
Received May 11, 2020, accepted June 1, 2020, date of publication June 8, 2020, date of current version June 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3000773

RRNet: Repetition-Reduction Network for Energy
Efficient Depth Estimation
SANGYUN OH 1,2,∗ , (Student Member, IEEE), HYE-JIN S. KIM 3,4,∗ , (Student Member, IEEE),
JONGEUN LEE 1,2, (Member, IEEE), AND JUNMO KIM 3, (Member, IEEE)
1School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44776, South Korea
2Neural Processing Research Center, Seoul National University, Seoul 151-742, South Korea
3Robotics Program, School of Electrical Engineering, KAIST, Daejeon 34141, South Korea
4Artificial Intelligence Laboratory, ETRI, Daejeon 34129, South Korea

Corresponding author: Junmo Kim (junmo.kim@kaist.ac.kr)

∗Sangyun Oh and Hye-Jin S. Kim contributed equally to this work.

This work was supported in part by the Ministry of Trade, Industry and Energy (MOTIE), South Korea, through the i-Ceramic platform
construction project-i-Ceramic manufacturing innovation platform (Development of Cloud Big Data Platform for the Innovative
Manufacturing in Ceramic Industry) under Grant 20004367, in part by NRF grants funded by the MSIT of Korea under Grant
2017R1D1A1B03033591 and Grant 2020R1A2C2015066, in part by the IITP grant funded by the MSIT of Korea under Grant
1711080972, and in part by the Free Innovative Research Fund of UNIST under Grant 1.170067.01.

ABSTRACT Lightweight neural networks that employ depthwise convolution have a significant computa-
tional advantage over those that use standard convolution because they involve fewer parameters; however,
they also require more time, evenwith graphics processing units (GPUs).We propose a Repetition-Reduction
Network (RRNet) in which the number of depthwise channels is large enough to reduce computation time
while simultaneously being small enough to reduce GPU latency. RRNet also reduces power consumption
and memory usage, not only in the encoder but also in the residual connections to the decoder. We apply
RRNet to the problem of resource-constrained depth estimation, where it proves to be significantly more
efficient than other methods in terms of energy consumption, memory usage, and computation. It has two
key modules: the Repetition-Reduction (RR) block, which is a set of repeated lightweight convolutions that
can be used for feature extraction in the encoder, and the Condensed Decoding Connection (CDC), which
can replace the skip connection, delivering features to the decoder while significantly reducing the channel
depth of the decoder layers. Experimental results on theKITTI dataset show that RRNet consumes 3.84× less
energy and 3.06× lessmemory than conventional schemes, and that it is 2.21× faster on a commercial mobile
GPU without increasing the demand on hardware resources relative to the baseline network. Furthermore,
RRNet outperforms state-of-the-art lightweight models such as MobileNets, PyDNet, DiCENet, DABNet,
and EfficientNet.

INDEX TERMS Computer vision, deep neural network, depth estimation, encoder–decoder network,
lightweight neural network, machine learning, mobile graphical processing unit (GPU), unsupervised
learning.

I. INTRODUCTION
Depth estimation is crucial for several computer vision
applications. Many technological goals, including localiza-
tion in augmented reality (AR) or virtual reality (VR),
advanced robotics, the reliable operation of autonomous
vehicles or drones, and smart factories, cannot be realized
without accurate depth estimation. Furthermore, deep learn-
ing approaches [1]–[9] convincingly outperform attempts
to manually solve this problem [10], [11]. Nevertheless,

The associate editor coordinating the review of this manuscript and

approving it for publication was Pengcheng Liu .

these approaches involve resource-intensive computation.
Consequently, their use in mobile applications that involve
a lightweight neural network model and relatively low-end
graphics processing units (GPUs) remains limited. Moreover,
in most cases, they make use of the Compute Unified Device
Architecture (CUDA) parallel computing platform [12] and
the related neural-network library cuDNN [13]. As we will
show in the subsequent sections of this paper, this can
strongly affect performance.

The most intuitive method of designing a lightweight
model is to employ light layers with small sized kernels and
to suitably scale the number of channel parameters using

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 106097

https://orcid.org/0000-0002-2230-2785
https://orcid.org/0000-0001-5534-6250
https://orcid.org/0000-0003-1523-2974
https://orcid.org/0000-0002-7174-7932
https://orcid.org/0000-0003-0677-4421


S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

appropriate sub-sampling. However, performance can suffer
because trainable data are expensive and limited in volume.
Various compensation techniques for trainable data have
been implemented [14]–[17], but lightweight models such as
MobileNet [18], [19], SqueezeNet [14], ShuffleNet [20], and
EfficientNet [21] generally involve encoder-only networks
with classification-type architectures and a narrow output
resolution. Current state-of-the-art lightweightmodels cannot
be applied to the decoder portion of an encoder–decoder net-
work: the differences in model design and data flow offset the
advantages of the reduced model with the encoder structure.

Most recent lightweight networks make extensive use of
depthwise convolution layers to reduce computational com-
plexity. While the benefit of such an approach may be con-
siderable, there remain problems with latency which have not
been investigated heretofore.

In general, depth estimation methods require an encoder–
decoder network, which entails more computation and
memory usage than a network of the kind used for classi-
fication or detection. In addition, many feature channels in
the encoder network can lead to extensive computation in
the decoder because of direct layer-wise connections between
the two networks; although the deep network structures and
overlapping information in both the encoder and decoder tend
to improve the performance, such tightly coupled networks
require significant hardware resources, increasing the model
complexity and hindering efficient deployment in a mobile
environment.

This study addresses the problem of designing an energy
efficient, lightweight encoder–decoder model for depth esti-
mation.

• We design a model that has the advantages of a light
weight and low latency by controlling the ratio of depth-
wise convolution to other convolutions.

• We propose Repetition-Reduction (RR) block, which is
an energy efficient encoder design module.

• We propose a Condensed Decoding Connection (CDC)
tied to the encoder’s special repetition structure that
delivers feature information to the decoder efficiently
with a high feature density while suppressing the rapid
growth of model complexity; the CDC’s efficiency is
maximized by the RR block.

• We propose a Repetition-Reduction Network (RRNet),
which is an energy efficient encoder–decoder model
based on RR blocks and CDCs that outperforms cur-
rent state-of-the-art complex and lightweight models in
terms of performance, run time, and energy consumption
using practical mobile GPU hardware.

