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Abstract: Recently, with the rapid change to an aging society and the increased interest in 

healthcare, disease prediction and management through various healthcare devices and services is 

attracting much attention. In particular, stroke, represented by cerebrovascular disease, is a very 

dangerous disease, in which death or mental and physical aftereffects are very large in adults and 

the elderly. The sequelae of such stroke diseases are very dangerous, because they make social and 

economic activities difficult. In this paper, we propose a new system to prediction and in-depth 

analysis stroke severity of elderly over 65 years based on the National Institutes of Health Stroke 

Scale (NIHSS). In addition, we use the algorithm of decision tree of C4.5, which is a methodology of 

prediction and analysis of machine learning techniques. The C4.5 decision trees are machine 

learning algorithms that provide additional in-depth rules of the execution mechanism and 

semantic interpretation analysis. Finally, in this paper, it is verified that the C4.5 decision tree 

algorithm can be used to classify and predict stroke severity, and to obtain additional NIHSS 

features reduction effects. Therefore, during the operation of an actual system, the proposed model 

uses only 13 features out of the 18 stroke scale features, including age, so that it can provide faster 

and more accurate service support. Experimental results show that the system enables this by 

reducing the patient NIH stroke scale measurement time and making the operation more efficient, 

with an overall accuracy, using the C4.5 decision tree algorithm, of 91.11%. 

Keywords: National Institutes of Health Stroke Scale (NIHSS); health monitoring system; stroke 

analysis; machine learning; stroke severity prediction 

 

1. Introduction 

The number of deaths in Korea in 2015 was recently reported to be 275,895 [1]. The cause of 

death was reported as malignant neoplasm (76,855), heart disease (28,326), and cerebrovascular 

disease (24,455) [1]. In particular, the death rate from cerebrovascular disease in Koreans is 48 per 

100,000 people, followed by malignant neoplasm and heart disease. The number of deaths due to 

cerebrovascular disease in Korea has been declining since 2005, but it is the second leading cause of 

death due to a single disease after malignant neoplasm [1–3]. According to the analysis information 

of these institutions, Korea is continuously growing in chronic diseases due to aging. In particular, 
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according to a recent study, the elderly over 60 years of age are showing an increasing mortality rate 

from the cardiovascular system disease [3–6]. The stroke is difficult to reliably evaluate the stroke 

and neurological damage, due to the various symptoms and the location of the stroke. In particular, 

the early detection of stroke is important for a person without a past medical history, but the 

probability of recurrence is nine times higher for people with a past history of stroke. As a result, in 

order to diagnose and treat physicians within a short period of time, research should be conducted 

for the continuous monitoring and management of patients with stroke. 

According to recent studies, National Institutes of Health Stroke Scale (NIHSS)-based research 

topic objectively validates stroke severity and various studies are under way to stroke detection and 

use risk factors to prevent recurrence [7–11]. Since the Mathew scale was first published in 1972, 

methods for evaluating a stroke patient’s disorder include the European stroke scale, the 

Scandinavian stroke scale, and the NIHSS of the American National Institutes of Health [12,13]. 

Among the various NIHSS methodologies, the method proposed by Bortt et al. is widely used tool as 

measurement criteria after stroke [7–9]. NIHSS measures 14 features associated with stroke severity, 

and statistically, it takes 6.6 min per patient. In addition, it is used as an evaluation health stroke scale, 

which is relatively easy to measure at the initial stage of a patient, and can be easily performed. 

According to various studies, stroke predictions can be quickly determined without imaging by using 

a scoring system based on the NIHSS that can accurately predict cortical damage in an acute ischemic 

stroke [14,15]. First, the severity of stroke in hospitalization for patients with ischemic stroke and the 

association of acute patients can be assessed. As such, the NIHSS is widely used globally as a tool, 

and it has already been verified through various studies for the reliability and validity of not only the 

examiner but also the test and retest. However, the NIHSS method is a tool to assess the extent of 

brain damage in stroke patients, but it has disadvantages, in that it does not provide an analytical 

result for the diagnosis of early stroke. 

Another method of analyzing the risk factor of stroke is to find risk factors through previous 

research, health screening data, and clinical trials. Risk factors of stroke found in these studies include 

smoking, diabetes, obesity, and smoking [16–20]. Research has reported that stroke-related is not a 

single factor, but comes from the interaction of various and complex risk factors. Therefore, a new 

methodology for evaluating each stroke risk factor and deal with diseases early stroke detection or 

prediction. It is not known exactly when and where stroke disease occurs. Additionally, the 

recurrence rate of stroke varies according to the type, race, and risk factors, but clinical studies have 

reported that the recurrence rate is generally 10~15% within 1 year. Studies are underway to analyze 

stroke risk factors using various machine learning and statistical methodologies. Additionally, the 

proportional hazards model [20] proposed by Cox [21] or Weibull et al. [22] as a representative 

method, and Kannel et al. [23] have been reported, based on a logistic model. However, previous 

studies based on these risk factors are not suitable for predicting the risk of stroke in the elderly. 

