
Received July 16, 2020, accepted July 28, 2020, date of publication August 7, 2020, date of current version August 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3014922

Knowledge Transfer for On-Device
Deep Reinforcement Learning in Resource
Constrained Edge Computing Systems
INGOOK JANG , HYUNSEOK KIM, DONGHUN LEE,
YOUNG-SUNG SON, AND SEONGHYUN KIM
Autonomous IoT Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, South Korea

Corresponding author: Seonghyun Kim (kim-sh@etri.re.kr)

This work was supported by the Electronics and Telecommunications Research Institute (ETRI) funded
by the Korean Government (Core Technologies of Distributed Intelligence Things for Solving
Industry and Society Problems) under Grant 20ZR1100.

ABSTRACT Deep reinforcement learning (DRL) is a promising approach for developing control policies by
learning how to perform tasks. Edge devices are required to control their actions by exploiting DRL to solve
tasks autonomously in various applications such as smart manufacturing and autonomous driving. However,
the resource limitations of edge devices make it unfeasible for them to train their policies from scratch. It is
also impractical for such an edge device to use the policy with a large number of layers and parameters, which
is pre-trained by a centralized cloud infrastructure with high computational power. In this paper, we propose a
method, on-device DRL with distillation (OD3), to efficiently transfer distilled knowledge of how to behave
for on-device DRL in resource-constrained edge computing systems. Our proposedmethodmakes it possible
to simultaneously perform knowledge transfer and policy model compression in a single training process
on edge devices with considering their limited resource budgets. The novelty of our method is to apply a
knowledge distillation approach to DRL based edge device control in integrated edge cloud environments.
We analyze the performance of the proposed method by implementing it on a commercial embedded
system-on-module equipped with limited hardware resources. The experimental results show that 1) edge
policy training with the proposed method achieves near-cloud-performance in terms of average rewards,
although the size of the edge policy network is significantly smaller compared to that of the cloud policy
network and 2) the training time elapsed for edge policy training with our method is reduced significantly
compared to edge policy training from scratch.

INDEX TERMS Deep reinforcement learning, edge computing, edge AI, knowledge transfer, policy model
compression, on-device training.

I. INTRODUCTION
Today, the Internet of Things (IoT) is used for a wide
range of industrial applications, including smart cities [1],
autonomous transportation [2], urban surveillance [3], and
intelligent manufacturing [4]. Although a cloud computing
approach has been adopted to enhance the applicability of
IoT in a centralized manner, it has been faced with challenges
such as scalability, bandwidth efficiency, and privacy protec-
tion [5]. To alleviate these limitations of cloud-based systems,
edge computing is emerging as a complementary strategy,
which places data processing at the edge of the network [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Tai-Hoon Kim .

Various edge devices in complex applications are required
to make optimal control actions with minimal human inter-
vention. To meet such demands, the state-of-the-art edge
computing systems employ artificial intelligence (AI) at the
edge (edge AI) or on devices (on-device AI) to handle
not only data processing but decision making for control.
Sophisticated AI techniques (for not only inferencing or
predicting but even training) need to be applied to provide
intelligent edge services although most edge devices suffer
from hardware resource constraints. The edge and on-device
AI play a crucial role to bring various benefits such as imme-
diate response, privacy preservation, enhanced availability
(even without network connection), efficient use of network
bandwidth, and low cost.

146588 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4804-6417
https://orcid.org/0000-0003-0117-8102


I. Jang et al.: Knowledge Transfer for On-Device DRL in Resource Constrained Edge Computing Systems

FIGURE 1. Illustration of an edge computing architecture. To efficiently
train control policies on resource-constrained edge devices, the distilled
knowledge is required to be transferred from the cloud to edge devices
and should be compressed depending on their limited resource budgets.

As an emerging AI technique, DRL provides a deep
learning-based approach for an agent (i.e., device) to learn
how to perform a task well and control its actions by trial-
and-error interactions with an environment. The basic idea
of DRL is to train an effective control policy (i.e., model)
by utilizing the powerful approximation capabilities of deep
neural networks (DNN). A number of works using DRL
have studied the challenges of cloud computing, such as
resource allocation [7]. Recently, DRL can be considered as
a key technology to enable edge devices to solve complex
tasks intelligently in real-world applications such as smart
manufacturing [8] and autonomous vehicle [9].

