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Abstract: Networked control systems are widely spread, which is composed of numerous sensor
and control nodes through communication channel. In this paper, an event-triggered H∞ memory
output feedback control (EMOFC) is investigated for networked control linear systems in discrete
form. The memory control employing memorized past information is exploited to enhance
the triggering intervals under event-triggered condition. Moreover, novel summation type
event-triggering condition is newly proposed by utilizing buffer memory element. Based upon
memory control and novel triggering conditions, the control design methodology is constructed for
transformed input-delay model in forms of linear matrix inequalities (LMIs) adopting generalized
free-weighting matrix summation inequality. As a result, the proposed scheme shows off the
reduction of average signal transmission frequency and reliability while covering standard condition.
Throughout numerical examples, the effectiveness is shown and the effect of memory element
is analyzed.

Keywords: networked control systems; memory elements; output feedback control; linear matrix
inequalities (LMIs)

1. Introduction

Networked control system (NCS) is a control system where the closed control loop includes
communication network [1,2]. The developments in wired and wireless communication networks
have given rise to the NCS due to its advantages in cost, installation, and maintenance. Thus, a number
of researchers have paid much attention to the NCS [3–5]. However, the design of control in NCS
confronts several difficulties since networked channels are comparably unreliable, unlike the traditional
way of point to point direct connection. In network communication, network transmission delay [6],
packet disorder [7], and packet loss [8] are unavoidable as well as network resources are limited.
In these limited network sources, it is waste to send all measurement signals. Hence, it is of great
importance not only for academic theory but for practicality to improve the efficiency of the network
while maintaining the performance of the system.

Event-triggered control (ETC) scheme [9], which can be utilized in limited bandwidth network,
has been proposed in order to save the network resources. Event-trigger mechanism implies that only
some signals satisfying the predefined triggering condition are transmitted to the controller node,
so there is no need to transmit all measurement signals. Therefore, ETC scheme much reduces
inefficient utilization of limited network resources by using only some redundant measurement signals.
Since the first approach on event-triggering control for linear systems, it has been widely applied to
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various systems including nonlinear systems [10], multi-agent systems [11], Markov jump systems [12],
and complex dynamical networks [13]. As well as, it is worth noting that the aforementioned ETSs
performed in the continuous-time linear NCSs framework has widely extended to discrete-time
systems [14,15]. As is known, network-based communications are inherent of discrete nature since
packet-based protocols are regularly used to connect the components of the NCSs not composed of
a continuous flow of information in a classic way. Thus, it is more natural and effective way to handle
NCS in discrete form.

In the implementation of ETC [16], there have been two main issues: the first one is the
design of proper triggering condition. The other one is to deal with physical constraints of network
communication such as network-induced delay [17], input/state quantization [18,19], and packet
drop [20]. The first one is a study on the several causes for the instability of network control systems,
the second is about to save the resources of the network. Since the complexity increases as the number
of sensor/controllers connected to the network increases, the event triggering condition to save the
resources of the network is becoming more of importance. In accordance with the fact, a bunch of
studies are investigated on triggering conditions while covering network constraints. As follows,
the absolute ETC scheme has been investigated for discrete-time systems, ensuring input to state
stability [21]. The trigger using absolute event-triggering condition is active when the measured
state is over than a certain value but it is lack of flexibility. Thus, the relative event-triggering
mechanism is widely studied with various type of controllers: state feedback [22], output feedback [23],
and observer-based control [24]. Remarkably, it is found that relative triggering performance is
degraded when the system state approached to the equilibrium point. The mixed approach was
conducted to obtain superior performance [25]. As an alternative, integral type triggering condition [26]
has been proposed for improved triggering intervals, so occupied network resources have been saved.
However, the integral type is unnatural and may cause excessive triggering under disturbances.

Recently, memory event-triggering scheme [27] has been studied to address these properties.
Owing to previously generated information, this approach provides the additional flexibility for
application to real system. However, the existing research is limited drawbacks that it is noteworthy
that presented study on memory triggering condition only considers recently sampled signals with
state-dependent time-varying threshold parameter. There is still room for improvement for the
triggering condition. The triggering condition has a major impact on the reduction of average
signal transmission frequency. In another aspects, memory state feedback control requires all
information of the system state to implement under event-triggered mechanism in the continuous
form. Unfortunately, such requirement is difficult and even impossible to be satisfied in practical cases
based on the discrete form. Thus, output feedback control is mandatory to apply in most practical
applications. As such, practical memory ETC scheme must require a more natural and effective way.
Our research is motivated by the above discussions.