These prior studies have the disadvantage that the stroke severity analysis and prediction system 

have a black box form, which is difficult to interpret and analyze automatically. Therefore, the 

provision of scientific analysis and interpretation information is essential, and should be provided as 

an analysis result. In particular, we need to find a new optimal stroke severity and analysis system 

for the elderly. Therefore, it is important to quickly detect and predict the early onset of stroke 

patients, but another important research issue is to find the recurrence of stroke in patients with a 

history of stroke. 

In this paper, we propose a new system for predictive and in-depth analysis of stroke severity 

for the elderly over 65 years old, using NIHSS features and C4.5 decision tree algorithm. We propose 

a system that automatically classifies and analysis stroke severity into four classes using NIHSS 

features collected in real-time. The C4.5 decision tree are machine learning algorithms that provide 

additional in-depth rules of the execution mechanism and semantic interpretation analysis. 

Therefore, during the operation of an actual system, the proposed model uses only 13 features out of 

the 18 stroke scale features, including age, so that it can provide faster and more accurate service 

support. In this paper, it is verified that the C4.5 decision tree algorithm can be used to classify and 

predict stroke severity, and to obtain additional NIHSS features reduction effects. Finally, the system 
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we developed in this study can be used to predict the risk of individual stroke recurrence, depending 

on the severity of the disorder and the type of risk factor by gender and by age group over 65 years. 

The remainder of this paper is organized as follows. Section 2 discusses the main stroke diseases 

of the elderly and describes our research subjects and the machine learning for the stroke disease 

classification and prediction. Section 3 presents the proposed system of stroke severity prediction 

and in-depth analysis in the elderly. Section 4 describes the experimental results and analysis 

contents. In the Section 5, conclusions and future research are discussed. 

2. Materials and Methods  

2.1. Stroke Disease of the Elderly 

A stroke is defined as a localized neurological deletion that is suddenly induced in poor blood 

flow. These strokes are called cerebrovascular stroke, and in terms of symptoms, the typical 

symptoms are classified as cerebral infarction and cerebral hemorrhage, caused by bleeding of the 

blood vessels [4–6]. These strokes are caused by rupture or blockage of the blood flow of the brain 

stem, resulting in sudden brain dysfunction, such as speech or movement disorders, sensory 

disorders, paralysis, or unconsciousness [24,25]. Cerebral infarction is classified into cerebral 

thrombosis, which is caused by blood clotting in cerebral blood vessels damaged by arteriosclerosis 

and blood clots; and cerebral embolism, which is caused by clotting of the blood vessels for large 

arteries, such as the heart and carotid arteries. Cerebral hemorrhage is represented by intracerebral 

hemorrhage and subarachnoid hemorrhage. Intracerebral hemorrhage is caused by spontaneous 

brain hemorrhage without external impact. Subarachnoid hemorrhage is a disease in which blood 

flows out into the subarachnoid space surrounding the brain, by the rupture of an aneurysm of the 

alveolar structure that grows in the blood vessel. Subarachnoid hemorrhage is reported to be a fatal 

disease, as more than 30% of the patients die before they arrive at the emergency medical center or 

hospital. In Korea, the health-screening information of the National Health Insurance Corporation 

(NHIS) [26], Lee et al. [27] developed a stroke prediction model after 10 years, using age, drinking, 

systolic and diastolic blood pressure, diabetes, LDL cholesterol, HDL cholesterol, total cholesterol, et al. 

However, since these studies are identical to the Framingham Heart’s model and predict the stroke 

risk index in the next 10 years, they do not apply to the real world [16,27]. In addition, it does not 

take into account some of the major risk factors for stroke, and has a limitation, in that it does not 

consider the competition risk, such as the possibility of death other than by stroke. According to the 

recent research literature, the stroke should be accurately identified within 3 h, including the type 

and location of the stroke, and how much damage has occurred. It is also important to send the 

patient to a hospital or emergency medical center, so that they can receive the appropriate treatment 

within 3 h, known as the golden time. 

2.2. Research Subjects and Methods 

In this paper, the NIHSS to be used in the experiment were collected at the emergency medical 

center of Chungnam National University Hospital in Korea. Data collection for stroke patients was 

conducted within 3 days of the definite diagnosis date and data was collected from 287 patients from 

2015 to 2017. Experimental data collected after 3 days of stroke definite diagnosis date that 16 patients 

(no stroke symptoms) with a value of 0 for NIHSS were included, indicating no specific stroke 

symptoms. We selected 227 NIHSS data from the finally selected clinical trial data, excluding 44 

patients with outlier or missing values. Experimental patients were older than 65 years consisting of 

117 men and 110 women. Table 1 shows the results of a standard deviation analysis for age. Table 2 

below shows the distribution of variables for 287 subjects diagnosed with stroke. 

Table 1. Age-based standard deviation analysis. 

Gender Patients (N) Mean Standard Deviation Maximum Minimum 

Male 117 74.44 6.775 90 65 

Female 110 77.82 6.661 99 65 
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Table 2. Baseline characteristics for subjects (N = 287). 