For on-device AI, it should be considered not only to
transfer knowledge of the pre-trained control policy from
the cloud to edge devices but also to compress the policies
of the edge devices depending on their hardware resources,
as shown in Fig. 1. Training a DRL model (i.e., policy)
requires high computational power and sufficient hardware
resources such as processors (e.g., CPUs and GPUs), mem-
ory, storage, and power supply. Due to the limited resource
capacity of edge devices, it is hard for them to train their
control policies from scratch by leveraging DRL methods
[10]. Moreover, it is impractical for resource-limited edge
devices to use control policies trained by centralized cloud
infrastructure with high computational power and sufficient
hardware resources. The available hardware resources of
the edge devices may not be sufficient to execute inference
tasks (i.e., action prediction). This is why it is hard for edge
devices to handle the pre-trained policies transferred from
the cloud systems, which tend to be large and deep with
dozens of hidden layers and millions of neurons. Typically,
a DNN with many layers and parameters requires consid-
erable computation for testing (e.g., inference) as well as
training. To overcome resource limitations at the edge devices
when training a DRL model, it is a key challenge to transfer
only essential action knowledge from the cloud to them.
Policy model compression at edge devices utilizing the trans-
ferred knowledge is also challenging to meet their resource

constraints significantly depending on the device type and
manufacturers.

This paper investigates a method to efficiently transfer
distilled knowledge of how to behave for edge device
control using Deep Reinforcement Learning (DRL) in
resource-constrained edge computing systems, where a huge
number of various edge devices are connected through cloud
infrastructure. Our proposed method, on-device DRL with
distillation (OD3), makes it possible to simultaneously per-
form knowledge transfer and policy model compression in a
single training process on edge devices with considering their
limited resource budgets.

Our main contributions in this paper are as follows:
• By applying a policy distillation technique [11] to
integrated edge cloud computing systems, we pro-
pose a method to transfer distilled knowledge from a
pre-trained policy of the cloud to resource-constrained
edge devices, referred to as on-device DRL with distil-
lation (OD3). Our proposed method aims to simulta-
neously conduct knowledge transfer and policy model
compression in a single training process on edge devices
by leveraging the policy distillation.

• To the best of our knowledge, there has not been any
study on knowledge transfer for control of real-world
resource-constrained edge devices for DRL in integrated
edge cloud computing systems. We perform the first
comprehensive and most recent study on this problem
and demonstrate the feasibility by applying OD3 to a
commercial hardware platform.

• We demonstrate the advantages of the OD3 for
resource-constrained edge computing systems. The per-
formance of the OD3 is validated and analyzed from var-
ious perspectives. In particular, the experimental results
show that the performance of edge policy training with
OD3 reaches very close to that of cloud policy training in
terms of average rewards, although the size of the edge
policy network is significantly smaller compared to that
of the cloud policy network. The results also show that
the training time elapsed for edge policy training with
OD3 is reduced significantly compared to edge policy
training from scratch.

This paper discusses the related work in Section II and the
essential preliminaries of DRL and knowledge distillation in
Section III. The proposed OD3 is described in Section IV and
the experimental results are shown in Section V. Section VI
presents the conclusion and future work.

II. RELATED WORK
A. DEEP REINFORCEMENT LEARNING
Reinforcement learning (RL) is creating a new paradigm
shift in machine learning, which allows agents to decide on
their sequential actions for autonomous control. It enables
agents to learn their control policies in a way to maxi-
mize the expected reward through a large number of trial-
and-error interactions with an environment, as shown in
Fig. 2. DRL, as RL combined with a DNN, has recently

VOLUME 8, 2020 146589



I. Jang et al.: Knowledge Transfer for On-Device DRL in Resource Constrained Edge Computing Systems

FIGURE 2. Agent-environment interactions via deep reinforcement learning. Each edge device takes its limited resource budget
into account and generates a different policy network architecture.

achieved great success in the fields of playing Atari games
[12] or Go [13], controlling continuous actions in robotics
[14], and autonomous driving (including flight) [9], [15].
Deep Q-Networks (DQN) [12] is one of the representative
algorithms of DRL and enhances the performance of the
Q-learning algorithm by adopting a DNN and a replay-buffer
memory. However, DRL is known as a simple and easy
implementation in a simulation environment consisting of
sufficient resources but as hard to be realized in a real-world
environment, such as edge devices equipped with limited
hardware resources [16].