In this paper, event-triggered memory output feedback control (EMOFC) for discrete-time NCS
with the network-induced delay is investigated. Employing additional buffer element in the network
loop, memory control is implemented, which contributes to improve reliability and compensate system
performances. In addition, novel summation type triggering condition is proposed to save network
resources using memorized information. Therefore, it helps to reduce the usage of average signals
in the network. The proposed approach provides a more general event-triggering framework, which
can contain existing relative triggering condition. The design criterion with proposed memory control
and novel summation type triggering condition is derived by utilizing Finsler’s Lemma and summation
type inequalities, which is advantageous on filling nonnegative diagonal matrix. The constructed
results are presented with guaranteeing stability and H∞ performance in forms of linear matrix
inequalities. Finally, simulation results illustrate the effectiveness of the proposed method.
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2. Problem Statement and Preliminaries

Let us consider the following linear systems in discrete form.
x(k + 1) = Ax(k) + Bu(k) + D1d(k),
y(k) = Cx(k),
z(k) = Czx(k) + Fu(k) + D2d(k),

(1)

where x(k) ∈ Rn is the state of the system; u(k) ∈ Rm is the control input signal of the system;
y(k) ∈ Rp is the output signal of the system; z(k) ∈ Rq is the estimated output of the system; k is the
time instance. A, B, C, Cz, D1, D2, and F are known system matrices with appropriate dimensions.

The output feedback controller is presented as

u(k) = Ky(k), (2)

where K is the output feedback control gain matrix to be determined. In network description, a sensor
measurement is time-triggered with a constant sampling period h, while the measurement transmission
is event-triggered. The widespread event-triggering condition is as follows:

[y(k)− y(ke)]
TΩ[y(k)− y(ke)] ≥ ρyT(k)Ωy(k), (3)

where y(ke) is the latest triggered output signal, Ω is a positive definite weighting matrix, and ρ is a
positive scalar parameter. Taking into consideration the event-triggering scheme, the updated time of
data is described as follows

ke+1 = ke + min
k
{k|eT(k)ΩeT(k) ≥ ρyT(k)Ωy(k)}, (4)

where ke and ke+1 are the latest triggered instant and next triggered instant, respectively.
Considering network transmission delay, the holding interval of the zero-order hold (ZOH) at controller
Φ= k ∈ [ ke + τke , ke+1 + τke+1 − 1 ) can be represented as Φ = UΦl where Φl = [ke + l + τke+l , ke +

l + 1 + τke+l+1], l = 0, 1, . . . , ke+1 − ke − 1. τke and τke+1 are the network-induced transmission delay
of the latest and next ZOH arrival data. Defining τ(k) = k− ke − l, l ∈ Ωl , then, τ(k) is bounded as
0 < τ(k) ≤ τm + 1 = τM, where τm is the upper bound of the transmission delay τke , respectively.
Then, the control gain can be rewritten as

u(k) = Ky(k− τ(k))− Ke(k), k ∈ Ωl (5)

where e(k) = y(k)− y(ke).

3. The Memory Control and Novel Summation-Type Event-Triggered Condition

For the given system, the following serialized N− 1 memory control using previously memorized
output signals is proposed in this paper.

u(k) = K1y(ke) + K2y(ke − 1) + . . . + KNy(ke − N + 1)
= ∑N

i=1 KiCx(ke − i + 1)−∑N
i=1 Kie(k− i + 1),

k ∈ [ ke + τke , ke+1 + τke+1 ),
(6)

where ke is the latest triggered instant, N − 1 is the number of memorized signal, e(k) = y(k)− y(ke),
and K1, . . . , KN are the feedback gain matrices. The whole description of NCS is detailed in Figure 1.
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Figure 1. The description of network control systems with memory buffer.

We propose a novel event-triggering condition to take into account the information of previous
states. Utilizing memorized output signals, the summation types of event-triggering scheme
are investigated.

[y(k)− y(ke)]TΩ1[y(k)− y(ke)] + [y(k− 1)− y(ke − 1)]TΩ1[y(k− 1)− y(ke − 1)]
+ . . . + [y(k− N + 1)− y(ke − N + 1)]TΩN [y(k− N + 1)− y(ke)]

≤ ρ1yT(k)Ω1y(k) + ρ2yT(k− 1)Ω2y(k− 1) + . . . + ρNyT(k− N + 1)ΩNy(k− N + 1)
, (7)

where 0 ≤ ρi ≤ 1, Ωi for i = 1, 2, . . . , N are the scaling parameters and weighting matrices.

Remark 1. The proposed novel summation-type are composed of the previous output signals. It should be noted
that the devised one is inherited with distributed triggering parameters and distributed weighting matrices. As a
result, it provides more flexibility of the design and thus relaxes sufficient conditions. The distributed triggering
parameters widen the design flexibility, and further it has an effect on the relaxation of condition by presenting
additional selective matrices.

With the aid of the mentioned advantage in Remark 1, it could be applied to several networked
systems including distributed coupled large-scale systems, mobile sensor networks, aircraft systems,
and automated industrial factories. It is more effective in wireless networks that have limited
bandwidth.

Remark 2. Utilizing the memorized signals, the summation-type event triggering possibly send less
transmission signals in connected network. Especially, the summation terms in the left side make it more
difficult to violate triggering condition, which means that it result in less average signal transmission frequency
on network bandwidth.