Characteristics No Characteristics No 

Gender  Lesions  

Male 149  Infarction  

Female 138   Anterior Cerebral Artery 7 

Age     Middle Cerebral Artery 164 

65 ~ 69 63 Posterior Cerebral Artery 25 

70 ~ 79 120    Basilar artery, Vertebral artery 76 

80 ~ 89 84  Hemorrhage  

≥90 8  Cortex 4 

Causes   Basal ganglion 2 

Infarction 267  Thalamus 4 

Hemorrhage 16  Brain stem 2 

Transient ischemic attacks  4  Cerebellum 1 

History   Others 3 

Hypertension 179 NIHSS  

Diabetes 79 0 (No Stroke Symptoms) 16 

Previous stroke 46 1 ~ 4 (Minor Stroke) 149 

Cardiovascular disease  20 5 ~ 15 (Moderate Stroke) 88 

Nothing 87 16 ~ 20 (Moderate to Severe Stroke) 11 

Symptom  21 ~ 42 (Severe Stroke) 8 

Weakness 182 ECG  

Dysarthria 113 Normal ECG 108 

Aphasia 26 Abnormal ECG 154 

Decreased consciousness 40 Borderline ECG 18 

Facial palsy 21   
Headache 12   
Dizziness 42   
Paresthesia 12   

The following Tables 3–5 shows the distribution of data measured in the emergency room for 

stroke patients. Table 3 shows the statistical distribution of normal and abnormal inclusion of blood 

pressure and blood test lists of stroke patients measured in the emergency room [28]. Table 4 and 

Table 5 below describes the statistical distribution of normal and abnormal conditions, such as 

emergency chemical, coagulation, and urinalysis test lists [29]. 

Table 3. Characteristics of the emergency room for stroke patients. 

Vital Sign (N = 286) Mean ± SD Normal 

Systolic Blood Pressure (mmHg) 154 ± 17.5 <120 mmHg 

Diastolic Blood Pressure (mmHg) 84 ± 12.5 <80 mmHg 

Pulse (beat/min) 79 ± 14.4 80–100 

Respiration Rate (#/min) 20 ± 2 12–20  

Body Temperature (°C) 37 ± 0 36.1 °C–37.2 °C 

Blood Pressure Test (N = 286) 
Less Than 

Normal 
Normal 

More Than 

Normal 

Systolic Blood Pressure (mmHg) 0 87 199 
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Diastolic Blood Pressure (mmHg) 8 178 100 

Emergency Blood Test (N = 284) 
Less Than 

Normal 
Normal 

More Than 

Normal 

WBC (103/uL) 3 233 48 

RBC (106/uL) 125 158 1 

Hb (g/dL) 57 218 9 

Hct (%) 66 182 36 

Platelet (103/uL) 31 249 4 

MCV (fL) 5 264 15 

MCH (pg) 3 281 0 

MCHC (g/dL) 1 280 3 

MPV (fl) 1 262 21 

Seg.Neutro (%) 1 211 72 

Lymphocyte (%) 80 200 4 

Monocyte (%) 19 246 19 

Eosinophil (%) 0 282 2 

Basophil (%) 0 284 0 

Table 4. Characteristics of the emergency chemical test. 

Emergency Chemical 

Test (N = 261) 

Less Than 

Normal 
Normal 

More Than 

Normal 

TP(n) (g/dL) 47 211 3 

Albumin (g/dL) 197 64 0 

Glucose(n) (mg/dL) 1 105 155 

TB(n) (mg/dL) 12 235 14 

T.chol(n) (mg/dl) 21 194 46 

AST(GOT) (U/L) 0 250 11 

ALT(GPT) (U/L) 0 252 9 

ALP (U/L) 6 251 4 

CK(CPK) (U/L) 55 196 10 

UN (U/L) 3 188 70 

Cr (mg/dL) 20 121 120 

Na (mEq/L) 0 230 31 

K (mEq/L) 13 247 1 

CI (mEq/L) 12 229 20 

P (mEq/L) 24 235 2 

Tca (mg/dL) 68 192 1 

CRP (mEq/L) 0 211 50 

CK-MB (ng/mL) 7 237 17 

Troponin I (ng/mL) 12 223 28 

Table 5. Characteristics of the emergency coagulation and urinalysis test. 

Emergency Coagulation 

Test (N = 281) 

Less Than 

Normal 
Normal 

More Than 

Normal 

aPTT (sec) 13 264 4 

PT (sec) 140 130 11 

PT (%) 7 274 0 

PT(INR) (ratio) 0 280 1 

Emergency Urinalysis 

Test (N = 161) 

Less Than 

Normal 
Normal 

More Than 

Normal 

SG 1 148 12 

pH 0 161 0 

RBC (HPF) 0 125 36 

WBC (HPF) 0 127 34 
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Sq.epi.cell (HPF) 0 160 1 

The collected NIHSS data includes 17 features and age information in a medical examination, as 

shown in Table 5 below. All stroke patients were subjected to a pre-defined measurement scenario in 

a separate room in the emergency center, and NIHSS feature values were accurately assessed 

according to patient response. In this study, we scored the patients based on the NIHSS, and the scores 

for each item were analyzed using the Spearman correlation coefficient. In addition, the Spearman 

correlation coefficients (rho) for each NIHSS feature were statistically verified (see Table 6 below). 

Table 6. The Spearman correlation coefficients (rho) for each National Institutes of Health Stroke 

Scale (NIHSS) feature of the Korean elderly. 