B. DRL IN THE EDGE
There aremany kinds of research employingDRL approaches
to solve crucial challenges in edge computing systems, such
as computation offloading [17], [18], resource orchestration
[19], and mobile edge caching [20]. These studies have
focused on the network performance improvement of edge
architectures rather than on the realization of intelligent edge
devices capable of deciding their actions for solving tasks.

For the realization of edge and on-device AI, inference
on devices is the important first step. However, on-device
training also must be explored to overcome the crucial chal-
lenges such as privacy, scalability, and latency. So far, only
a few studies have been conducted for on-device training
based on supervised and unsupervised learning algorithms.
Fang et al. [21] proposed an approach to train a convolu-
tional neural network (CNN) by considering the dynamics
of runtime resources for mobile vision systems. Xu et al.
[22] introduced DeepType using on-device deep learning to
personalize user input for preserving privacy.

In the case of RL, there has not been an on-device DRL
training method for resource-constrained edge devices. For a
complex task, it is often impractical to train a DRL policy
from scratch under a limited resource budget. Moreover,
different hardware resource budgets among edge devices
should be considered to support DRL training for heteroge-
neous edge devices, as shown in Fig. 2. To the best of our
knowledge, our research is the first meaningful study on this
problem, which utilizes both knowledge transfer and policy
model compression.

C. TRANSFER LEARNING
Transfer learning is a simple technique of exploiting the
parameters of a pre-trained neural network for one task and

adapting them to a new neural network for the other task.
This approach can be useful when there is insufficient training
data set for the new task and not much time to execute
training processes. In integrated edge cloud computing envi-
ronments, transfer learning can be a key promising technique
to realize on-device training for resource-constrained edge
devices [23]. Li et al. [24] introduced on-device training
based on a transfer learning technique for visual recognition
in edge-based IoT environments. In RL tasks, the parameters
of a DRL policy network (referred to as knowledge) obtained
by cloud policy training can be transferred to a new edge
policy network to enable DRL training even though there is
only an insufficient hardware resource budget and not enough
time for training. However, it is impractical to apply transfer
learning for DRL into edge devices with different resource
constraints.

D. MODEL COMPRESSION
Another way for efficient on-device inference and training
is to compress a well-trained existing model. DNNs for RL
tasks typically have dozens of layers and millions of parame-
ters. Moreover, the architecture of DNNs becomesmore com-
plicated as the tasks become more complex. Recently, there
are various approaches to compress such pre-trained models
[25]– [28]. These model compression approaches promise
considerable savings on the model complexity, power effi-
ciency, and inference time. Knowledge distillation is one of
the most popular approaches to compress a DNN, which
distills knowledge from a pre-trained model and transfers
it to a new model with a smaller number of layers and
parameters [29], [30]. Recently, Hinton et al. [31] proposed
an approach to distill knowledge from an ensemble of large
models (i.e., a teacher model) into a small single model
(i.e., a student model). This approach can compress a student
model by utilizing softened softmax outputs of the teacher
model, which have more knowledge than traditional softmax
outputs. The student model tries to mimic the teacher model
by minimizing the loss (e.g., cross-entropy) between the out-
puts of the teacher and student. Rusu et al. [11] proposed
policy distillation, which applied knowledge distillation to
RL policy training. This study uses a teacher-student policy
training for transferring action knowledge from one or more
policies to an untrained model.

In this work, we do not simply focus on enabling RL train-
ing on devices. From a fully different perspective, we try to

146590 VOLUME 8, 2020



I. Jang et al.: Knowledge Transfer for On-Device DRL in Resource Constrained Edge Computing Systems

view and address DRL training among resource-constrained
edge devices in edge cloud computing systems. The main
similarities and differences between the proposedmethod and
the surveyed studies are summarized as follows:

E. SIMILARITIES
• A deep learning-based approach is adopted for solving
real-world problems in edge computing systems.

• Transferred knowledge can be useful to build a model
efficiently, though there is insufficient training data or a
limited resource budget.