Then, the transmission update time, ke+1, which is determined by the event-triggering condition,
is presented as follows:

ke+1 = ke + infk
{

k
∣∣E(ke)TΣE(ke) ≥ Y(k)TΣ1Y(k)}, (8)
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where Σ = diag{Ω1, Ω2, . . . , ΩN}, and Σ1 = diag{ρ1Ω1, ρ2Ω2, . . . , ρNΩN}. Employing the memory
output feedback control considering transmission delay, the actual control input is represented
as follows:

u(k) =
N

∑
i=1

KiCx(k− τ(k)− i + 1)−
N

∑
i=1

Kie(k− i + 1), (9)

k ∈ [ ke + τke , ke+1 + τke+1 ).

Under the the given memory control, the whole networked control system can be rewritten as{
x(k + 1) = Ax(k) + BKCX(k− τ(k))− BKE(k) + D1d(k),
z(k) = Czx(k) + FKCX(k− τ(k))− FKE(k) + D2d(k),

(10)

for k ∈ [ ke + τke , ke+1 + τke+1 ),

where

K = [K1, K2, . . . , KN ],

X(k− τ(k)) = [x(k− τ(k)), x(k− τ(k)− 1), . . . , x(k− τ(k)− N + 1)]T ,

E(k) = [e(k), e(k− 1), . . . , e(k− N + 1)]T .

The following are important lemmas that will be used in § Main Result.

Lemma 1. (Generalized free-weighting matrix based summation inequality; [28,29]) For a positive
definite symmetric matrix R ∈ Rn×n, and any matrices U, V, W, L, and M with appropriate
dimensions satisfying  U V L

VT W M
LT MT R

 ≥ 0, (11)

then, the following summation inequality holds for vector s[a, b]→ Rn, g1, g2, χ1, and χ2:

−
b−1

∑
i=a

sT(j)Rs(j) ≤ sym{χT
0 Lχ1 + χT

0 Mχ2}+ (b− a)χT
0 (U +

1
3

W)χ0, (12)

where χ0 can be an any vector, and

χT
1 = [x(b)− x(a)] , χT

2 =

[
x(b) + x(a)− 2

b−1

∑
i=a

1
b− a

x(i)

]
.

With the fact that 3 · l−1
l+1 ≤ 3l, Lemma 1 can be easily confirmed.

Lemma 2. (Finsler’s Lemma; [30]) For given matrices P, B, S, and a vector w, the following conditions
are equivalent:

(i) wT Pw < 0, for all w 6= 0, Hw = 0;

(ii) B⊥
T

PB⊥ < 0;

(iii) ∃S ∈ Rn×m such that P + Sym(SB) < 0;

such that BB⊥ = 0.
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4. Main Results

This section provides sufficient conditions of event-based H∞ stability and H∞ EMOFC design
for linear discrete-time systems. The co-design methodology for EMOFC and the trigger parameters is
given to a memory event-triggered control. The following notations are defined to simply denote the
necessary variables according to the N − 1 number of memory.

ei = [0, · · · , 0, I, 0, · · · , 0]︸ ︷︷ ︸
6N+3 Variables

∈ Rn×(5Nn+Np+n+q+r) for 1 ≤ i ≤ 5N + 1,

ej = [0, · · · , 0, I, 0, · · · , 0]︸ ︷︷ ︸
6N+3 Variables

∈ Rp×(5Nn+Np+n+q+r) for 5N + 2 ≤ i ≤ 6N + 3,

e6N+2 = [0, · · · , 0, 0, 0, · · · , I, 0]︸ ︷︷ ︸
6N+3 Variables

∈ Rq×(5Nn+Np+n+q+r),

e6N+3 = [0, · · · , 0, 0, 0, · · · , 0, I]︸ ︷︷ ︸
6N+3 Variables

∈ Rr×(5Nn+Np+n+q+r),

where only ith or jth block column is filled with identity matrix, otherwise zero matrix with
proper dimensions.

ζT
1 (k) =[xT(k + 1), η1(k), η2(k), . . . , ηN(k)︸ ︷︷ ︸

5N Variable

, eT(k), eT(k− 1), eT(k− 2), . . . , eT(k− N + 1)︸ ︷︷ ︸
N Variable

, zT(k), dT(k)],

ζT
2 (k) =[xT(k), xT(k− 1), xT(k− 2), . . . , xT(k− N + 1), eT(k), eT(k− 1), eT(k− 2), . . . ,

, eT(k− N + 1)],

η(k) =[x(k), x(k− 1), x(k− 2), x(k− N + 1))],

η1(k) =[x(k), x(k− τ(k)), x(k− τM),
k−τM

∑
i=k−τ(k)

x(i)
τ(k) + 1

,
k−τ(k)

∑
i=k−τM

x(i)
τM − τ(k) + 1

],

ηl(k) =[x(k− l + 1), x(k− τ(k)− l + 1), x(k− τM − l + 1),

k−τM−l+1

∑
i=k−τ(k)−l+1

x(i)
τ(k) + 1

,
k−τ(k)−l+1

∑
i=k−τM−l+1

x(i)
τM − τ(k) + 1

], for l = 1, 2, . . . , N,

E0 =[I, I, I, I, I], E1 = [−I, I, 0, 0, 0], E2 = [I, I, −2I, 0, 0],

E3 =[0, −I, I, 0, 0], E4 = [0, I, I, −2I, 0].