The rest of the paper is organized as follows: Section II
introduces related works ranging from classical depth esti-
mation approaches to state-of-the-art lightweight neural net-
work model designs. Our design modules, namely, the RR
block, CDC, and RRNet, are comprehensively discussed in
Section III. Then, Section IV discusses the implementation
of the proposed model and compares the experimental results

FIGURE 1. Energy consumption against time for six models on
NVIDIA TX2.

of RRNet with those of various models. Finally, in Section V,
we present our conclusions.

II. RELATED WORK
In this section, we briefly review some of the major
approaches to supervised and unsupervised depth estimation
and lightweight neural network design.

A. SUPERVISED DEPTH ESTIMATION
Most depth estimation methods [4]–[6], [9] use supervised
approaches, which typically achieve better performance than
unsupervised ones. In particular, [6], [9] and [22] employ
one or two spatial-pyramid networks with Spatial Pyramid
Pooling (SPP) [23], which has been intensively used in
encoder–decoder networks [22], [24], [25]. In [25], [26], the
SPP module uses adaptive average pooling to compress fea-
tures into four scales, followed by pointwise convolution to
reduce feature dimensions and the concatenation of different
feature-map levels to form the final SPP feature maps.

The good performance of supervised methods is due to the
presence of ground truth (GT) data. However, it is difficult
to prepare reliable depth GT datasets because humans have
limited depth-labeling capability and human-reported depth
datasets usually contain considerable noise. More accurate
GT depths can be obtained with the help of expensive depth
sensors such as LiDARs, radars, and laser scanners, but these
sensors also have limitations (apart from their cost): LiDAR
has shallow channels that hardly cover the full range of
image resolutions; active sensors such as Kinect and Time
of Flight (ToF) sensors have holes around the object bound-
aries and are sensitive to strong visible light. Moreover,
depth labeling must cover multiple camera viewpoints and
thus involves elaborate camera calibrations. Therefore, more
attention is now being focused on unsupervised learning,
which does not require the manual labeling of datasets.

B. UNSUPERVISED DEPTH ESTIMATION
Unsupervised depth learning [1]–[3], [7], [8] offers the ben-
efit of not requiring annotated GT depths. In [3], [7], unsu-
pervised learning removes the need for separate supervisory
signals (depth or ego-motion ground truth, or multi-view

106098 VOLUME 8, 2020



S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

video) and achieves good performance by introducing camera
motion in the learning process. Monodepth, presented at
CVPR 2017 by Godard et al. [27], achieves good perfor-
mance using a pair of calibrated cameras (right and left) by
generating the right image from the left image via left–right
consistency alone, without the ground truth. Monodepth uses
the VGG [28] and ResNet [29] architectures and generates a
decoder with architectures similar but inverse to those of the
encoder.

C. LIGHTWEIGHT NETWORK DESIGNS
Several methods have been proposed for making deep neural
networks lighter, among them are deep compression [30],
low-bit quantization [31], low-rank approximation [32],
matrix decomposition [33], and sparse Winograd-based con-
volutions [34]. There are also various architectural engi-
neering approaches based on the bottleneck structure and
layer factorization; these are mainly introduced in state-
of-the-art lightweight networks such as SqueezeNet [14],
MobileNet [18], [19], ShuffleNet [20], and EfficientNet [21].

Depthwise Separable Convolution (DWconv) [35] is
a layer-factorization approach that is widely used in
lightweight models. DWconv factorizes one convolution
layer into a depthwise convolution and a pointwise convolu-
tion. The depthwise convolution has very light computation
requirements and few parameters, because each channel of
the input performs a convolution using a single unique depth
filter; this is an extreme case of group convolution. The point-
wise convolution forms a final output layer that interchanges
information to compensate for any performance degradation
caused by the depthwise convolution. Our design modules
also utilize DWconv, which is covered in detail in Section III.
SqueezeNet [14] is a backbone network showing similar

performance to AlexNet [36]. It is composed of Fire modules,
each of which first factorizes one convolution layer into two
different kernels of sizes, 3× 3 and 1× 1, and then concate-
nates them into one output convolution layer. SqueezeNet has
the advantage of reduced weight parameters because of the
small kernel sizes and the division of one layer into two.

MobileNet [18], [19] uses a design block that is primarily
based on inverted residual connections, linear bottlenecks,
and DWconv [35]. The scaling parameters of a lightweight
backbone network of such modules could be used to change
the network channels or input feature size for various pur-
poses, such as accommodating specific target hardware plat-
forms.

ShuffleNet [20] utilizes a group convolution and adopts
channel shuffling, which allows active interchange of the
feature information. The effectiveness of channel shuffling,
which compensates information loss due to group convolu-
tion through a group scaling parameter along with a backbone
network, has been experimentally demonstrated.

Other recent efficient architectures such as ESPNetv2 [37],
DiCENet [38], and DABNet [39] also utilize DWconv. ESP-
Netv2 [37] applies DWconv with atrous convolution within
the dilation rate range of the number of branches, so that each

DWconv has a differently sized receptive field. DiCENet [38]
transposes one input to three so that each height, width, and
channel are at the input depth, processes them using DWconv,
and then transposes them back to the original shape in order
to concatenate those into one layer. DABNet [39] halves the
number of input channels by a 3 × 3 standard convolution
and then applies DWconv. The 3 × 3 receptive field is then
divided into two 3×1 paths. DWconv is performed again with
the opposite 1× 3 receptive field, and passes through a 1× 1
pointwise convolution that restores the number of channels to
the original.

On the basis of the above studies, it seems that the bot-
tleneck block is very efficient for model compression and
that it is well-utilized in lightweight networks. Enriched
information in the upper layer is transmitted to the bot-
tom layer and is contracted by the pointwise convolution
layer. MobileNetv2 [19] considers inverted residual blocks
to account for residual connections to the bottom layer. How-
ever, this structure hardly handles the residual connections to
multiple connections in the bottom layer or skip connections
to the layers in the decoder. This drawback has inspired the
method proposed in this study.

