases except for P2 (stress task), suggesting that these two features

may represent altered autonomic cardiac regulation in MDD patients.

The highest accuracy, 74.4%, was achieved using SVM-RFE in the

present study. SVM-RFE outperformed the statistical filter as a feature

selection method, but the differences in performance measures between

the two methods were not substantial (Table 5). Because the perfor-

mance in feature selection and classification depends on input data, this

result may only be applicable to our study. Nonetheless, a previous

study on the HRV-based detection of congestive heart failure showed

that a backward elimination method yielded better performance than a

statistical significance method [63]. Adopting feature selection sub-

stantially improved the performance of the SVM classifier. The accuracy

was only ~50% when all the features were used as input data but in-

creased to> 73% when relevant features were selectively used

(Fig. 4A). In general, the accuracy of classification algorithms deterio-

rates with high-dimensional data due to the curse of dimensionality; as

the number of features increases, the amount of data required for ac-

curate classification grows exponentially [80]. Therefore, with the fixed

number of samples, the ability of a classifier to find a true model de-

teriorates as the dimensionality increases.

SVM-RFE achieved the best performance using two features, SDNN

from P3 (stress task recovery) and TINN from P2 (stress task). The

statistical filter reached its maximum accuracy using five features from

the P3 phase (stress task recovery), SDNN, SD2, TRI, TINN, and CorDim

(Table 6). These results suggest that the observation of the baseline ANS

activity (the P1 phase) may not be ideal for differentiating MDD pa-

tients from the healthy population. The analysis of the resting HRV only

assesses cardiac vagal modulation and reveals little information on

cardiac sympathetic modulation [81]. A previous study suggested that

MDD is associated with reduced cardiovascular recovery from labora-

tory stress, which may explain why the features from the P3 phase

(stress task recovery) were selected as key relevant features [35].

Therefore, our feature selection results suggest that evaluating the re-

sponses to autonomic stimuli and subsequent recovery from those sti-

muli may reveal the differences in ANS activity between depressed and

healthy subjects. In previous studies on depression classification, var-

ious ANS stimuli were also employed during HRV measurements, such

as emotion elicitation [18], relaxation [20], random number generation

[21], and Ewing tests [22]. This approach has allowed the monitoring

of autonomic reactivity related to disrupted arousal control in de-

pressed patients.

Classification based on SVM-RFE performed more poorly when in-

dividual phases were used separately as input data than when all phases

were utilized (Table 7). The highest accuracy achieved using the in-

dividual phase was 71.8% with P5 (relaxation task recovery), and the

lowest was 56.4% with P2 (stress task). However, the best performance

with the P5 phase (relaxation task recovery) was achieved with 11

features, which is quite a high number, considering that two features

were required when all phases were included as input data. With the P3

phase (stress task recovery), only one feature was required for the best

performance, but the accuracy, sensitivity, and PPV were below 70%.

These results suggest that combining autonomic responses from various

stimuli can be complementary and improve decision-making based on

HRV.

We conducted ROC curve analyses for classifier outputs listed in

Tables 5 and 7. Since ROC curves are obtained by varying the threshold

from 0 to 1, higher AUC does not necessarily reflect higher accuracy

evaluated based on the fixed threshold, 0.5. For example, although

SVM-RFE showed higher accuracy than the statistical filter as the

Table 7

Classification results based on different sets of input data. The best performance for each case is listed. Feature selection was performed by the SVM-RFE.

Data used NF/TF ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) AUC

All (P1–P5) 2/100 74.4 73.0 75.6 73.0 75.6 0.742

P1 15/20 66.7 62.2 70.7 65.7 67.4 0.621

P2 7/20 56.4 56.8 56.1 53.8 59.0 0.561

P3 1/20 69.2 67.6 70.7 67.6 70.7 0.732

P4 15/20 67.9 56.8 78.0 70.0 66.7 0.666

P5 11/20 71.8 70.3 73.2 70.3 73.2 0.755

Linear features 23/65 70.5 73.0 68.3 67.5 73.7 0.753

Nonlinear/Poincaré 4/35 74.4 73.0 75.6 73.0 75.6 0.730

Abbreviations: P1, baseline; P2, stress task; P3, stress task recovery; P4, relaxation task; P5, relaxation task recovery; NF, number of features used for the best

performance; TF, total number of features; ACC, accuracy; SEN, sensitivity; SPE, specificity.

Table 8

Top five HRV features in the order of median rank from the classifications

based on different sets of input data. Feature ranking was evaluated by the

SVM-RFE.