Theorem 1. (Stability) For given scalars N, τM, ρi for i = 1, 2, . . . , N, and γ, if there exist positive symmetric

matrices P =


P11 P12 · · · P1N
∗ P22 · · · P2N

∗
... · · ·

...
∗ ∗ · · · PNN

 ∈ RNn×Nn, Q1 ∈ Rn×n, Q2 ∈ Rn×n, Ri ∈ Rn×n, for i = 1, 2, . . . , N,

and any matrices G, H, Ui,a, Ui,b, Vi,a, Vi,b, Wi,a, Wi,b, Li,a, Li,b, Mi,a, Mi,b for i = 1, 2, . . . , N, and diagonal
matrices Ωi for i = 1, 2, . . . , N satisfying the following LMIs:
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Γ =


Γ1(τ(k)) Γ2 Γ3 Γ4

∗ Γ5 Γ6 0
∗ ∗ −I D2

∗ 0 DT
2 −γ2 I

 < 0, (13)

Ui,a Vi,a Li,a
∗ Wi,a Mi,a
∗ ∗ Ri

 ≥ 0,

Ui,b Vi,b Li,b
∗ Wi,b Mi,b
∗ ∗ Ri

 ≥ 0, for l = 1, 2, . . . , N, τ(k) ∈ [0, τM] (14)

where

Γ1 = ζT
1 (k)

6

∑
i=1

Γ̂iζ1(k),

Γ̂1 =



e1

e2

e3

e4

e5

e6



T 

τMR1 −τMR1 0 0 0 0
∗ Q1 + Q2 + τMR1 0 0 0 0
∗ ∗ −Q2 0 0 0
∗ ∗ ∗ −Q1 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0





e1

e2

e3

e4

e5

e6


, Γ̂2 =


e1

e2

e7
...

e5N−8



T

P


e1

e2

e7
...

e5N−8

 ,

Γ̂3 = −


e2

e7

e12
...

e5N−3



T

P


e1

e2

e7
...

e5N−3

+ τM

N

∑
i=2

(e5i−3 − e5i+2)Ri(e5i−3 − e5i+2) +
N

∑
i=1

eT
5i−2ρiΩie5i−2,

Γ̂4 =
N

∑
i=1


e5i−3
e5i−2
e5i−1

e5i
e5i+1


T

(τ(k)E0(Ui,a +
1
3

Wi,a)E0 + (τM − τ(k))E0(Ui,b +
1
3

Wi,b)E0

+ sym{E0Li,aE1 + E0Mi,aE2 + E0Li,bE3 + E0Mi,bE4})


e5i−3
e5i−2
e5i−1

e5i
e5i+1

 ,

Γ̂5 = Sym
(

eT
1 (−G)e1 + eT

1 GAe2 + eT
2 (−HT)e1 + eT

2 (HA)e2 + eT
6N+2Cze2

)
,

Γ̂6 = Sym
(

∑N
i=1(e

T
1 GBKiCe5i−2)

)
+ Sym

(
∑N

i=1(e
T
2 HBKiCe5i−2)

)
,
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Γ2 =


−GBK1 −GBK2 −GBK3 · · · −GBKN
−HBK1 −HBK2 −HBK3 · · · −HBKN

...
...

...
. . .

...
0 0 0 · · · 0

+
N

∑
i=1

eT
5i−2ρiΩiei+5N+1,

Γ3 = eT
2 CT

z e6N+2 +
N

∑
i=1

(eT
6N+2FKiCe5i−2ei+5N+1),

Γ4 =
[GD1, HD1 0, . . . , 0, 0, 0︸ ︷︷ ︸

6N

0]T ,

Γ5 =



(ρ1 − 1)Ω1 0 0 0 · · · 0
0 (ρ2 − 1)Ω2 0 0 · · · 0
0 0 (ρ3 − 1)Ω3 0 · · · 0
0 0 0 (ρ4 − 1)Ω4 · · · 0
...

...
...

...
. . . 0

0 0 · · · 0 0 (ρN − 1)ΩN


,

Γ6 =
N

∑
i=1

(−eT
6N+2FKiei+5N+1),

then, the closed loop system in Equation (10) is asymptotically stable under proposed event triggered condition
in Equation (8) with the H∞ performance index γ.

Proof of Theorem 1. Consider the following LK functional candidate

V(k) , ηT(k)Pη(k) + ∑k−1
l=k−τM

xT(l)Q1(l) + ∑k−1
l=k−τ(k) xT(l)Q2(l)

+∑N
i=1 ∑0

p=−τM+N−1 ∑
k+p−1
l [x(l + 1)− x(l)]T Ri[x(l + 1)− x(l)].