Instructions 1a 1b 1c 2 3 4 5a 5b 6a 6b 7 8 9 10 11 12a 12b 

1a. Level of 

Consciousness 
1.00                 

1b. LOC 

Questions 

0.42

0** 
1.00                

1c. LOC 

Commands 

0.50

2 ** 

0.78

5 ** 
1.00               

2. Best Gaze 
0.40

0 ** 

0.20

9 ** 

309 

** 
1.00              

3. Visual 
−0.0

27 
0.02

1 

0.05

2 

0.01

4 
1.00             

4. Facial Palsy 
0.05

3 

0.10

1 

0.09

6 

0.25

0 ** 

−0.1

38 * 
1.00            

5a. Motor Arm 

(Left) 

0.23

6 ** 

0.38

9 ** 

0.45

6 ** 

0.17

4 ** 

0.03

3 

0.10

2 
1.00           

5b. Motor Arm 

(Right) 

0.33

7 ** 

0.06

8 

0.14

3 * 

0.38

2 ** 

−0.1

14 

0.19

1 ** 

−0.2

1 ** 
1.00          

6a. Motor Leg 

(Left) 

0.22

8 ** 

0.33

2 ** 

0.40

8 ** 

0.18

2 ** 

0.01

8 

0.10

3 

0.83

4 ** 

−0.2

2 ** 
1.00         

6b. Motor Leg 

(Right) 

0.34

2 ** 

0.05

3 

0.12

5 

0.37

5 ** 

−0.0

40 

0.17

6 ** 

−0.2

1 ** 

0.84

7 ** 

−0.2

1 ** 
1.00        

7. Limb Ataxia 
−0.0

39 

−0.0

63 

−0.1

14 

−0.0

53 

0.04

5 

−0.0

71 

−0.1

58 * 

−0.1

17 

−0.1

67 * 

−0.1

32 * 
1.00       

8. Sensory 
−0.0

38 

−0.2

2 ** 

−0.1

39 * 

0.01

0 

−0.1

12 

0.02

3 

−0.1

38 * 

0.08

3 

−0.1

01 

0.01

3 

−0.0

67 
1.00      

9. Best Language 
0.34

9 ** 

0.77

0 ** 

0.75

7 ** 

0.20

6 ** 

0.07

2 

0.10

7 

0.48

0 ** 

−0.0

34 

0.40

3 ** 

−0.0

52 

−0.0

80 

−0.1

62* 
1.00     

10. Dysarthria 
0.23

3 ** 

0.20

0 ** 

0.31

3 ** 

0.28

5 ** 

0.01

0 

0.29

1 ** 

0.29

1 ** 

0.09

5 

0.26

3 ** 

0.14

0 * 

−0.0

90 

−0.0

14 

0.29

2 ** 
1.00    

11. Extinction 

and Inattention 

0.14

8 * 

0.18

3 ** 

0.18

4 ** 

0.53

4 ** 

−0.0

33 

0.33

6 ** 

0.05

6 

0.39

6 ** 

0.05

6 

0.37

9 ** 

−0.0

94 

0.02

8 

0.13

8 * 

0.25

1 ** 
1.00   

12. Distal Motor 

Function (Left) 

−.03

3 
.029 

−.12

7 

0.01

7 

0.07

9 

−0.0

98 

−0.1

97 

−0.2

19 

−0.2

7 

−0.1

39 

−0.0

59 

−0.1

19 

−0.0

51 
0.49 

−0.0

69 
1.00  

12. Distal Motor 

Function (Right) 

−.02

6 

−.10

3 

0.11

3 

0.01

4 

0.05

9 

−0.0

58 

−0.1

33 

0.09

4 

−0.1

27 

−0.0

69 

−0.0

69 

−0.2

1 

0.03

8 
0.86 

−0.0

33 

0.07

1 
1.00 

** P < 0.01; * P < 0.05. 

2.3. Machine Learning in Stroke Analysis and Disease Prediction 

According to a recent research, data mining and machine learning methodologies have an 

important role in the diagnosis and prediction of diseases in the healthcare application [30–35]. 

Recently, various studies have been published on the prediction and analysis of brain diseases, using 

data mining and machine learning methodology [30–34]. A decision tree is a method of decision 

support tool that shows the various rules and their results in a tree structure. A decision tree is a tree-

like structure, where each internal node denotes a test on a feature, each current node describes a 

decision result, and leaf node or each terminal node holds a class label. Typically, the topmost node 

in the tree is the root node. These decision tree methods are intuitive in predicting results, and 

generate rules logically and conveniently [35–38]. ID3 is a representative algorithm of decision tree, 
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and the high-rank node has a disadvantage in selecting a feature having a wide range of values [37]. 

Therefore, in this paper, we introduced the C4.5 decision tree algorithm that alleviates these 

disadvantages [38]. C4.5 is the most advanced decision tree algorithm, and has proved that 

classification and prediction performance is advanced in many existing researches [37–39]. In C4.5 

decision tree, each node in the tree has an association between cases, and this case, are assigned 

weights, considering the unknown feature values. 

When there is an arbitrary set Y, the information gain value of attribute a is calculated as follows. 

Now, consider a similar measurement after Y has been partitioned in accordance with the n outcomes. 