• The saving on model complexity is achieved by using a
model compression method.

F. DIFFERENCES
• This study focuses on how to realize on-device DRL for
resource-constrained edge computing systems, which
cooperate with cloud infrastructure.

• The proposedmethod addresses the diversity of resource
constraints of individual edge devices.

• It also demonstrates the effectiveness of applying a
distillation approach to a real-world edge cloud system.

III. BACKGROUND
A. REINFORCEMENT LEARNING
An RL task is defined by M = (S,A,P, r), where M is a
Markov decision process (MDP) described as follows:

1) A set of states S = {s1, s2, . . . , sn}, where st ∈ S at
every timestep t .

2) An action space A = {a1, a2, . . . , am} available to the
RL agent at each state, where at ∈ A(st ) is an action
choice based on its policy π : at = π (st ).

3) A distribution of state transition P = p(st+1|st , at ),
which is a mapping from state-action pairs st , at to a
probability distribution over the next states.

4) A distribution of initial states P0 = p(s0), where
every episode starts with sampling an initial state
independently.

5) A reward function rt = r(st , at ).
6) A discount factor γ ∈ [0, 1].

The expected discounted return at time t is given by
Rt =

∑
∞

t ′=t γ
t ′−trt ′ and the goal of the RL agent is to maxi-

mize its expected returnEs0 [R0|s0]. The action-value function
(e.g., Q function) is defined as Qπ (s, a) = E[Rt |st = s,
at = a, π], which represents the expected discounted return
after observing the state s and taking the action a depending
on the policy π . The optimal Q function Q∗ satisfies the
following Bellman equation:

Q∗(s, a) = Es′∼p(·|s,a)
[
r(s, a)+ γ max

a′∈A
Q∗(s′, a′)

]
(1)

B. DEEP Q-NETWORK (DQN)
DQN algorithm is a model-free approach for RL using DNNs
in environments with discrete action spaces, which optimizes
neural networks to approximate the optimal Q function Q∗.
In DQN, the expected discounted future return of each pos-
sible action is predicted at timestep t and the RL agent

take the action with the highest predicted return: πQ(st ) =
argmaxa∈AQ(st , a). During training the RL agent collects
the tuples (s, a, r, s′) from its experience and stores them in
an experience replay memory, which is a key technique to
improve training performance in the DQN algorithm. The
purpose of the replay memory is to remove correlations
between samples experienced by the agent. The neural net-
work to approximate Q∗(s, a) is trained using a mini-batch
gradient descent approach and minimizes the following
loss by using samples (s, a, r, s′) from the replay memory:
L = Es,a,r,s′ [(Q(s, a) − y)]2, where y = r +
γ maxa′∈AQ(s′, a′). In DQN, the RL agent uses a separate
target Q-network, which has the same architecture as the
original Q-network but with frozen parameters. The purpose
of the target network is to temporarily fix the Q value targets
because non-stationary targets make a training process unsta-
ble and reduce performance. The parameters of the target
Q-network θ− are updatedwith that of the original Q-network
θ every fixed number of iterations. For the use of the target
Q-network, the loss function can be reformulated as follows:

L(θ ) = Es,a,r,s′
{ prediction︷ ︸︸ ︷
Q(s, a; θ )−[r + γ max

a′∈A
Q(s′, a′; θ−)︸ ︷︷ ︸

target

]
}2
(2)

Since DQN uses two Q-networks with identical neu-
ral network architecture, training may require more
computational resources such as memory.