(15)

The discrepancy of the V(k) in Equation (15) from k to k + 1 is computed as

∆V(k) =ηT(k + 1)Pη(k + 1)− ηT(k)Pη(k) + xT(k)Q1x(k)

− xT(k− τM)Q1x(k− τM) + xT(k)Q2x(k)

− xT(k− τ(k))Q2x(k− τ(k)) + τM

N

∑
i=1

δT(k− N + 1)Riδ(k− N + 1)

−
N

∑
i=1

k+N−2

∑
s=k−τM+N−1

δT(s)Riδ(s),

where δ(s) = x(s)− x(s− 1). Applying Lemma 1 on the ∆V(k) summation terms leads to

−∑k−1
s=k−τM

δT(s)R1δ(s) ≤ ηT
1 (t)(τ(k)E0(U1,a +

1
3 W1,a)E0 + (τM − τ(k))E0(U1,b +

1
3 W1,b)E0

+sym{E0L1,aE1 + E0M1,aE2 + E0L1,bE3 + E0M1,bE4})η1(t),
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Similarly, the upper bound of −∑N
i=1 ∑k+N−2

s=k−τM+N−1 δT(s)Riδ(s) can be obtained with
Equation (14). Then, the upper bound of the ∆V(k) in Equation (15) can be arranged as

∆V(k) ≤ηT(k + 1)Pη(k + 1)− ηT(k)Pη(k) + xT(k)Q1x(k) (16)

− xT(k− τM)Q1x(k− τM) + xT(k)Q2x(k)

− xT(k− τ(k))Q2x(k− τ(k))

+
N

∑
i=1

ηT
i (k)(τ(k)E0(Ui,a +

1
3

Wi,a)E0 + (τM − τ(k))E0(Ui,b +
1
3

Wi,b)E0

+ sym{E0Li,aE1 + E0Mi,aE2 + E0Li,bE3 + E0Mi,bE4})ηi

+
N

∑
i=1

e(k− i + 1)TΩie(k− i + 1)−
N

∑
i=1

e(k− i + 1)TΩie(k− i + 1).

Considering the proposed summation-type event-triggering condition in Equation (8) to the
bound of the ∆V(k) in Equation (16), the following H∞ performance index is taken into consideration.

J =
∞

∑
k=0

∆V(k) + zT(k)z(k)− γ2dT(k)d(k). (17)

The upper bound of the J in Equation (17) can be redefined with the combined conditions as

J ≤
∞

∑
k=0

ζT(k)ΛTΨΛζ(k) < 0, (18)

where

Ψ =Ψ1 + Ψ2 + Ψ3 + Ψ4,

Ψ1 =η(k + 1)T Pη(k + 1)− η(k)T Pη(k),

Ψ2 =


τMR1 −τMR1 0 0 0
∗ Q1 + Q2 + τMR1 0 0 0
∗ ∗ ρ1CTΩ1C−Q2 0 ρ1CTΩ1

∗ ∗ ∗ −Q1 0
∗ ∗ ∗ ∗ (ρ1 − 1)Ω1

 ,

Ψ3 =
N

∑
i=1

ηT
i (k)(τ(k)E0(Ui,a +

1
3

Wi,a)E0 + (τM − τ(k))E0(Ui,b +
1
3

Wi,b)E0

+ sym{E0Li,aE1 + E0Mi,aE2 + E0Li,bE3 + E0Mi,bE4})ηi

Ψ4 =
N

∑
i=2

(
y(k− τ(k)− i + 1) + e(k− i + 1)

)T
Ωi

(
y(k− τ(k)− i + 1) + e(k− i + 1)

)
−

N

∑
i=2

e(k− N + 1)TΩie(k− i + 1) + zT(k)z(k)− γ2dT(k)d(k),
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ζT(k) = [η1(k), η2(k), . . . , ηN(k)︸ ︷︷ ︸
5N Variable

, eT(k), eT(k− 1), eT(k− 2), . . . , eT(k− N)︸ ︷︷ ︸
N Variable

, dT(k)],

ζT
1 (k) = [xT(k + 1), η1(k), η2(k), . . . , ηN(k)︸ ︷︷ ︸

5N Variable

, eT(k), eT(k− 1), eT(k− 2), . . . , eT(k− N)︸ ︷︷ ︸
N Variable

, zT(k), dT(k)],

ΛT =



A I 0 0 0 0 0 0 C 0
BK1C 0 I 0 0 0 0 0 FK1C 0

0 0 0 I 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
−BK1 0 0 0 0 0 0 0 FK1 0
−BK2 0 0 0 0 0 0 0 FK2 0

...
...

...
...

...
...

...
...

...
...

−BKN 0 0 0 0 0 0 0 FKN 0
D1 0 0 0 0 0 0 0 D2 I


.