III. METHODS
In our model, RRNet, we consider both GPU latency and
computation. We propose the RR block and CDC as build-
ing components for an efficient encoder–decoder model. To
design RRNet, we have studied lightweight convolutions
such as depthwise convolution and pointwise convolution
from the mobile GPU perspective. We have observed that
although depthwise convolution involves a small amount of
computation, its GPU latency is higher than that of other
convolution operations such as the 3×3 standard convolution
and the pointwise convolution, which we have described in
detail in the Bottleneck Part in Section III A. Therefore, our
approach to designing the model architecture of the RR block
is to form an efficient structure of lightweight layers by keep-
ing the number of channels in the depthwise layer sufficiently
large to reduce computation, but also small enough to enhance
the latency. Despite the latency issue, depthwise convolution
offers substantial benefits in terms of computation and the
number of parameters. Therefore, we strive to maintain the
correct ratio between the depthwise convolution layers and
other kinds of convolutions. In addition, CDC, the other
building block, is designed to maintain the directionality
with which the computation is reduced, while passing rich
information from the encoder to the decoder.

Next, we briefly introduce the roles of the RR block and
the CDC. The RR block is designed for the encoder and
it extracts the feature information. To do this efficiently,
lightweight layers are used, which can be repeated according
to the repetition parameter value r ; thus, the performance of
the encoder can be improved as the model scales up and the
number of parameters increases. The CDC is designed for
the decoder. The RR block increases the number of layers
while performing repetition through the lightweight layers;

VOLUME 8, 2020 106099



S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

FIGURE 2. Proposed RR block (Bottleneck Part + Transition Part) and CDC Part. In the Bottleneck Part, the input channel is reduced to the value cr
through channel reduction by 1× 1 pointwise convolution, and 3× 3 depthwise convolution is processed with the same channel value. Then, the channel
value is increased to ce through channel expansion by 1× 1 pointwise convolution. This process is repeated r times, as indicated by the orange arrows.
During the repetition, small pointwise convolution outputs that have the channel value cr are concatenated sequentially in the CDC Part. When the
repetition ends, the Transition Part reduces the channel of the Bottleneck Part output to cr through 1× 1 pointwise convolution, increases the channel
back to ce through 3× 3 standard convolution, and forwards it to the input of the next encoder layer. At this time, the CDC Part concatenates one last
small pointwise convolution output (cr channel) and finally performs a reduction process by 1× 1 pointwise convolution to reduce the channel size of the
concatenated output from cr × (r + 1) to cr through pointwise convolution. The result is provided as a decoder input.

the CDC collects some of these layers through a concatena-
tion operation. Thus, the CDC and RR block work closely
together through the cycle of repetitions. The output layer
that is concatenated by the CDC is called the layer chunk.
After all the concatenations, the channel of the layer chunk
will be as large as the number of repetitions r . Therefore,
the process of reducing this channel is performed through
pointwise convolution. The channel-reduced layer chunk is
then provided as an input to the decoder. Figure 2 illustrates
the main building blocks of the proposed model and their
operational flow in detail.

A. REPETITION AND REDUCTION (RR) BLOCK
The RR block can be used as a building block for the encoder.
It is divided functionally into two parts, the bottleneck part
and transition part, as shown in Figure 2. Each of these is
described in detail below.

1) BOTTLENECK PART
The bottleneck part consists of lightweight convolution layers
arranged in triplets, the first and third convolutions in each
triplet being pointwise and the middle convolution being
depthwise. The target amount of computation or number of
parameters can be scaled by adjusting the number of output
channels from each of these layers. Such triplets are called
bottleneck structures; they have frequently been used in other
lightweight model studies, e.g., the DeepVision workshop in
CVPR [40], MobileNetv2 [19] and ShuffleNet [20]. How-
ever, the present study differs from earlier ones in always
keeping the number of output channels of the depthwise
convolution relatively small, because of the critical latency
issue in GPU processing.

Let a pointwise or depthwise convolution having an output
channel value K be called pointwise(K) or depthwise(K). Let
CE(Channel Expansion) denote a high channel value such
as 384 or 512, and CR(Channel Reduction) denote a low
channel value such as 16 or 32. Then, the structure we pro-
pose is pointwise(CR)–depthwise(CR)–pointwise(CE), and
this sequence is always maintained. (Channel reduction and
channel expansion in the bottleneck part are illustrated
in Figure 2.) The purpose of this structure is to reduce the
usage of depthwise convolution while using lightweight lay-
ers. Depthwise convolution has insufficient GPU-level opti-
mization; therefore, it has a significantly high inference
latency for its small amount of computation.

MobileNetv2 [19] is a typical bottleneck structure
with the layer sequence pointwise(CE)–depthwise(CE)–
pointwise(CR), i.e., with flow opposite to that in our structure.
This CE–CE–CR sequence pattern means depthwise convo-
lution always has high output channels, thereby increasing the
depthwise convolution percentage.

To gain an intuition regarding the value of the latency and
the factors controlling it, we measured the latency of the
bottleneck structure of MobileNetv2 [19] layer by layer. The
results are indicated in green in Figure 4. As can be seen from
the Figure, depthwise convolution has approximately twice
the latency of the pointwise convolution, even though the
computation is only about one-seventh that of the pointwise
convolution before it. According to our detailed analysis of
this phenomenon, depthwise convolution is not supported
by the GPU-optimized library cuDNN; therefore, it is not
possible to perform high-speed computation in this layer as it
is in the others. Instead, a standard group convolution func-
tion is used to process depthwise convolution. However, this
function has not been sufficiently optimized at the GPU level

106100 VOLUME 8, 2020



S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

FIGURE 3. Network comparisons. All three-dimensional boxes represent convolution layers; the number below each box is the output channel depth of
the layer. Multiple outputs of k-th RR block become the inputs of k-th CDC (k values are 1 ∼ 3 in this figure). (a) Baseline network from Monodepth [27].
(b) Proposed network: RRNet.

FIGURE 4. Layer-wise latency results on NVIDIA TX2. Data in purple
indicate the amount of computation. For MobileNetv2 [19], we selected
the fourth bottleneck partially, which shows the typical tendencies of
latency. In this figure, the CE(Channel Expansion) value is 384 and the
CR(Channel Reduction) value is 64. The output channels for the
bottleneck block are 64(input)-CE-CE-CR-CE-CE-CR, whereas those for the
RR block are 384(input)-CR-CR-CE-CR-CR-CE.

in most DNN frameworks, such as TensorFlow. In addition,
we also observed the same latency issue in experiments with
the recent CUDA 10 and cuDNN 7.

Figure 4 shows the reason for reducing the use of depth-
wise convolution as the basic strategy of the RR block. In
this example, the expansion value CE and reduction value
CR are interchanged in the corresponding bottleneck block
of MobileNetv2 [19] (from pointwise(CE)–depthwise(CE)–
pointwise(CR) to pointwise(CR)–depthwise(CR)–
pointwise(CE)). In order to match the amount of computa-
tion, the input channel of the first pointwise(CR) convolution
of the RR block was increased from CR to CE (64 to 384).
The measured latency is shown in orange in Figure 4. This
figure shows that the unnecessary latency of the depthwise
convolution can be reduced.