The expected information requirement can be found as the weighted sum over subsets, as gain or 

gain(Y). Here, Yi means the i-th set of arbitrary set Y. The expected information needed to classify a 

tuple in Y is given by  

���� = ����(�) − �
|�� |

|�|

�

�=1

 × ����(�� ). 

 

(1) 

The quantity Equation (1) measures is the information that is gained by partitioning Y in 

accordance with the test subsets. The gain criterion, selects a test subset to maximize this information 

gain.  

����(�) =  − �
������� , ��

|�|

������

� =1

 ×  ���2 �
������� , ��

|�|
� 

 

(2) 

where is the entropy function. Here, freq(Cj, Y) means the frequency of appearance of the j-th class in 

arbitrary set Y. The information gain measure is biased toward tests with many outcomes. Apply a 

kind of normalization to the information gain using the ‘split information’ value defined analogously 

with info(Y) calculated in Equation (2) above. By analogy with the definition of info(Y), we have  

����� ����(�) =  − �
|�� |

|�|
 × ���2  �

|�� |

|�|
�

�

�=1

 

 

(3) 

This represents the potential information generated by dividing Y into n subsets, whereas the 

information gain measures the information relevant to classification that arises from the same 

division. It is easy to see that the gain and gain ratios are zero if we select the discrete attribute or 

feature at the parent ancestor node. Therefore, the C4.5 decision tree does not calculate the value of 

the information gain for this attribute or feature. In Equation (3) above, Y is divided into subset of n, 

to generate a potentially inherent information value, but the information gain value calculates 

information related to classification and prediction occurs on the same node. The gain ratio is defined 

as 

���� �����(�) =
����(�)

����� ����(�)
 
 

(4) 

The gain ratio(Y) obtained from the above Equation (4) represents the ratio value of information 

generated by partitioning [38]. The feature with the highest gain ratio(Y) value at that node is the 

partitioned value, i.e., that appears helpful for classification and prediction. 

3. A Stroke Severity Prediction and In-Depth Analysis System Using NIHSS 

In this section, we propose a new system for real-time predicting and in-depth analysis the 

severity of strokes based on NIHSS features. Figure 1, below, illustrates the overall architecture of 

our proposed system. The system consists of NIHSS features collection module, medical data server, 

real-time stroke severity prediction and analysis, cloud-based stroke monitoring and emergency 

alarm modules. Our medical data center has real-time patient NIHSS data and a health-screening 
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information update module and the training and prediction server module for real-time stroke 

severity, while each patient has a smart device in a server and various healthcare sensors (smart 

phone, healthcare device, etc.) to collect the NIHSS 17 features and age. The NIHSS-based stroke 

severity prediction and in-depth analysis system proposed in this paper is used for execution and 

service according to the following procedure. 

1. Elderly users of stroke severity prediction and in-depth analysis applications collect real-time 

NIHSS data using various healthcare devices. The collected NIHSS data is transmitted to the 

medical network server through a wired or wireless communication network. 

2. The medical data server updates in real-time the NIHSS data collected by individual patients. In 

addition, the individual NIHSS data and health medical examination information are saved and 

transmitted to the health-screening information collection in the repository. 

3. Individual health screening and NIHSS data stored in the database of health screening data 

collection should be updated after filtering outlier or missing values. The data collected and 

stored in the database of health screening data collection is transmitted, in real-time, to the 

individual patient shared authentication module. 

4. The patient data and information collected at the medical center repository are forwarded to a 

module that generates a stroke severity learning model. Stroke severity learning model using 

NIHSS data analyzes patient-specific NIHSS data collected in real-time to determine the severity 

of stroke risk. In addition, to predict and analyze more accurate and faster stroke severity, 

important features in the medical center repository are selected or reduced, to ensure optimal 

prediction accuracy.  

5. The stroke severity learning and prediction model of the present system can select various 

machine learning algorithms and perform learning repeatedly. We also provide models that 

provide optimal prediction accuracy and analysis information through repetitive learning and 

performance verification.  

6. When NIHSS data collected in real-time is executed in the predictive model, it is possible to 

determine the severity of stroke and in-depth analysis information. In addition, the stroke 

severity prediction value and analysis information is provided to the system administrator. 

System administrators can provide alarms for stroke risk to patients and their families.  

7. In general, machine learning is a mechanism that generates a prediction model through random 

learning, and classifies and predicts real-time stroke severity by class using actual data. In this 

system, semantic analysis and in-depth analysis algorithms, such as the C4.5 decision tree, 

Bayesian, logistic regression, and random forest, which are represented by an analytical model 

rather than a black box of machine learning, can be utilized.  

8. Stroke severity management and monitoring server in the cloud-based environment receives the 

prediction and in-depth analysis of the severity for each patient. In addition, the stroke severity 

value and the analysis information are transmitted to the patient and the medical doctor, to 

execute an alarm application for emergency situations.  
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Figure 1. The proposed system architecture for stroke severity prediction and analysis of the elderly. 