Applying Lemma 2 in consideration of the system description in Equation (8), one can have

Ψ + Sym(TΛ⊥) < 0 (19)

where

T =


GT HT 0 0 0 0︸ ︷︷ ︸

5Nn−n+Np

0 0

0 0 0 0 0 0︸ ︷︷ ︸
5Nn−n+Np

I 0


T

,

Λ⊥ =


−I, A, BK1C, 0, 0, 0︸ ︷︷ ︸

5 Variables

0, BK2C, 0, 0, 0︸ ︷︷ ︸
5 Variables

· · · 0, BKNC, 0, 0, 0︸ ︷︷ ︸
5 Variables

−BK1,−BK2, . . . ,−BKN︸ ︷︷ ︸
Np

0 D1

0, C, FK1C, 0, 0, 0︸ ︷︷ ︸
5 Variables

0, FK2C, 0, 0, 0︸ ︷︷ ︸
5 Variables

· · · 0, FKNC, 0, 0, 0︸ ︷︷ ︸
5 Variables

−FK1,−FK2, . . . ,−FKN︸ ︷︷ ︸
Np

−I D2

 .

Finally, one can have Equation (19), which is equivalent to the condition in Equation (13) in
Theorem 1. For the signal holding time τ(t), the above inequality implies that V̇(t) ≤ 0. This complete
the proof.

Remark 3. The proposed output feedback control and event-triggering condition are more general than existing
results. If N = 1 is chosen, it can be regarded as the design of event-triggered output feedback control. If N = 1
and K1 = K, C = I, then, the conditions are exactly equivalent to that of state-feedback control with the standard
relative event-triggering condition. Therefore, the proposed condition includes the method of existing ones.

From Theorem 1, the stability for given EMOFC considering robustness to outer disturbances H∞

can be proved. It verifies the feasibility of the given control gain. When C = I is chosen, it is easily
applicable to the case of state feedback. Based on the presented Theorem 1, the problem of stabilization
is handled by Lemma 2. The design method for EMOFC is presented in the Theorem 2.

Remark 4. The utilization of generalized free-weighting matrix based summation inequality brings out not
only the relaxation of the stability condition but also provides additional free matrices that can be used for filling
matrices by selecting appropriate free variables.
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Theorem 2. [Stabilization] For given scalars N, τM, ρi for i = 1, 2, . . . , N, and γ̄ = γ2, if there exist positive

symmetric matrices P =


P11 P12 · · · P1N
∗ P22 · · · P2N

∗
... · · ·

...
∗ ∗ · · · PNN

 ∈ RNn×Nn, Q1 ∈ Rn×n, Q2 ∈ Rn×n, Ri ∈ Rn×n, for i =

1, 2, . . . , N, and any matrices G, H, Z, Ui,a, Ui,b, Vi,a, Vi,b, Wi,a, Wi,b, Li,a, Li,b, Mi,a, Mi,b, Yi for i = 1, 2, . . . , N,
and diagonal matrices Ωi for i = 1, 2, . . . , N satisfying the following LMIs:

Θ =


Γ̃1(τ(k)) Γ̃2 Γ̃3 Γ4 Θ1

∗ Γ5 Γ̃6 0 Θ2

∗ ∗ −I D2 F− b3FY
∗ 0 DT

2 −γ̄I 0
∗ ∗ (F− b3FY)T 0 −b4Y− b4YT

 < 0, (20)

Ui,a Vi,a Li,a
∗ Wi,a Mi,a
∗ ∗ Ri

 ≥ 0,

Ui,b Vi,b Li,b
∗ Wi,b Mi,b
∗ ∗ Ri

 ≥ 0, for l = 1, 2, . . . , N, τ(k) ∈ [0, τM] (21)

where

Γ̃1(τ(k)) = Γ1(τ(k))− Γ̂6 + Sym
(

∑N
i=1(e

T
1 b1BZiCe5i−2

)
+ Sym

(
∑N

i=1(e
T
2 BZiCei+5N+1)

)
,

Γ̃2 =
N

∑
i=1

(eT
1 b1BZie5i−2 + eT

2 b2BZiei+5N+1),

Γ̃3 = eT
2 CT

z e6N+2 +
N

∑
i=1

(eT
6N+2b3FZiCe5i−2),

Γ̃6 =
N

∑
i=1

(−eT
6N+2b3FZiei+5N+1),

Θ1 = [(GB− b1BY)T , (HB− b2BY)T , b4Z1C, 0, 0, 0︸ ︷︷ ︸
5n

, 0, b4Z2C, 0, 0, 0︸ ︷︷ ︸
5n

· · · , 0, b4ZNC, 0, 0, 0︸ ︷︷ ︸
5n

]T ,

Θ2 = [(−b4Z1), (−b4Z2), . . . , (−b4ZN)]
T ,

then, the system is asymptotically stable with guaranteed H∞ performance γ (γ̄ = γ2). Moreover, the control
gain is given by Ki = Y−1Zi.

Proof of Theorem 2. From the proof of Theorem 1, Lemma 2 is reutilized with additional parameters
b1, b2, b3, and b4 to separate G, H from Ki in Equation (18).