Our approach avoids the undesirably high GPU latency
caused by the lack of depthwise-convolution support in the

optimization library. Any performance degradation caused
by depthwise convolution reduction can be compensated by
scaling up the pointwise convolution or by making use of the
Transition Part, which we will discuss later.

To observe the latency effect in an actual inference, we also
measured the latency of the entire encoder for three models
(MobileNetv2 [19], DiCENet [38], and the proposed RRNet
model) on NVIDIA TX2, scaling each model by its scaling
parameters to ensure similar computation. The results, shown
in Figure 5, clearly reveal the negative impact of increasing
the depthwise convolution usage onGPU latency. The latency
of DiCENet was more than twice that of MobileNetv2; this is
because DiCENet, despite its small amount of computation,
has more than twice the percentage of depthwise convolu-
tions. In addition, the figure shows that RRNet effectively
reduces the usage of depthwise convolution and has a positive
effect on the actual GPU latency; it is the fastest among the
models utilizing lightweight layers.

We can mathematically demonstrate the reduced computa-
tional cost of using lightweight layers in the bottleneck part
in comparison with standard convolution. The output feature
maps of the standard convolution can be expressed as

OFMh,w,m =
∑
i,j,c

IFMh+i−1,w+j−1,c ·Wi,j,c,m, (1)

where h,w, c denote height, width, and channels of input
feature maps respectively, m denotes the number of oup-
tut feature maps, W denotes the weight parameters, OFM
denotes the output feature maps, and IFM denotes the input
feature maps. Therefore, we can calculate the computational
cost Costconv of standard convolution as

Costconv = H ×W × C ×M × K × K , (2)

whereH andW are the resolutions of the output featuremaps,
K is the kernel size, C is the number of input channels, and
M is the number of output channels.

VOLUME 8, 2020 106101



S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

FIGURE 5. Encoder latency results of MobileNetv2 [19], DiCENet [38], and
the proposed RRNet on NVIDIA TX2. The top circle charts show the
distribution of different types of convolution layers in each model. The
other circle charts show the corresponding percentage contributions to
the latency from each type of layer. For a fair comparison, we used the
scaling parameters of each model to scale the computation to a similar
level.

We can express the output feature maps of depthwise con-
volution as

OFM ′h,w,c =
∑
i,j

IFM ′h+i−1,w+j−1,c ·W
′
i,j,c. (3)

Then, we can calculate the computational cost Costdw of
depthwise convolution as

Costdw = H ×W × C × K × K . (4)

We can also calculate the computational costCostpw of point-
wise convolution as

Costpw = H ×W × C ×M × 1× 1, (5)

where the kernel size is 1. Thus, we can calculate the reduc-
tion in the computational cost (CostReduction) of the bottle-
neck part:

Costbottleneck = Costpw + Costdw + Costpw (6)

CostReduction =
Costbottleneck
Costconv

=
1
M
+

2
K 2 . (7)

Therefore, we limit the kernel size of the RR block to not
exceed 3. It is possible to reduce the amount of computation
or the number of parameters by a factor of approximately nine
by adopting the bottleneck structure.

2) TRANSITION PART
The transition part consists of two layers: pointwise convolu-
tion and 3 × 3 standard convolution. In the bottleneck part,
we aim to improve the latency efficiency by reducing the
depthwise convolution usage. However, this may eventually
be disadvantageous for performance, as it decreases the total
number of parameters. Therefore, we have designed the tran-
sition part to carry out a performance compensation for the
encoder. In this part, we use only GPU-optimized functions

to reduce the unnecessary consumption of latency caused by
insufficient utilization of GPU. Therefore, we select point-
wise convolution and 3 × 3 standard convolution, which are
capable of GPU acceleration through the cuDNN library.

The 3×3 standard convolution should be carefully placed,
because it introduces a large amount of computational load. In
the case of RRNet, we observed empirically that it is possible
to supplement the performance sufficiently by using a single
3×3 standard convolutionwith eachRR block. Therefore, our
proposed RRNet has one 3× 3 standard convolution for each
RR block, and the number of output channels of this layer is
set toCE(Channel Expansion), which is the maximum output
channel value used in the bottleneck part.

3) REPETITION IN THE BOTTLENECK PART
The CDC, which we discuss later, receives feature infor-
mation to be sent to the decoder from the bottleneck part.
Therefore, all three layers of the bottleneck part (pointwise–
depthwise–pointwise) are defined as repetition targets, and
these layers are repeated according to the value r of the
scaling parameter. Repeating these layers not only improves
the performance of the encoder, but also generates feature
information to be sent to the CDC in a lightweight manner.
Moreover, because the amount of feature information to be
sent to the decoder via the CDC is determined according
to the r value, scaling r value plays an important role in
improving the performance.

In more detail, the bottleneck part reduces the dimension,
largely similar to principal component analysis (PCA) [41].
To leverage this critical reduction potential, the RR block
intensifies the bottleneck part by iterating the lightweight
layers and stacking each output per repetition. Therefore, the
scaling parameter r denotes the number of repetitions in the
bottleneck part of the RR block. The r-fold repetition results
in multiple connections to two paths. One path leads to the
next layer in the encoder, which includes the transition part;
the other leads to the decoder. In the decoder path, each output
layer per iteration is provided to the CDC. Therefore, repeti-
tion in the RR block not only enriches the model information,
but also provides feature-intensive decoder connections.

B. CONDENSED DECODING CONNECTION (CDC)
The CDC, which is represented by patterned light yellow
boxes with repetition flow in Figure 2, repeatedly stacks the
pointwise convolution layers provided by the RR block (layer
chunk) in order. We deploy a pointwise convolution layer
with output channel scaling to handle the layer chunk; it can
also efficiently handle feature explosion, computations, and
model size before sending the features to the decoder. A CDC
is a module that can replace an existing skip connection, such
as the single layer concatenation structure in UNet [42]; its
intended use is not replacing or adjusting the decoder struc-
ture. However, with our empirically discovered backbone
RRNet using CDC, we have been able to reduce the channel
depth of the decoder significantly with little degradation of
the accuracy.