4. Experiment and Analysis 

4.1. Experimental Environment and Considerations 

In this study, we verified the performance using Hall et al. [40] in a Java-based data mining 

package and the Shi et al. [41] for extreme gradient boosting. Our experimental data used in this 

research were collected at the emergency medical center of Chungnam National University Hospital 

in Korea. Clinical data collection for stroke patients was conducted within 3 days of the definite 

diagnosis date, and data was collected from 287 patients from 2015 to 2017. We selected 227 HINSS 

data from the finally selected clinical trial data, excluding 44 patients with outlier or missing values. 

Experimental patients were older than 65 years consisting of 117 men and 110 women. We divided 

the research into 17 features, such as the Level of Consciousness (LOC), LOC questions, LOC 

commands, best gaze, visual, facial palsy, motor leg (left), motor leg (right), motor arm (left), motor 

arm (right), sensory, dysarthria, best language, limb ataxia, extinction and inattention (formerly 

neglect), distal motor function (left), and distal motor function (right) of the NIHSS features. 

Additionally, by including the age in the experimental data, the severity of a stroke patient was 

measured using a total of 18 features. All stroke patients were subjected to a pre-defined 

measurement scenario in a separate room in the emergency center, and NIHSS feature values were 

evaluated according to patient response. Each patient had a normal NIHSS score close to zero, but an 

elderly patient with a higher score means severe stroke severity. The individual scores from each 

item are summed to calculate a patient’s total NIHSS score. The maximum possible score is 42, and 

the minimum score is 0. The severity index of the stroke is classified into five classes according to the 

NIHSS score, as shown in Table 7 below. In a total of 227 stroke patient class distribution, 127 patients 

with ‘minor stroke’, 84 patients with ‘moderate stroke’, 10 patients with ‘moderate to severe stroke’, 

and six patients with ‘severe stroke’. 

Table 7. Stroke severity class of NIHSS. 

NIHSS Score  Stroke Severity  

0  No Stroke Symptoms  

1~4  Minor Stroke  

5~15  Moderate Stroke  

16~20  Moderate to Severe Stroke  

21~42  Severe Stroke  
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Table 8 below shows the actual values for age and NIHSS 17 features for each patient at 

Chungnam National University Hospital. 

Table 8. An example of the NIHSS score. 

Age 1a 1b 1c 2 3 4 5a 5b 6a 6b 7 8 9 10 11 12a 12b 

68 0 0 0 0 0 1 0 4 0 4 0 0 0 1 0 1 0 

86 2 1 1 1 0 1 1 2 0 1 1 0 2 0 1 0 1 

75 0 0 0 0 0 2 1 0 0 1 0 0 0 0 1 0 0 

92 2 2 2 0 0 0 3 1 0 3 2 0 0 2 2 1 0 

65 0 1 0 1 1 0 2 1 0 1 2 0 0 1 1 0 0 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... … 

4.2. An In-Depth Analysis on the Stroke Severity Using Machine Learning 

This experiment classifies and predicts the stroke severity using C4.5 decision tree algorithm, 

which is representative of machine learning methodology. In this experiment, four classes of stroke 

severity were classified, and their performance was verified. In this study, a total of 227 clinical 

NIHSS data were used, and a machine learning model was generated by randomly extracting data 

from 182 patients. We performed the tests with NIHSS data from 45 patients—the remaining 20% 

who did not participate in the learning model generation. In order to measure the classification and 

prediction accuracy of the proposed system, we used recall and precision as performance evaluation 

[42–44]. For each patient’s NIHSS feature, the data correctly classified into that class is shown as a 

true positive (TP). Next, the data of misclassification patient are expressed as false positives (FP). The 

patient’s NIHSS data from a class that are falsely labeled as belonging to another class are denoted as 

false negatives (FN). Recall represents the ratio of TP to TP + FN. Recall means the unit of data that is 

misclassified by each class. Precision represents the ratio of TP to TP + FP. Precision means the 

number of correctly identified data for each class. Overall accuracy is the percentage of correctly 

identified data for each class divided by data elements of all classes. 
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The accuracy of the stroke severity classification and prediction was measured by experimental 

comparison with C4.5 decision tree and random forest, logistic regression, classification and 

regression tree (CART), extreme gradient boosting (XgBoost), naïve Bayes, artificial neural network 

(ANN), multi-class support vector machine (SVM), and one-class support vector data description 

(SVDD), a delegate advanced research methodology. We used the correlation feature selection (CFS) 

described to select the optimal feature subset for an accurate classification and prediction of each 

class representing stroke severity [42–45]. The feature subset selected by the CFS is as follows: level 

of consciousness, LOC questions, LOC commands, facial palsy, motor arm (right), motor leg (left), 

motor leg (right), best language, dysarthria, extinction and inattention (formerly neglect). Table 9 

compares the results of using only 11 features selected by the CFS and the classification and 

prediction results using all 18 features. 
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Table 9. The performance measurement for stroke severity prediction accuracy (%). 