Γ + Sym(SΛ2) < 0, (22)

where

S = [(b1BY− GB)T , (b2BY− HB)T , 0, · · · , 0, (b3FY− F)T0, (b4Y)T ]T ,

Λ2 = [0, 0, K1C 0, 0, 0,︸ ︷︷ ︸
5n

0, K2C 0, 0, 0,︸ ︷︷ ︸
5n

, . . . , . . . , . . .︸ ︷︷ ︸
5(N−3)n

, 0, KNC 0, 0, 0,︸ ︷︷ ︸
5n

−K1,−K2, . . . ,−KN︸ ︷︷ ︸
Np

, 0, 0, −I] ∈ Rn×(5Nn+Np+n+q+r+m).

Then, Equation (22) is identical to Equation (24). This completes the proof.
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5. Numerical Examples

Three numerical examples are selected to validate the effectiveness of the proposed method.
Example (1) The 2nd-order discrete networked control system is described as follows:

x(k + 1) =

[
0.5 0.2
0.4 0.1

]
x(k) +

[
0

0.1

]
u(k) +

[
0
1

]
d(k),

y(k) =
[
1 1

]
x(k),

z(k) =

[
1 0
0 1

]
x(k) +

[
0.2
0.1

]
u(k) +

[
0.1
0

]
d(k).

(23)

The sampling time of the given system is chosen as 0.1 s. The maximum network delay τm

is given as 0.4 s. By using Theorem 2, the solutions are calculated as follows with the parameters
b1 = 1, b2 = 1, b3 = 1, b4 = 1, ρ1 = 0.1, . . . , ρN = 0.1, N = 3, γ = 1.5965,

K1 = −0.0449, for N = 1,

K1 = −0.0308, K2 = −0.0022, K3 = −0.0012, for N = 3.

Under the initial condition x(0) = [4,−3]T , the system response with the given control gains is
displayed in Figure 2. The outer disturbances are inserted as d(k) = 0.5 sin(0.125πi)− cos(0.31πi)
for 30 ≤ k ≤ 50 (otherwise, d(k) = 0). The state trajectories with and without memory buffer are
presented at the same time for the purpose of comparison in Figure 1. The 2 memory elements are
used in the example.

0 2 4 6 8 10 12

Time (s)

-3

-2

-1

0

1

2

3

4

x
(k

)

The State Trajectories with/without Memory

Without Memory x
1

Without Memory x
2

With Memory x
1

With Memory x
2

Figure 2. The state trajectories of the system with/without memory.

In Figure 3, the intervals between consecutive signals for each cases are denoted. The average
transmission rate (ATR) is defined as the summation of the total consecutive signals divided by the
total number of transmitted signals, which means the average interval between transmitted signals.
Thus, ATR can be used as a direct indicator for the reduction of average signal transmission frequency
in network. When the memory control is employed, ATR is given as 0.1750 while the value 0.1035 of
ATR is for pure output feedback without memory elements. As shown in Figure 4, the memory control
with 2 buffers provides remarkable improvement in the reduction of network resources. It means that
the proposed scheme stabilizes the systems with much reduces signals. Approximately, 69% larger
sampling intervals are exhibited using memory control in the result.
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Figure 3. The intervals between consecutive signals.

The comparisons of average transmission rate (ATR)
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Figure 4. The comparisons of the average transmission rate (ATR) with/without memory.

Example (2) Another 2nd-order discrete networked control system is considered as follows:

x(k + 1) =

[
1.1 0
1 0.5

]
x(k) +

[
0.5
0.1

]
u(k) +

[
0
1

]
d(k),

y(k) =
[
0.8 0.1

]
x(k),

z(k) =

[
1 0
0 1

]
x(k) +

[
0

0.1

]
u(k) +

[
0.3
0.1

]
d(k).

(24)

The sampling period h is 0.25, and an artificial delay is chosen as τm = 0.6. Taking parameters
b1 = 1, b2 = 1, b3 = 1, b4 = 1, ρ1 = 0.1, ρ2 = 0.1, ρ3 = 0.1, ρ4 = 0.1, and γ = 2.3884, the solutions are
given for N = 1, 2, 3, and 4 solving Theorem 2. The results are summarized in Table 1. The curves of
state response and intervals between signals for different memory element N are shown in Figures 5–8.
From the Figures, it is shown that the proposed EMOFC is feasible under the various memory number.
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Table 1. The controller gain matrices for each memory number.

Memory Controller Gain K1 Controller Gain K2 Controller Gain K3 Controller Gain K4

0 K1 = −1.5853 - - -
1 K1 = −1.5606 K2 = −0.0050 - -
2 K1 = −1.5696 K2 = −0.0033 K3 = 0.0651 -
3 K1 = −1.5786 K2 = −0.0032 K3 = 0.031 K4 = 0.0318

0 5 10 15 20 25

Time (s)

-2

0

2

4

x
(k

)

The State Trajectory (Memory = 0)

x
1

x
2

0

0.2

0.4

0.6

0.8
The intervals betweeen transmitted signal

0 5 10 15 20 25

Time (s)

Figure 5. The state trajectories of the system for N = 1.
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x
1

x
2

0

0.2

0.4

0.6

0.8
The intervals betweeen transmitted signal

0 5 10 15 20 25

Time (s)

Figure 6. The state trajectories of the system for N = 2.
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0 5 10 15 20 25

Time (s)
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0

2

4

x
(k

)

The State Trajectory (Memory = 2)

x
1

x
2

0

0.2

0.4

0.6

0.8
The intervals betweeen transmitted signal

0 5 10 15 20 25

Time (s)

Figure 7. The state trajectories of the system for N = 3.
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The State Trajectory (Memory = 3)

x
1

x
2

0

0.2

0.4

0.6

0.8
The intervals betweeen transmitted signal

0 5 10 15 20 25

Time (s)

Figure 8. The state trajectories of the system for N = 4.