106102 VOLUME 8, 2020



S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

TABLE 1. Encoder ablation study on KITTI. With two exceptions, all models have the same skip connection [42] and UpConv decoder [27]). In the case of
RRNet with CDC (our final model, used for comparison with the other models), the skip connection is replaced with the CDC, and the UpConv decoder has
a significantly reduced depth channel, as shown in Figure 3 (b). PyDNet uses its own skip connection and decoder as well. Because these two models have
different skip connections and decoders, they are separated by a line at the bottom of the table. All models were trained with the do-stereo option, which
provides stereo-pair images as the ground truth. In all the tables, we chose the B0 case for EfficientNet, which is the lightest model presented in this
paper. NOTATION: res = resolution of the feature map; r = repetition parameter; d = depth multiplier; g = number of groups in the channel shuffling layer.

The preservation of a limited number of channels with a
linear bottleneck is the key to efficiency inMobileNetv2 [19].
In this study, the linear bottleneck connects not only the
residual but also the decoder layers using CDC. The stacked
features are compressed by the pointwise reduction layer,
which is then delivered to the decoder in a non-activated form
that guarantees linearity. Because of repetition, the number
of stacked CDC channels is large; for example, 128 channels
repeated 6 times is equivalent to 768 channels. We reduce
this number by applying a pointwise reduction layer, resulting
in 128 output channels that are connected to the decoder layer
as seen in Figure 2. Owing to the pointwise convolution, the
total output size becomes significantly smaller than in con-
ventional architectures. In short, by using a smaller unit RR
block, enriched CDC features, and a pointwise linear reduc-
tion layer, we significantly reduce the number of parameters
and computational cost and obtain a level of performance
similar to the original one.

Wewill explain the CDCmathematically. The skip connec-
tion can be represented by F(x)+x. The+makes the shortest
path from the top layer to the bottom layer in the backward
propagation process. It is an operation that adds more edges
to the computation graph, smoothing the loss function and
improving performance. Furthermore, a greater number of
nodes in computational graph can lead to a more complex
computation, but the additional edges are relatively small
increasing the computational complexity. Therefore, CDCs
add more edges with the same number of nodes in the net-
work. Assuming a network with L layers with symmetric skip
connections, we denote the convolution and deconvolution in
each layer with ReLU as Fc and Fd and an RR block with
input Xi as R(Xi). Write R2(R1(Xi)) as R2(Xi) for simplicity.
Then,

�(Xi)= [R1(Xi),R2(Xi), . . . ,Rr (Xi),Rr+1(Xi)], (8)

where � denotes the CDCs. We assume that information
on the convolutional feature map Xi is to be passed to the
corresponding deconvolutional layers XL−i−1 and XL−i in the

decoder; then,

XL−i=Fd (XL−i−1⊕Fc1×1(�(Xi))), (9)

where ⊕ denotes feature map concatenation or a similar
operation. For back-propagation, we consider the L th layer,

XL=Fd (XL−1⊕Fc1×1(�(X0))). (10)

We compute the derivative of the loss ` with respect to a
parameter θ as follows:

∇θ`(XL)=
∂`

∂XL−1

∂XL−1
∂θ

⊕
∂`

∂�(X0)
. (11)

Therefore, CDCs carry larger gradients than skip connec-
tions, which are less likely to approach zero gradients.

C. MODEL FOR EFFICIENT Encoder–Decoder
For the design of our backbone model RRNet, we use the
structure of the high-performance complex encoder–decoder
model fromMonodepth [27] as a reference and set the bound-
ary values of the computation (up to 3.5 billion) and model
size (up to 1.5 million). We properly combine the RR blocks,
CDCs, standard convolution layers, pooling layers, and other
elements. Figure 3 (b) shows our RRNet structure in detail.

1) RRNet ENCODER
The RRNet encoder consists of three RR blocks. We use
a repetition parameter r = 4 for all RR blocks, having
discovered from Table 2 that this is the best tradeoff case
between performance, computational cost, and model size.
We place two successive 3 × 3 standard convolution layers
with maximum pooling to receive the input data; the three
RR blocks are placed thereafter. To reduce the feature map
resolution, maximum pooling is assigned after each of the RR
blocks.

We set the channel reduction in the RR block to 32 (RR
block 1) - 64 (RR block 2) - 128 (RR block 3), listed in order
from the input, and 128 - 256 - 512 in the same order as that
followed for channel expansion. We place an average pooling
layer at the end of the encoder. We have compared the RRNet

VOLUME 8, 2020 106103



S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

TABLE 2. RR block ablation study of the repetition r on KITTI. (Each model has the same structure as the baseline RRNet architecture, including CDC and
its own decoder, as described in Figure 3 (b). All models are trained with the do-stereo option). Our RRNet architecture design shows the highest
performance at r = 4. To improve the performance beyond this point, it may be necessary to increase the number of RR blocks in the encoder along with
the scaling r value. Alternatively, increasing the complexity of the decoder design can be considered.

TABLE 3. CDC ablation study on KITTI (all models are trained with do-stereo option). Skip is a skip connection originally proposed in the UNet
structure [42]. Skip and Upconv represent the baseline structure from Monodepth [27]. The UpConv decoder corresponds to Figure 3 (a) and consists
of 6 decoding layers; the number of channels in each layer is 512-512-256-128-64-32. The RRNet decoder corresponds to Figure 3 (b) and consists
of 5 decoding layers; the number of channels in each layer is 32-16-32-16-16. The notation (×k) means that all output channels are multiplied by k. For
CDC, the output channel is from the final pointwise layer which directly connects to the decoder layer. In this experiment, we observed the extent to
which performance is maintained when the complexity of the decoder is significantly reduced in the environment where the CDC is applied as a
connection, under the same encoder and decoder condition. The encoder used is RRNet that can utilize CDC. The basic performances of a baseline [27]
encoder and the RRNet encoder were first compared. When CDC is used as a connection, the performance is maintained even if the number of channels
of all decoder layers is reduced from 16× to 32×.

encoder with a variety of state-of-the-art lightweight designs
without CDC by replacing only the encoder. The results,
shown in Table 1, show that the RRNet encoder is comparable
to other lightweight designs in terms of computation and
model size, while having a special stacking structure for the
CDC.