Performance 

Measure 

Methods 

All Features Used 
Correlation Feature Selection (CFS) 

(11 Features Used) 

Recall Precision Recall Precision 

C4.5 decision tree 91.1 93.3 88.9 87.5 

Random forest 88.9 90.7 89.4 90.3 

Logistic regression 88.9 90.9 86.7 86.6 

CART 89.8 92.1 88.4 89.8 

XgBoost 88.6 89.6 88.9 91.2 

Naïve Bayes 84.4 88.1 82.2 86.7 

ANN(MLP) 86.6 85.7 91.1 92.3 

Multi-class SVM 82.2 84.5 80.0 82.1 

One-class SVM 80.0 85.4 84.4 87.8 

The results of the experiment show that the classification and prediction accuracy was higher in 

the case of using all the features in the initial stroke severity evaluation than in the case of using the 

optimal 11 feature subset [45–47]. For this reason, rather than removing the NIHSS features that are 

rarely used or duplicated by the CFS [43,46,47], important feature selection was made using the 

information gain or gain ratio of the decision tree model, such as C4.5 or random forest algorithms. 

In the C4.5 decision tree algorithm, the parameters are set and tested with the confidence threshold 

for pruning at 0.5, the seed value is 1, and the minimum number of leaf nodes is 1. In the random 

forest algorithm, the number of trees was set to 100, the iteration was 200 times, the seed value was 

set to 1, the tree showed stable performance at least 100, and the iteration was 150 times or more. For 

logistic regression, the batch size was set to 100 and the ridge parameter value was set to 1.0E-8. In 

CART, the impurity was set as the splitting rule that best distinguishes the distribution of target 

variables. In addition, the impurity was set to the gini, the confidence threshold for pruning was 0.5, 

and the stopping rule was set to end when impurity no longer dropped. In XgBoost, we experimented 

by setting the learning rate value to 0.25, the learning rate value is set to 0.01, the gamma value to 0, 

the tree depth to 12, and the subsampling value to 1. The learning rate value showed relatively stable 

accuracy from 0.01 to 0.001, and, in this paper, the optimal stroke severity prediction accuracy when 

set to 0.01. Naïve Bayes showed the best performance when the batch size was set to 100 and the 

number of decimal places was set to 2. ANN was tested by setting the learning rate to 0.03, the 

momentum to 0.2, the number of hidden layers to 2, and the number of nodes to the hidden layer to 

24. In the two SVM algorithms, the trade-off constant C in the Gaussian Kernel function is set to C = 

0.1 in both phases. The parameter σ in the Gaussian Kernel function are chosen as 0.02 and 0.03 in 

the multi-class SVM and one-class SVM of our experiment, respectively. Furthermore, the C4.5 

decision tree and random forest algorithms have the advantage of being able to perform an 

interpretative analysis of stroke severity and rule-based analysis, unlike previous studies. In addition, 

it has the advantage of predicting stroke severity more quickly and accurately, and executing system 

operations efficiently. 

Figure 2 shows our performance evaluation of the overall accuracy. In our experiment, the health 

stroke scale classification and prediction for elderly were used with different datasets. Figure 2 

illustrates the accuracy of stroke severity prediction with all features and only 11 attributes based on 

CFS. In particular, when generating a predictive model by fixing a training set and a test set, an 

overfitting problem that works well only in a test set may occur. Therefore, in this experiment, the 

performance is verified by constructing a training set and a test set with 10-fold and 20-fold cross 

validation to minimize overfitting, while repeatedly tuning the stroke severity predictive model. As 

a result, when using all NIHSS features, the C4.5 decision tree algorithm showed the highest 

classification and prediction accuracy in recall and precision. 
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Figure 2. The Performance evaluation of the overall accuracy with various datasets. 

Table 10 below shows the C4.5-based classification and overall accuracy of class of stroke 

severity. In this experiment, a total of 227 clinical NIHSS data were used, and a machine learning 

model was generated by randomly extracting data from 182 patients. We performed the tests with 

NIHSS data from 45 patients, the remaining 20% who did not participate in the learning model 

generation. Each class consisted of 24 minor stroke severity patients, 19 moderate stroke severity 

patients, one moderate-to-severe stroke patient and one severe stroke patient. The results of the test 

correctly found 22 out of 24 stroke severity patients in the ‘minor stroke’ class, 16 out of 19 stroke 

severity patients in the ‘moderate stroke’ class, and classified and predicted the ‘moderate-to-severe 

stroke’ and ‘severe stroke’ class for either patient (refer to Table 9). Experimental results show that 

the system enables this by reducing the patient NIH stroke scale measurement time and making the 

operation more efficient, with overall accuracy using the C4.5 algorithm of 91.11%. 

Table 10. The performance evaluation in stroke severity class classification and prediction. 

Minor 

Stroke 

Moderate 

Stroke 

Moderate to 

Severe Stroke 

Severe 

Stroke 

Overall 

Accuracy 

91.67% 84.21% 100% 100% 91.11% 

Figure 3 shows a C4.5-based tree structure for the classification and prediction by stroke severity 

types of the Korean elderly. The figure shows than stroke severity types can be precisely classified 

with thirteen features. The twenty rules obtained from this experiment are shown in Figure 3 below 

(refer to Table 11). 
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Figure 3. The C4.5-based tree structure for stroke severity types classification and prediction. 

Table 11. The rules for stroke severity classification and in-depth analysis. 