Data used Rank

1 2 3 4 5

All (P1–P5) P3 SDNN P2 TINN P3 SD2 P3 α1 P5 LFnu

P1 SD2 HFnu LFnu SDNN RRI

P2 SD2 RRI SampEn SDNN HFnu

P3 SD2 SDNN α1 RRI TRI

P4 SD2 SampEn CorDim SDNN LF/HF

P5 SD2 logHF logVLF SampEn RRI

Linear features P3 SDNN P2 TINN P3 TRI P1 HFnu P5 logHF

Nonlinear/Poincaré P3 SD2 P3 SD1 P2 SD2 P2 SD1 P3 α1

Abbreviations: P1, baseline; P2, stress task; P3, stress task recovery; P4, re-

laxation task; P5, relaxation task recovery.
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feature selection method, AUC was lower in SVM-RFE than in statistical

filter (Table 5). In addition, the highest accuracy was achieved when all

features or only nonlinear/Poincaré features were used as input data.

However, the highest AUC was achieved when only the features from

the last phase were used (Table 7).

Our results indicate that SDNN and SD2 may represent the dis-

tinctive difference between MDD patients and healthy controls. Both

feature selection methods selected SDNN from P3 (stress task recovery)

as the most important feature and ranked SD2 from P3 (stress task re-

covery) within the top three relevant features (Table 6). These results

are similar to those of the statistical comparison, in which these two

features from P3 (stress task recovery) exhibited the lowest adjusted p-

values (Table 4). When the individual phases were used separately as

input data, SVM-RFE selected SD2 as the most relevant feature for all

cases (Table 8). SDNN represents overall HRV and correlates strongly

with total power [45,46]. SD2 from the Poincaré plot represents the

long-term variation in RRIs and is affected by both parasympathetic and

sympathetic activity [82,83]. SDNN and SD2 are also strongly corre-

lated [82], which partially explains why these two indices were selected

together as top-ranked features by various methods. Previous studies

have reported reduced SDNN in MDD patients and also a significant

negative correlation between the severity of depression and SDNN

[58,59,84,85]. Reduced SD2 in MDD patients has also been detected in

previous studies [58,86]. Chen et al. [58] measured HRV from healthy

controls and MDD patients undergoing a series of autonomic tests, i.e.,

rest, deep breathing, the Valsalva test, and standing up. They found that

SDNN and SD2 were significantly lower in the MDD group than in the

control group during these tests, except for the resting state. These

results suggest that SDNN and SD2 can represent dysregulated auto-

nomic reactivity to sympathetic and parasympathetic stimuli in MDD

patients and therefore can be used as important factors in distin-

guishing MDD patients from healthy controls.

Since SDNN reflects all frequency bands of HRV, it is affected by

both vagal and sympathetic activities of the autonomic nervous system

[45]. The HF component of HRV is primarily determined by vagal ac-

tivity, but the LF component is known to be mediated by both vagal and

sympathetic activities [46]. A strong correlation between SDNN and

pharmacologically controlled vagal tone was reported, suggesting that

SDNN can represent the changes in vagal activity [87]. Moreover, a

moderate correlation between the LF component and the vagal tone

was detected, partially explaining why SDNN, which encompasses LF

and HF bands, showed a good correlation with the vagal tone [87].

Therefore, significantly decreased SDNN in the MDD group in our study

may represent reduced vagal activity, which is a typical characteristic

of HRV in depressed patients [88].

To describe the neurological association between major depression

and autonomic disruption, a neurovisceral integration model has been

suggested, which is referred to as the central autonomic network (CAN)

[89]. In this model, the CAN is involved in an internal regulation

through which the brain mediates the visceromotor, neuroendocrine,

and behavioral responses in adaptation to environmental, cognitive,

and emotional influences. Structurally, the CAN includes the prefrontal

cortex, cingulate cortex, insular cortex, amygdala, hypothalamus, and

brainstem autonomic nuclei, which form neurological interconnection

that enables the bidirectional flow of information between the lower

and higher layers of the central nervous system. The output of the CAN

is connected to the sinoatrial node of the heart through the stellate

ganglia and the vagus nerve, suggesting that cortical activity modulates

cardiac activity. Therefore, HRV can reflect brain-heart interactions and

the integrity of the CAN. Previous neuroimaging studies have demon-

strated that reduced HRV is associated with decreased activation in

various brain regions, including the right superior prefrontal, left ros-

tral anterior cingulate, right dorsolateral prefrontal, and right parietal

cortices [15]. These results suggest that decreased HRV and dysfunc-

tional cardiac adaptation observed in MDD patients are related to hy-

poactivation within the CAN.