C. KNOWLEDGE DISTILLATION
Knowledge distillation is a transfer learning approach to
distill useful knowledge from a teacher model and transfer
it to a student model. In a distillation process, the distilled
knowledge can be transferred from a teacher network to a
student network by utilizing softened targets parameterized
by a temperature τ [31]. For a higher temperature τ > 1,
teacher’s outputs (e.g., logit vector) zi can be softened and
converted into a probability distribution by passing them
through a softmax function:

Fsm(zi/τ ) =
exp(zi/τ )∑
j exp(zj/τ )

(3)

In the classification problem, raising the temperature
enables more of the knowledge to be transferred to the student
network since the teacher’s output typically tends to be very
peaked. However, in the RL setting, the softmax function
is used to make the distribution sharper by lowering the
temperature τ < 1 because the teacher’s output is a set of the
expected discounted return values for its action space [11].
If the temperature goes to 0, a softmax function becomes
greedy. Otherwise, it is computed as a softmax function
with a Boltzmann distribution shown in Equation (3). The
sharpened distribution not only provides more unambiguous
information for action selection but also serves as a regression
target for the student training. These characteristics enable an
RL training process using distillation to be accelerated.

VOLUME 8, 2020 146591



I. Jang et al.: Knowledge Transfer for On-Device DRL in Resource Constrained Edge Computing Systems

Algorithm 1: On-Device DRL With Distillation
Input: Pre-trained cloud policy network parameters (teacher) θT ; Resource budget R; Training step number T ;

Temperature τ
Output: Edge policy network parameters (student) θS

1 Initialize the architecture of the edge policy network using PolicyNetGenerator(R)
2 Randomly initialize θS ; Initialize t ← 1
3 while t ≤ T do
4 Compute the sharpened target of the cloud policy network Fsm(ζ Tt /τ ; θT ) (Equation (3) with a temperature τ )
5 Compute the prediction of the edge policy network Fsm(ζ St ; θS ) (Equation (3) with a temperature 1)
6 Compute the loss function

∑
t lkl(ζ

T
t , ζ

S
t , τ ) (Equation (4))

7 Update the edge policy network parameters θS through a SGD algorithm
8 end

IV. ON-DEVICE DRL WITH DISTILLATION
The proposed OD3 allows an edge device to train its control
policy on its hardware platform by using the distillation
technique. The proposed approach has two advantages over
existing methods. The first is to accelerate a policy training
process of an edge device compared to that from scratch since
the OD3 adopts a sharpened target distribution to transfer
much more unambiguous knowledge of how good it would
be to take a specific action in a given state. The second is to
enable an edge device to compress its control policy based on
its resource budgets by utilizing the transferred knowledge
from the cloud.

The proposed OD3 will be described based on the DQN
algorithm mentioned in Section III-B. As one of the most
popular RL algorithms, DQN efficiently works in the simple
control problems (e.g., Atari games) with discrete action
spaces. Therefore, DQN serves as a good baseline for perfor-
mance comparisons as well as a base algorithm for teacher
training performed in the cloud. Although several advanced
algorithms that outperform the DQN have been proposed,
we choose the vanilla DQN to focus on exploring the
feasibility of OD3.

A. LOSS FUNCTION
The OD3 uses a softmax function with a lower temperature
τ < 1 to sharpen the teacher’s output. We assume that a
control policy pre-trained by the cloud and that to be trained
by an edge device play roles of a teacher T and a student S,
respectively, in an integrated edge cloud environment. To dis-
till the knowledge from the cloud policy network, the differ-
ence between two distributions of the cloud policy network
and edge policy network is computed, which are given by
Fsm(ζ T /τ ) and Fsm(ζ S ), respectively, where ζ T and ζ S are
the logit vectors from the output layers of the policy networks
of the teacher T and the student S, respectively.
The OD3 allows each edge device to train its control policy

by optimizing the Kullback-Leibler (KL) divergence, which
measures the difference between two given distributions.
In [11], the KL divergence showed superior performance
compared to the mean squared error (MSE) and negative log
likelihood (NLL), as viewing the outputs of the teacher and

student as distributions over the actions to be taken. The loss
function to be minimized is formulated as follows:

Lkl(D, θS , τ ) =
∑
t

lkl(ζ Tt , ζ
S
t , τ ), (4)

where

lkl(ζ Tt , ζ
S
t , τ ) = Fsm(ζ Tt /τ ) log

Fsm(ζ Tt /τ )

Fsm(ζ St )
. (5)

Here θS denotes a set of parameters of the student network
to be trained, D = {(st , ζ Tt )}

N
t=0 is a dataset sampled by the

teacher, and ζ Tt and ζ St represent the logit vectors generated
from a cloud policy network and edge policy network at
timestep t , respectively.