2) CDC IN RRNet
CDCs are assigned to the RR blocks one by one and the
channel reduction depth of the pointwise reduction layer is set
to the maximum depth of the channel expansion of its corre-
sponding RR block. Therefore, there are three CDCs in total;
the reduction depth values of the CDCs corresponding to the
RR blocks from one to three are 128 - 256 - 512, respectively.
Table 3 compares the skip connection with our CDCs. Using
the same RRNet encoder, we vary the connection type and
the corresponding decoder size. In Table 3, the notation×1/n
means that the number of channels of concatenated features
is reduced by a factor of n. For example, if the number of
channels of a concatenated feature is 512 and the notation is
×1/8, the final number of channels of this feature is 64. In the
case of the VGG×1/8 decoder, the skip connection has 1.2M
parameters and the CDCs have 1.16M parameters; however,
the performance of the CDCs is better than that of the skip
connection. Moreover, CDC×1/16 has only 0.91M parame-
ters; yet, it achieves higher accuracy than the skip connection
with 1.2M parameters. Owing to the enriched information
in the CDCs, the network can preserve its performance with
fewer parameters.

3) RRNet DECODER
The RRNet decoder consists of five upscaling layers. Each
layer is based on the UNet decoder structure [42]. The upscal-
ing layer consists of three steps: (1) upscale convolution
through linear interpolation of feature maps, (2) concatena-
tion of encoder feature information, and (3) 3 × 3 decod-
ing convolution. The reduction layer from the RR block
- CDC is used here for the concatenation of the second
step. As mentioned above, we have been able to reduce
the channel depth of all decoder layers significantly, e.g.,
from 512 to 16. Table 3 shows that our model can with-
stand 32 times lighter decoders while maintaining perfor-
mance. In the RRNet decoder, the channel depths of the five
layers are 32-16-32-16-16, from the input to the output.

IV. EXPERIMENTS
To evaluate the effectiveness of RRNet, we used unsuper-
vised depth estimation [27] as our baseline. Depth estimation
provides low-level information used by other higher-level
applications and is frequently executed as a background pro-
cess. Therefore, our objectives for this evaluation were high
performance and minimal runtime and power consumption
on mobile devices.

A. EXPERIMENTAL SETUP
1) DATASET
The KITTI dataset [43] was adopted for the evalua-
tion; this dataset consists of 200 training image pairs
and 200 test image pairs. The baseline method [27] was

106104 VOLUME 8, 2020



S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

TABLE 4. Comprehensive training results. Dataset K refers to the KITTI dataset and CS refers to the Cityscapes dataset.

an unsupervised approach that did not use the ground
truth depth. KITTI 2015 contains 42,382 rectified stereo
pairs from 61 scenes, with 1242 × 375 pixels. We evalu-
ated 200 high-quality disparity images in the training set, cov-
ering 28 scenes. The remaining 33 scenes contained 29,000
images for training and 1,159 images for validation. For
convenience, we used left and right images together as a
single input.

2) TRAINING DETAILS
RRNet was trained using TensorFlow 1.4.0 [44] with CUDA
8.0 and cuDNN 7.0 as the back-ends. We assessed the per-
formance of RRNet with respect to the results reported for
Monodepth [27] and PyDNet [45]. Our baseline for all evalu-
ations was a Monodepth model based on the VGG structure.
For a fair comparison, we trained our network with the same
protocol as that used in [27], [45]: batches of eight images
resized to 256×512×3, and 300 epochs executed on 29,000
images. Our loss function and hyperparameters also matched
those in [27], [45].

There were two training modes, namely mono and
do-stereo. These modes were selected according to the

number of inputs:monomode for a single input and do-stereo
mode for concatenated image inputs. In general, stereo
approaches outperform monocular approaches via informa-
tion enrichment. However, a stereo approach can significantly
increase memory usage, runtime, and energy consumption.
To show the effectiveness of RRNet, we adopted both mono
and do-stereomodes for evaluation. Table 1 compares RRNet
with state-of-the-art lightweight models. For the best case,
our proposed method decreased the amount of computation
by factors of 4.16 ∼ 13.9 and the number of parameters by
factors of 4.53 ∼ 16.6 relative to other methods.
For evaluation on another dataset, we adopted the

Cityscapes [46] dataset, which contains 22,973 training
stereo pairs that comprise street scenes recorded across
Germany. This dataset has a higher image resolution and
quality than KITTI. The results are summarized in Table 4.
Training on the Cityscapes dataset was performed for the
initial 10 epochs using the same schedule as the baseline
method [27]. We expected that the performance would be
improved in this case in comparison with KITTI. However,
the performance was in fact similar or even slightly reduced
for all models, and training itself was not stable, as mentioned
for Monodepth [27].

VOLUME 8, 2020 106105



S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

FIGURE 6. TX2 inference results on KITTI. Here res = resolution of the feature map; r = repetition parameter; d = depth multiplier; g = number of
groups in the channel shuffling layer.

TABLE 5. Overall inference results with NVIDIA TX2. For fairness of
measurement, we measured only the inference time and set the TX2’s
GPU to the maximum performance mode. Each model was averaged by
repeating 10 tests. Runtime refers to the execution time for 400 images
from the KITTI evaluation set. Energy consumption during runtime is
measured in joules (J).

B. EVALUATION OF RRNet ON NVIDIA TX2
Model size, runtime, and energy consumption are the key
considerations for resource-constrained mobile applications.
We evaluated all models on the NVIDIA TX2 Development
Kit [47] by using depth estimation based on an ARM-A57
CPU with 8 GB of main memory running on a Linux operat-
ing system. TX2 is a mobile GPU processor based on the
Pascal architecture; it has 1.5 TFLOPS and 15 W of ther-
mal design power (TDP). We rebuilt a common workstation
environment using TensorFlow 1.4.0 [44], CUDA 8.0, and
cuDNN 7.0, as in our training setup, the only difference
being that we customized TensorFlow to run on the ARM
architecture.

We emphasize energy consumption because it is affected
by the runtime factor. In real environments, the main bottle-
necks of depth estimation in mobile applications are energy
consumption, runtime, and memory usage. The results of
executing the models on TX2 are summarized in Figure 1 and
Table 5. Here, runtime refers to the actual model execution
time without considering the preparation time for iterative
execution, such as model initialization or data preparation,
which needs to be performed only one time during the entire
process. To ensure fair measurements, we enabled the maxi-
mum performance mode via the jetson_clocks.sh script pro-
vided for TX2. This mode prevents the OS from adjusting

TABLE 6. Overall inference results obtained using Xeon E3-2620, NVIDIA
Titan X, and NVIDIA TX2. TDP stands for Thermal Design Power. The
results obtained for each model were averaged after performing 4000
(400 images × 10) tests. All results refer to the execution time for one
image from the KITTI evaluation set.

the GPU’s power consumption by itself, so that there is no
unnecessary impact on runtime measurement. The result is
the average of the results of a total of 10 tests with 400 images
each, which is a total of 4000.