Using the nonlinear/Poincaré HRV features exclusively, we

achieved 74.4% accuracy, 73% sensitivity, and 75.6% specificity,

which were the same as the best performance measures achieved when

all the features were considered as input data (Table 7). The importance

of the nonlinear/Poincaré HRV features in differentiating the patholo-

gical ANS dynamics of clinical diseases has been previously suggested.

Valenza et al. extensively examined the potential applications of non-

linear/Poincaré HRV features to the algorithm-based diagnosis of var-

ious diseases, including bipolar disorder [28], congestive heart failure

[90], and Parkinson's disease [91]. Recently, subclinical depression

(dysphoria) was differentiated from healthy controls using linear and

nonlinear/Poincaré HRV features [71]. We also demonstrated that the

model using the nonlinear/Poincaré HRV features performed better in

classification than that using the linear features (Table 7, Fig. 5A),

which is consistent with the results of the previous studies on Parkin-

son's disease [91] and dysphoria [71]. In addition, Schulz et al. [26]

demonstrated that nonlinear/Poincaré HRV features are more reliable

in discriminating MDD patients from controls than linear HRV features,

as the latter exhibit high inter-subject variability.

Previous studies in which HRV features were used to discriminate

MDD patients have also yielded promising results obtained via various

machine learning methods, which are summarized in Table 9. Com-

pared to those previous results, the highest accuracy achieved in the

present study (74.4%) is relatively low. However, some of the previous

Fig. 5. A. Average accuracy as a function of the number of selected features for three different datasets. The features were ranked by SVM-RFE. B. ROC curves

of the SVM classifiers using optimal features selected from linear and nonlinear feature pools separately.
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studies reported the results based on a small number of samples [18,19]

or they lacked the description of the prediction accuracy validation

method [18,20,21]. Without cross-validation, predictive performance

can be over-estimated. Kuang et al. [22] used a 10-fold cross-validation

method to evaluate their prediction performance. They achieved 86%

accuracy with 10 selected features, but only female subjects partici-

pated in the study [22], suggesting that future studies may need to

investigate the potential improvement of the model performance by

excluding male subjects. The other possible reason for the highest ac-

curacy being relatively low was that we used a linear kernel function for

both SVM-RFE and SVM classifier models. We may achieve higher ac-

curacy if the linear kernel is replaced with nonlinear kernel functions,

but this change may also increase the risk of overfitting. Note that the

number of features required to achieve the best performance in our

study was two using SVM-RFE, which is relatively small compared to

the numbers of features indicated in previous studies. Since the classi-

fication was based on a linear kernel SVM, our results demonstrated

that the two optimal features separated the two groups successfully

using a simple linear function. Even accounting for the relatively low

accuracy, the features were very efficient in the classification. The RFE

method becomes more beneficial in the case of a large amount of po-

tentially correlated features (e.g., this study) because the nested feature

subsets contain complementary features, which are not necessarily most

relevant individually [74]. Therefore, the top-ranked feature subset

selected from the RFE algorithm can have a strong discriminative power

with high accuracy in classification. We also demonstrated that the

algorithm using nonlinear/Poincaré HRV features performed better

than that using linear indices and matched the best performance

achieved by all features (Table 7). To the best of our knowledge, clas-

sification of MDD solely based on nonlinear/Poincaré features has not

been extensively investigated. Kuang et al. [22] included nonlinear/

Poincaré features as part of the input data but the performance based on

nonlinear/Poincaré data has not been evaluated separately.

Recent advances in healthcare technology have facilitated the

clinical applications of wearable monitoring systems for psychiatric

disorders [92]. For example, a wearable textile-based sensor system has

been used to measure long-term ambulatory ECG of patients with bi-

polar disorders. Longitudinal HRV dynamics from these ECG data have

been analyzed to predict the clinical states of individual bipolar patients

[93–95]. Furthermore, an adhesive patch sensor worn on the chest has

been used to monitor ECG and locomotor activity in patients with

schizophrenia; by using features derived from these data, these patients

were differentiated from healthy controls [96]. A similar approach can

be applied to the management and treatment of major depression. As a

result of the heterogeneous nature of MDD, such patients would benefit

from a personalized HRV assessment to track their depressive symptoms

in association with abnormal changes in ANS activity. Electro-

encephalography (EEG) has also been widely studied as an objective

marker for the detection of depression using machine learning methods

[97]. However, EEG is more prone to noise than ECG and easily con-

taminated by electrooculogram or electromyogram artifacts, which are

the disadvantages of a wearable system. Therefore, HRV analysis of

ECG measurements may play a more important role in the development

of mobile healthcare services for mental illness management.