B. ALGORITHM DETAILS
The OD3 details are summarized in Algorithm 1.
PolicyNetGenerator with the input R initializes the architec-
ture of a policy network to be trained by using its resource
budget, which includes information about the shape of a
neural network architecture used for edge policy training with
considering the resource budget. For instance, such infor-
mation contains the numbers of layers (e.g., convolutional
or fully connected layers) and output filters when a CNN
is optimized. In the following experiment, the architectures
of neural networks used for cloud and edge policy train-
ing are heuristically chosen. To improve the efficiency of
on-device AI performance, constructing a ‘‘better’’ neural
network architecture for a resource-constrained edge device
can be realized by exploiting emerging network architecture
search (NAS) techniques [32]–[34].

The edge device performs the RL training with knowledge
distilled from the pre-trained cloud policy network after neu-
ral network generation. The edge device computes the loss
function described in Equation (4) by using its prediction
and the sharpened target of the cloud policy network. Then,
the edge device updates its policy network parameters by
carrying out stochastic gradient descent (SGD) within each
timestep. The distilled action knowledge can be transferred
from the cloud to the edge device in a single training process.

Figure 3 depicts the proposed OD3 based on the DQN
algorithm. To approximate the Q function, CNNs are

146592 VOLUME 8, 2020



I. Jang et al.: Knowledge Transfer for On-Device DRL in Resource Constrained Edge Computing Systems

FIGURE 3. Our approach based on the DQN algorithm. This method enables an edge device to simultaneously conduct knowledge transfer and policy
model compression considering its limited resource budgets in a single training process on the device. The edge device utilizes the distilled action
knowledge from the pre-trained cloud policy to train its own optimized policy.

employed, which passes observation images as inputs.
Depending on the resource budget, the edge device gener-
ates the smaller CNN that mimics the behavior produced
from the pre-trained cloud CNN. The smaller CNN of the
edge device approximates the function learned by the cloud
policy network. Our approach enables the edge device to
complete cloud-level RL training with a significantly reduced
number of timesteps compared to edge policy training from
scratch. Moreover, the performance of the newly trained edge
policy reaches close to that of the pre-trained cloud policy
while using only the significantly compressed policy network
compared to the cloud policy.

V. EVALUATION
This section investigates the performance of the proposed
OD3. We use Tensorflow [35] to train DNNs both in a cloud
server and an edge device.We first introduce the details of the
experiment setup and then present the corresponding results.
The experimental results demonstrate the advantages of our
method over plain RL training approaches in integrated edge
cloud settings.

A. EXPERIMENTAL SETUP
1) HARDWARE
We run our teacher policy training on a GPU server that
can be treated as an entity of the cloud infrastructure. The
GPU server is composed of two CPUs (Intel Xeon processors
with 2.3GHz each), a single GPU (NVIDIA Tesla V100
with 5120 CUDA cores), and 128GB RAM. For student pol-
icy training performed by an edge device, a popular embed-
ded system-on-module (NVIDIA Jetson TX2) is used, which
consists of two CPUs (a dual-core NVIDIA Denver 2 and a
quad-core ARM A57), a single GPU (NVIDIA Pascal GPU
with 256 CUDA cores), and 8GB RAM shared between the
CPUs and GPU. This system-on-module has been commonly

TABLE 1. Specifications of the cloud server and the edge device used in
the experiments.

used for various edge applications such as autonomous cars,
drones, and robotics. Table 1 summarizes the specifications
of both the cloud server and the edge device used in our
experiments.

2) BENCHMARK AND BASELINES
To evaluate the impact of the proposed OD3, we focus on
the Atari platform (especially a Pong game), which is a
representative benchmark problem for examining the perfor-
mance of RL agent control. Since Pong has a discrete action
space (i.e., 6 actions), the output layers before the softmax
functions both in the cloud policy network and the edge policy
network have 6 units each. The discounted future reward
is defined as Rt =

∑T
t ′=t γ

t ′−trt ′ , where T is the training
timestep.