RRNet had a total energy consumption of 128.84 J, the
lowest of all the models; moreover, it required approximately
3.84× less power and was 2.21× faster than the others. Thus,
RRNet outperformed the other models in terms of energy
consumption, memory usage, and computation, as shown in
Figure 1 and Table 5.

In addition to the previous tests, we conducted inference
tests in a high-performance workstation environment and
explored whether real-time processing is possible (i.e, takes
less than 0.03 s per image). The hardware used for this test
consisted of a Xeon E3-2620v3 (which had a 6 cores and
operated at 2.4 Ghz with 95 W of TDP) and a Titan X (which
was based on the Maxwell architecture and had 11 TFLOPS
with 250 W of TDP). The results are summarized in Table 6,
which presents the runtime to process one image. The cases
where real-time processing was possible were MobileNetv2
(d = 0.06) [19], PyDNet [45], and RRNet, all tested with
Titan X. RRNet showed the best speed, taking about 0.026
s per image (38.46 FPS). For the test with Xeon E3-2620v3,
PyDNet [45] and RRNet showed the best speeds, which were
similar to their results obtained using the TX2 GPU.

106106 VOLUME 8, 2020



S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

We also analyzed the depth estimation results, as shown in
Table 1. RRNet with r = 4 showed the best performance in
terms of most evaluation metrics, except for δ < 1.25, with
a 0.003 difference, and for δ < 1.252, which was degraded
by 0.001, in comparison with PyDNet. Moreover, the last
row in Figure 6 suggests that a close-range traffic sign was
well-recognized using our method. This result is similar to
that of baseline Monodepth [27], which is a highly complex
model.

V. CONCLUSION
We proposed RR block and CDC as the fundamental com-
ponents of a lightweight encoder–decoder network. The RR
block and CDC proposed herein are efficient in terms of com-
putation and parameter size, facilitating an improved design
for encoder–decoder architectures. In addition, we show that
such a scheme results in lightweight and high-performance
network designs. The RR block forms repetitive feature con-
nections to the CDC, which can deliver feature maps to the
decoder efficiently without a rapid increase in the informa-
tion or model complexity by using suppressing convolutions,
as shown in Figure 2.

We also introduced our backbone network, RRNet, which
is an encoder–decoder model that is very lightweight owing
to the aforementioned RR block and CDC. Because RRNet’s
architecture is designed by considering GPU latency, it is
advantageous with regard to energy efficiency as well as
with regard to computation time. The proposed model is
sufficiently lightweight to be applied to mobile devices
and differs from previous encoder–decoder enhancement
approaches [19], [48].

On a commercial mobile GPU, RRNet outperforms previ-
ous state-of-the-art models, reducing the runtime by approxi-
mately 2.21× while providing energy savings of up to 3.84×
and memory savings of up to 3.06× with optimal perfor-
mance. In our future work, we plan to evaluate the gener-
alization capability of the RR block and CDC by applying
them to semantic segmentation, object detection, and other
significant problems.

REFERENCES
[1] C. Zhou, H. Zhang, X. Shen, and J. Jia, ‘‘Unsupervised learning of stereo

matching,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 1567–1575.

[2] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, ‘‘Unsupervised learning
of depth and ego-motion from video,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1851–1858.

[3] R. Mahjourian, M. Wicke, and A. Angelova, ‘‘Unsupervised learning
of depth and ego-motion from monocular video using 3D geometric
constraints,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 5667–5675.

[4] Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou, and
J. Zhang, ‘‘Learning for disparity estimation through feature constancy,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2811–2820.

[5] J. Žbontar and Y. LeCun, ‘‘Stereo matching by training a convolutional
neural network to compare image patches,’’ J. Mach. Learn. Res., vol. 17,
pp. 1–32, Apr. 2016.

[6] A. Ranjan and M. J. Black, ‘‘Optical flow estimation using a spatial
pyramid network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 1–2.

[7] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, ‘‘Depth predic-
tion without the sensors: Leveraging structure for unsupervised learning
from monocular videos,’’ in Proc. AAAI Conf. Artif. Intell (AAAI), 2019,
pp. 8001–8008.

[8] R. Garg, V. K. BG, G. Carneiro, and I. Reid, ‘‘Unsupervised CNN for
single view depth estimation: Geometry to the rescue,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2016, pp. 740–756.

[9] T.-W. Hui, X. Tang, and C. C. Loy, ‘‘LiteFlowNet: A lightweight convo-
lutional neural network for optical flow estimation,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1–9.

[10] K. Karsch, C. Liu, and S. B. Kang, ‘‘Depthtransfer: Depth extraction from
video using non-parametric sampling,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 2014, pp. 2144–2158.

[11] L. Ladický, B. Zeisl, and M. Pollefeys, ‘‘Discriminatively trained dense
surface normal estimation,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
2014, pp. 468–484.

[12] (Sep. 2019). CUDA: Parallel Computing Platform and Program-
ming Model Provided by NVIDIA Corp. [Online]. Available:
https://developer.nvidia.com/cuda-zone

[13] (Sep. 2019). cuDNN: GPU-Accelerated Library of Primitives for Deep
Neural Networks Provided by NVIDIA Corp. [Online]. Available:
https://developer.nvidia.com/cudnn

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and<0.5 MBmodel size,’’ 2016, arXiv:1602.07360. [Online]. Avail-
able: http://arxiv.org/abs/1602.07360

[15] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ 2013,
arXiv:1312.4400. [Online]. Available: http://arxiv.org/abs/1312.4400

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[17] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[18] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,’’ 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[19] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,
‘‘Inverted residuals and linear bottlenecks: Mobile networks for classifi-
cation, detection and segmentation,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2018, pp. 4510–4520.

[20] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ 2017,
arXiv:1707.01083. [Online]. Available: http://arxiv.org/abs/1707.01083

[21] M. Tan and Q. V. Le, ‘‘Efficientnet: Rethinking model scaling for convo-
lutional neural networks,’’ in Proc. Int. Conf. Mach. Learn. (ICML), 2019,
pp. 6105–6114.

[22] J.-R. Chang and Y.-S. Chen, ‘‘Pyramid stereo matching network,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 5410–5418.