Thus, for the above given controller gains, d(k) = sin(2πkh) for 20 ≤ kh ≤ 25 s (otherwise
d(k) = 0), and initial condition x(0) = [3,−2], the simulations conducted for N = 1, 2, 3, and 4
are drawn. From the results, the average transmission rate is calculated using the information of
accumulated total transmitted signals. The results are shown in Table 2. From Table 2 it can be noticed
that the larger number of the memory is utilized, the better average transmission intervals will be.
Figure 9 shows the compared average transmission rate for different memory N. It apparently displays
the effect of memory elements. As memory increases, less transmitted information is transmitted,
which means consuming less cost or energy.
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Table 2. The average transmission rate and total transmitted signals for each memory number.

Memory Average Transmission Rate Total Transmitted Signal

0 0.3103 79
1 0.3182 77
2 0.3300 75
3 0.3345 74

0 1 2 3

The number of memory N

0.31

0.315

0.32

0.325

0.33

0.335

A
T

R

The average transmission rate (ATR) for various N

Figure 9. The average transmission rate for memory.

Example (3) Decoupling of the nonlinear dynamics and linear approximation, the longitudinal
motion of F-18 aircraft is represented as the following dynamic equation.[

α̇(t)
q̇(t)

]
= A ·

[
α(t)
q(t)

]
+ B ·

[
δE(t)

δPTV(t)

]
, (25)

where

A =

[
−1.175 0.9871
−8.458 −0.8776

]
, B =

[
−0.194 −0.03593
−19.29 −3.803

]
.

From the discretized model, the following discrete model is constructed with
corresponding matrices.

x(k + 1) =

[
−1.175 0.9871
−8.458 −0.8776

]
x(k) +

[
−0.194 −0.03593
−19.29 −3.803

]
u(k) +

[
−19.29
−3.803

]
d(k),

y(k) =
[
−1 1

]
x(k),

z(k) =

[
1 0
0 1

]
x(k) +

[
1 0
0 0

]
u(k)

(26)

The sampling time of the F-18 aircraft is 0.05, and the τM is chosen as 1. Applying Theorem 2
with appropriate parameters b1 = b2 = b3 = 1, b4 = 7.7, ρ = 0.1, and γ = 4.9866, the control gains are
gained as follows.

(i) Without Memory : K =

[
0.3604
0.0771

]
, Ω = 5.706,

(ii) With Memory : K1 =

[
0.3335
0.0728

]
, Ω1 = 5.2537, K2 =

[
0.0167
0.0049

]
, Ω2 = 0.27665.
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For the considered system, the initial condition is taken as x(0) = [−5, 5], and the simulations
are shown in Figure 10. The blue line and the red line display the average transmission intervals.
From Figure 11, one can see that the effectiveness of this proposed EMOFC method for the described
aircraft system. The average intervals with and without EMOFC is 0.1827, and 0.1672, respectively.
In average, 3 samples are unused for the stabilization of the given systems, which imply that the
proposed EMOFC effectively regulates the networked control systems.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-5

0

5

x
(k

)

(a) The State Trajectories w/o Memory

x
1

x
2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-5

0

5

x
(k

)

(b) The State Trajectories with Memory

x
1

x
2

0

0.1

0.2

0.3

0.4

0.5

0.6

T
im

e
 I
n
te

rv
a
l

(c) The intervals w/o Memory
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Figure 10. The state trajectories and intervals for with and without memory control. (a) The state
response of the systems without memory control; (b) the state response of the systems with memory;
(c) the intervals between transmitted signals without memory control; (d) the intervals between
transmitted signals without memory control.
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Figure 11. The comparisons of the ATR with/without memory.

6. Conclusions

This paper proposed an summation-type event-triggering condition with event-triggered memory
output feedback control (EMOFC) in the consideration of H∞ performance. The memory output
feedback control employing memorized past information of output signals is exploited to enhance
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the triggering intervals under novel event-triggered condition. The summation type event-triggering
condition is more generalized type of condition including existing relative triggering type. The stability
and control design methodology are presented under the memory control and novel triggering
condition. The proposed ones are more general type of control and triggering condition covering
existing methods. Throughout the numerical examples, it is shown that the proposed scheme shows off
the reduction of average signal transmission frequency. Therefore, the effectiveness and improvement
using memory buffer is verified. Further research could be conducted for the memory control with
the network illness including missing data losses and data disorder in network. Selective-based
event-triggering and adaptive-type event-trigger condition with memory are also possible as the future
direction of research.
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