We compare the performance between edge policy training
with the proposed OD3 (represented as EDGE-OD3), edge
policy training without the OD3 (represented as EDGE), and
cloud policy training (represented as CLOUD). Comparing
EDGE-OD3 with EDGE and CLOUD provides a good base-
line on howmuch improvement our method achieves in terms
of average rewards, time elapsed for each training, and policy
network size.

VOLUME 8, 2020 146593



I. Jang et al.: Knowledge Transfer for On-Device DRL in Resource Constrained Edge Computing Systems

TABLE 2. Major hyper-parameters for the training procedures on the
cloud server and the edge device.

3) HYPER-PARAMETERS
Policy training processes both in the cloud and the edge
device are performed with the architectures illustrated in
Fig. 3. Each policy is trained with three convolutional layers
and two fully connected layers. The edge device scales down
the numbers of each layer’s filters (i.e., the dimensionality
of the output space of each layer) depending on its limited
resource budget. In our experiments, a smaller neural network
(i.e., 16, 16, 16, 128, and 6 filters) is used for training on the
edge device while a larger neural network (i.e., 32, 64, 64,
512, and 6 filters) is learned by the cloud server. We choose
the architectures of these two neural networks heuristically
and refer them to as a smallnet and largenet in experimental
results, respectively. Rectifier linear units (i.e., ReLU) are
used as activation functions between every two successive
layers. The temperature τ for teacher policy is set to 0.01
empirically selected for the best OD3 performance. The KL
divergence loss function defined in Equation (4) is used.

Table 2 summarizes the major hyper-parameter settings
for the training procedures on the cloud server and the edge
device used in our experiments. Most of the hyper-parameters
used in our experiments are identical to the parameters used in
[12]. The Adam optimizer [36] is employed with the leaning
rate decayed from 2.5e−4 to 5e−5, which can be used for
the update of the neural network parameters by conducting
mini-batch gradient descent. In the evaluation procedures, the
trained agent acts with a value of ε = 0.05.
We investigate the performance of the proposed method

from two perspectives: 1) an experiment using the exactly
identical hyper-parameters between the cloud and the
edge device (Case 1) and 2) an experiment with varying
hyper-parameters closely related to the limited hardware
resource of the edge device (Case 2). In Case 2, the same
hyper-parameter setting is used for training both in the cloud
and the edge device, except for the mini-batch size and the
update frequency. The use of small batches improves mem-
ory efficiency by exploiting a significantly smaller memory
footprint [37]. The update frequency means the number of
timesteps between consecutive SGD updates. Since the com-
putational cost of an update to the neural network is more
expensive than that of a forward pass through the neural
network, the larger value of the update frequency saves com-
putation and increases training speed [38]. Therefore, in the

FIGURE 4. Average rewards with respect to the number of timesteps. The
gray lines depict the actual average reward values measured from the
experiments. The colored lines show the smoothed ones, which can be
useful for illustrating the overall trend.

TABLE 3. Comparison of the major experimental results between the
cloud policy network and two variants of the edge policy network.
It includes the number of parameters, policy network size, and training
time elapsed until first reaching the convergence reward point. This
excludes the result of the training time elapsed for EDGE because
it does not converge within the timesteps defined in Table 2.

edge device’s settings, we gradually increase the value of the
update frequency (4, 8, 16, and 32) and gradually decrease the
mini-batch size (32, 16, 8, and 4) to study how performance
changes as the two hyper-parameters vary. The experimental
results of Case 1 and 2 are shown in Section V-B1 and V-B2,
respectively.

B. EXPERIMENTAL RESULTS
1) CASE 1: RESULTS FOR THE SAME HYPER-PARAMETER
SETTING BETWEEN THE CLOUD AND THE EDGE DEVICE
Figure 4 shows the result of the average rewards with respect
to the number of timesteps in the policy training processes.
EDGE-OD3 significantly outperforms EDGE in terms of
average rewards although they train the same architecture
of the smallnet. The smallnet of the edge policy network is
trained by using only 6.3% parameters over the largenet of
the cloud policy network, as shown in Table 3. Nevertheless,
the average rewards in the edge policy training reach very
close to that in the cloud policy training while the edge
device has only significantly limited hardware resources. The
learning curve of EDGE-OD3 converges at the 1M timestep
point while that of CLOUD converges at the 3M timestep
point. EDGE-OD3 achieves about 66% improvement com-
pared to CLOUD in terms of the number of timesteps for
convergence.