[23] M. Yang, B. Li, H. Fan, and Y. Jiang, ‘‘Randomized spatial pooling in deep
convolutional networks for scene recognition,’’ inProc. Eur. Conf. Comput.
Vis. (ECCV), Sep. 2015, pp. 346–361.

[24] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, ‘‘Pyramid scene parsing
network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 6230–6239.

[25] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
‘‘Encoder-decoder with Atrous separable convolution for semantic
image segmentation,’’ 2018, arXiv:802.02611, [Online]. Available:
https://arxiv.org/abs/1802.02611

[26] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ 2016, arXiv:1606.00915.
[Online]. Available: http://arxiv.org/abs/1606.00915

[27] C. Godard, O. M. Aodha, and G. J. Brostow, ‘‘Unsupervised monocular
depth estimation with left-right consistency,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 270–279.

[28] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1–14.

VOLUME 8, 2020 106107



S. Oh et al.: RRNet: Repetition-Reduction Network for Energy Efficient Depth Estimation

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[30] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,’’ 2015, arXiv:1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

[31] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, ‘‘DoReFa-
net: Training low bitwidth convolutional neural networks with low
bitwidth gradients,’’ 2016, arXiv:1606.06160. [Online]. Available:
http://arxiv.org/abs/1606.06160

[32] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, ‘‘Com-
pression of deep convolutional neural networks for fast and low
power mobile applications,’’ 2015, arXiv:1511.06530. [Online]. Available:
http://arxiv.org/abs/1511.06530

[33] A. Lavin and S. Gray, ‘‘Fast algorithms for convolutional neural networks,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 4013–4021.

[34] X. Liu, J. Pool, S. Han, and W. J. Dally, ‘‘Efficient sparse-winograd con-
volutional neural networks,’’ in Proc. Int. Conf. Learn. Represent. (ICLR),
2018, pp. 1–4.

[35] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), 2012, pp. 1097–1105.

[37] S.Mehta,M. Rastegari, L. Shapiro, and H. Hajishirzi, ‘‘ESPNetv2: A light-
weight, power efficient, and general purpose convolutional neural net-
work,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 9190–9200.

[38] S. Mehta, H. Hajishirzi, and M. Rastegari, ‘‘DiCENet: Dimension-wise
convolutions for efficient networks,’’ 2019, arXiv:1906.03516. [Online].
Available: http://arxiv.org/abs/1906.03516

[39] G. Li, I. Yun, J. Kim, and J. Kim, ‘‘DABNet: Depth-wise asymmetric
bottleneck for real-time semantic segmentation,’’ in Proc. Brit. Mach. Vis.
Conf. (BMVC), 2019, pp. 1–12.

[40] S. Oh, J. Lee, and H. J. S. Kim, ‘‘Fast and light-weight unsupervised depth
estimation for mobile GPU hardware,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR) DeepVision Workshop, vol. 2018, pp. 2–4.

[41] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, ‘‘On the importance of
initialization and momentum in deep learning,’’ in Proc. Int. Conf. Mach.
Learn. (ICML), 2013, pp. 1139–1147.

[42] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. (MICCAI), 2015, pp. 234–241.

[43] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3354–3361.

[44] M. Abadi et al., ‘‘Tensorflow: A system for large-scale machine learning,’’
in Proc. USENIX Symp. Oper. Syst. Design Implement. (OSDI), 2016,
pp. 265–283.

[45] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, ‘‘Towards real-time unsu-
pervised monocular depth estimation on CPU,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 5848–5854.

[46] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, ‘‘The cityscapes dataset for semantic
urban scene understanding,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 3213–3223.

[47] (Mar. 2017). Jetson TX2 Development Kit Provided by NVIDIA Corp.
[Online]. Available: https://developer.nvidia.com/embedded/buy/jetson-
tx2

[48] M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani, and M. Jagersand,
‘‘RTSeg: Real-time semantic segmentation comparative study,’’ 2018,
arXiv:1803.02758. [Online]. Available: http://arxiv.org/abs/1803.02758

[49] D. Eigen, C. Puhrsch, and R. Fergus, ‘‘Depth map prediction from a single
image using amulti-scale deep network,’’ inProc. Adv. Neural Inf. Process.
Syst. (NIPS), 2014, pp. 2366–2374.

[50] F. Liu, C. Shen, G. Lin, and I. Reid, ‘‘Learning depth from single monoc-
ular images using deep convolutional neural fields,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 10, pp. 2024–2039, 2016.

SANGYUN OH (StudentMember, IEEE) received
the B.S. degree in computer science and engineer-
ing from Ajou University, Suwon, South Korea,
in 2015. He is currently pursuing the Ph.D. degree
with the Ulsan National Institute of Science and
Technology (UNIST), Ulsan, South Korea. His
current research interests include machine learn-
ing, reconfigurable architectures, energy-efficient
embedded accelerators for deep learning, and neu-
romorphic computing.

HYE-JIN S. KIM (Student Member, IEEE)
received the B.S. and M.S. degrees from
POSTECH, Pohang, South Korea, in 2001 and
2003, respectively. She is currently pursuing the
Ph.D. degree with KAIST, Daejeon, South Korea.
She is also working on ETRI, Daejeon. Her cur-
rent research interests include machine learning,
information theory, and computer vision, specially
depth estimation and light-weight model architec-
ture for deep learning.

JONGEUN LEE (Member, IEEE) received the
B.S. and M.S. degrees in electrical engineering
and the Ph.D. degree in electrical engineering and
computer science from Seoul National University,
Seoul, South Korea, in 1997, 1999, and 2004,
respectively. Since 2009, he has been on the Fac-
ulty of the School of Electrical and Computer
Engineering, Ulsan National Institute of Science
and Technology (UNIST), Ulsan, South Korea. He
is currently an Associate Professor with UNIST.

His research interests include neural network processors, reconfigurable
architectures, and compilers.

JUNMO KIM (Member, IEEE) received the B.S.
degree from Seoul National University, Seoul,
South Korea, in 1998, and the M.S. and Ph.D.
degrees from the Massachusetts Institute of Tech-
nology (MIT), Cambridge, in 2000 and 2005,
respectively. From 2005 to 2009, he was with
the Samsung Advanced Institute of Technology
(SAIT), South Korea, as a Research Staff Member.
He joined the Faculty of KAIST, in 2009, where
he is currently an Associate Professor of electrical

engineering. His research interests are in image processing, computer vision,
statistical signal processing, machine learning, and information theory.

106108 VOLUME 8, 2020