Rule 

# 
A Rules and Analysis Results Found in Figure 3. 

1 IF 1 < Best Language ≤ 2 AND age ≤ 84 THEN Moderate stroke. 

2 IF 1 < Best Language ≤ 2 AND age > 84 THEN Moderate-to-severe stroke. 

3 IF Best Language > 2 AND LOC Commands ≤ 1 THEN Moderate stroke. 

4 IF Best Language > 2 AND LOC Commands > 1 AND Motor Leg (Right) ≤ 0 Moderate-to-severe stroke. 

5 
IF Best Language > 2 AND LOC Commands > 1 AND Motor Leg (Right) > 0 AND Dysarthria ≤ 1 THEN 

Moderate-to-severe stroke. 

6 
IF Best Language > 2 AND LOC Commands > 1 AND Motor Leg (Right) > 0 AND Dysarthria > 1 THEN Severe 

stroke. 

7 IF Best Language ≤ 1 AND Motor Leg (Right) > 1 THEN Moderate stroke. 

8 IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention > 0 THEN Moderate stroke. 

9 
IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy ≤ 0 AND 

Motor Arm (Left) ≤ 0 THEN Minor stroke. 

10 
IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy ≤ 0 AND 

Motor Arm (Left) > 1 THEN Moderate stroke. 

11 
IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy ≤ 0 AND 

> 0 Motor Arm (Left) ≤ 1 AND Level of Consciousness > 0 THEN Moderate stroke. 

12 
IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy ≤ 0 AND 

> 0 Motor Arm (Left) ≤ 1 AND Level of Consciousness > 0 AND LOC Questions > 0 THEN Moderate stroke. 

13 

IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy ≤ 0 AND 

> 0 Motor Arm (Left) ≤ 1 AND Level of Consciousness > 0 AND LOC Questions ≤ 0 Motor Leg (Left) ≤ 2 THEN 

Minor stroke. 

14 

IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy ≤ 0 AND 

> 0 Motor Arm (Left) ≤ 1 AND Level of Consciousness > 0 AND LOC Questions ≤ 0 Motor Leg (Left) > 2 THEN 

Moderate stroke. 

15 
IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy > 0 AND 

Limb Ataxia > 0 THEN Moderate stroke. 

16 
IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy > 0 AND 

Limb Ataxia ≤ 0 AND Motor Arm (Left) > 0 AND Motor Leg (Left) ≤ 0 THEN Minor stroke. 

17 
IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy > 0 AND 

Limb Ataxia ≤ 0 AND Motor Arm (Left) > 0 AND Motor Leg (Left) > 0 THEN Moderate stroke. 

18 
IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy > 0 AND 

Limb Ataxia ≤ 0 AND Motor Arm (Left) ≤ 0 AND LOC Questions > 0 THEN Moderate stroke. 

19 
IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy > 0 AND 

Limb Ataxia ≤ 0 AND Motor Arm (Left) ≤ 0 AND LOC Questions ≤ 0 Motor Arm (R) ≤ 2 THEN Minor stroke. 

20 
IF Best Language ≤ 1 AND Motor Leg (Right) ≤ 1 AND Extinction and Inattention ≤ 0 AND Facial Palsy > 0 AND 

Limb Ataxia ≤ 0 AND Motor Arm (Left) ≤ 0 AND LOC Questions ≤ 0 Motor Arm (R) > 2 THEN Moderate stroke. 

<= 1

age 1c. LOC Commands

6b. Motor Leg (R)

10. Dysarthria

> 2>1 and <=2
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(2 / 0)

6a. Motor Leg (L)

<= 2 > 2

Moderate
(1 / 0)
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(17 / 0)
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Our analysis of the rules in Table 11 of the C4.5 decision tree reveals that the stroke severity 

could be precisely classified and predicted with only 13 out of the 18 features that were defined in 

this system. Therefore, reducing the features used in the classification and prediction can not only 

improve the classification and prediction speed, but can also can improve the precision of the 

classification and prediction system. 

5. Conclusions 

In this paper, we propose a system to detect and in-depth analysis stroke severity of elderly aged 

over 65 years based on the NIHSS features, based on the C4.5 decision tree algorithm. The proposed 

stroke severity prediction and in-depth analysis system has the following advantages. First, our 

system that automatically classifies and analysis stroke severity into four classes using NIHSS 

features collected in real-time. Second, the system provides patients and their families with alarm 

information of stroke severity in real-time, so patients can receive medical center visits and 

emergency care. Third, the additional in-depth rules provided in C4.5 decision tree were analyzed, 

and semantic analysis was performed. Lastly, during the operation of an actual system, the proposed 

model uses only 13 features out of the 18 NIHSS features, including age, so that it can provide faster 

and more accurate service support. To summarize the advantages of our system, the NIHSS 

measurement time of the patient can be scientifically reduced. In addition, it can contribute to 

securing the golden time for emergency care of a patient and providing highly reliable services.  

The in-depth analysis method applied in this paper to stroke severity and stroke disease 

prediction based on the C4.5 decision tree is innovative research, which has not previously been 

attempted, and offers considerable potential for future applications. However, decision tree 

algorithms, due to their nature, do not provide as complete a semantic analysis as the predictive 

model algorithm. Therefore, our future work will use association rule mining as a research tool for 

useful knowledge discovery and analysis, which is inherent in the mechanism for initial stroke 

assessment of disability and the recurrence prediction. 
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