4.1. Limitations

Antidepressant medications have been associated with changes in

HRV although a definite conclusion has not yet been reached. For ex-

ample, a meta-analysis of antidepressant treatment found that TCAs

significantly reduced HRV, but other antidepressants had a minimal

impact on HRV [17]. In contrast, a large cohort study (2114 subjects)

by Licht et al. [84] revealed that MDD is not associated with HRV but

MDD patients using SSRIs, SNRIs, and TCAs have significantly reduced

HRV. These findings suggest that antidepressants might be responsible

for the outcomes in this study because all the patients were receiving

antidepressant treatment. However, direct comparisons with previous

studies are not straightforward because of the methodological issues,

and we may need to include unmedicated depressed patients in a future

study to investigate the effect of antidepressants [98].

Our results are based on a total of 78 subjects. Previous studies have

demonstrated methods to estimate the sample size required to perform

binary classification based on high-dimensional data, such as DNA

microarray data [99,100]. Mukherjee et al. [100] used a learning curve

fitting to estimate the dataset size for classifying cancer morphology

and treatment outcome based on microarray data. They used a statis-

tical test to determine the minimum number of samples to produce a

classifier that performs significantly better than a random classifier. In

addition, learning curves estimated the empirical error rate as a func-

tion of dataset size, which provided the sample size to build a good

predictor. They suggested that sample sizes of 30–75 were adequate for

achieving a reasonably accurate classification. Dobbin and Simon [99]

used a different method, a model-based approach, to estimate the

sample size for classifying DNA microarray data and suggested that at

least 40–60 samples are required to produce small error rates. These

results suggest that we have a sufficient number of samples to build a

significant classifier while achieving relatively low errors. Nonetheless,

an increase in the sample size generally leads to an improvement in

performance until the performance approaches its plateau [101]. Cur-

rently, we are recruiting more subjects, and a future study of this ex-

panded cohort will allow us to develop a more robust screening method

for major depression.

The limitation of classifier models used in this study is that SVM

algorithms were implemented only with a linear kernel function.

Performance of SVMs is substantially affected by the kernel function

and its parameters. In general, a linear kernel can perform well with

linearly separable data, but if the relationship between the labels and

features is nonlinear, it is outperformed by nonlinear kernel functions,

Table 9

Summary of previous HRV-based MDD detection studies.

Authors Subjects Stimulus (number of test phases) Features Feature selection Classification method ACC

Zhang et al. [18] MDD 10

HC 10

Multimodal affective contents (1

phase)

6 N/A Neuro-fuzzy network 95%

Roh et al. [19] 23a N/A 10 N/A SVM 71%

Matsui et al. [20] MDD 13

HC 28

Relaxation (2 phases) 4 (2 per phase) N/A Linear discrimination analysis 88%

Sun et al. [21] MDD 44

HC 47

Random number generation (3

phases)

9 (3 per phase) N/A Logistic regression 79%

Kuang et al. [22] MDD 38

HC 38 (female)

Ewing test (4 phases) 64 (16 per phase) Correlation-based method (10

selected)

Bayesian networks

10-fold CV

86%

This study MDD 37

HC 41

Mental arithmetic test (5 phases) 100 (20 per phase) SVM-RFE (2 selected) SVM

LOO CV

74%

Abbreviations: HC, healthy control; N/A, not applicable; CV, cross-validation; ACC, accuracy.
a Total number of subjects.
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such as radial basis function, sigmoid, and polynomial [102]. Previous

studies have demonstrated that nonlinear kernel functions outperform

linear models in the classification of image data and acoustic signals

[103,104]. Nonlinear kernel functions were further modified for spe-

cific data types, and these tailor-made kernels improved the perfor-

mance of SVM classifiers [105,106]. For future studies, we will perform

additional tests with different kernel functions to evaluate their per-

formances.

5. Conclusion

We demonstrated the machine learning-based automated detection

of depression using linear and nonlinear HRV measures. We found that

ANS stimulation during measurements was crucial to revealing ab-

normal reactivity and recovery of the heartbeat dynamics of the de-

pressed subjects because these behaviors were not detectable during the

baseline activity. In addition, nonlinear/Poincaré HRV features played

a crucial role in differentiating MDD patients. These findings suggest

that using linear and nonlinear HRV features measured during various

states of ANS has the potential to more objectively identify patients

with depressive symptoms.
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