146594 VOLUME 8, 2020



I. Jang et al.: Knowledge Transfer for On-Device DRL in Resource Constrained Edge Computing Systems

FIGURE 5. Average rewards with respect to the actual time elapsed for
training.

Since the actual time to execute a timestep can vary greatly
depending on the hardware resource budgets, we rescale
the result of the average rewards with the x-axis of the
actual time elapsed for policy training, as shown in Fig. 5.
The learning curve of EDGE-OD3 with the smallnet suc-
cessfully converges as quickly as that of CLOUD with the
largenet although the edge device suffers from the signif-
icantly limited hardware resources. Table 3 also shows the
actual time elapsed until the average rewards of EDGE-OD3
and CLOUD reach the convergence point (6.2 reward points)
for the first time. Using the proposed OD3, the edge pol-
icy training performs on par with the cloud policy training
spending only 15% more time.

The overall performance shown in Case 1 experiments
demonstrates that OD3 performs on par with cloud policy
training in terms of average rewards although the size of
the policy network used in the edge device is much smaller
compared to that used in the cloud. Moreover, the edge policy
training with the OD3 not only decreases the training time
elapsed significantly compared to edge policy training from
scratch but also converges as quickly as the cloud policy
training. We can see that OD3 allows an edge device to
successfully perform knowledge transfer and policy model
compression together under a given limited resource budget.
Consequently, our results confirm the effectiveness of OD3.

2) CASE 2: RESULTS WITH VARYING HYPER-PARAMETER
SETTINGS OF THE EDGE DEVICE
To study the effect of varying a hyper-parameter related
to a memory constraint of the edge device, we vary the
mini-batch size with a sequence of four values (i.e., 32, 16,
8, and 4) and refer these variants to as EDGE-OD3-BS32,
EDGE-OD3-BS16, EDGE-OD3-BS8, and EDGE-OD3-BS4,
respectively. Figure 6 shows the result of the average rewards
with respect to the number of timesteps in the policy train-
ing processes in the cloud and the four BS variants of the
edge device. The result indicates that the performance dif-
ferences between four variants of the edge policy training are
slight from the perspective of the performance of the average

FIGURE 6. Average rewards with respect to the number timesteps with
varying the mini-batch size of the edge device.

FIGURE 7. Average rewards with respect to the actual time elapsed for
training with varying the mini-batch size of the edge device.

rewards with respect to the timestep. Varying the mini-batch
size does not have a significant impact on performance in
terms of the average rewards since the OD3 can transfer
more information about action knowledge for a single update,
compared to the policy trainingwithout distillation. However,
a decrease in the mini-batch size significantly reduces the
training time elapsed for edge policy training, as shown
in Fig. 7. Thus the OD3 using a small batch allows an
edge device to train its policy more quickly with negligible
performance loss.

We also vary the update frequency for the OD3 with a
sequence of four values (i.e., 4, 8, 16, and 32) and refer
these variants to as EDGE-OD3-LF4, EDGE-OD3-LF8,
EDGE-OD3-LF16, and EDGE-OD3-LF32, respectively.
Figure 8 depicts the result of the average rewards with respect
to the number of timesteps in the policy training processes in
the cloud and the four LF variants of the edge device. The
result shows that the performance of the average rewards
decreases considerably as the update frequency of the edge
device increases. We believe this is because the number
of updates to the edge policy decreases and the sufficient
distilled knowledge is not transferred to the edge device.

VOLUME 8, 2020 146595



I. Jang et al.: Knowledge Transfer for On-Device DRL in Resource Constrained Edge Computing Systems

FIGURE 8. Average rewards with respect to the number timesteps with
varying the update frequency of the edge device.

FIGURE 9. Average rewards with respect to the actual time elapsed for
training with varying the update frequency of the edge device.

Due to the reduced number of the policy updates in the OD3,
the performance of a lower update frequency decreases while
the training is finished quickly, as shown in Fig. 9.
The overall performance shown in Case 2 experiments

indicates that it is important to choose an appropriate
hyper-parameter setting to efficiently perform the pro-
posed OD3. A comprehensive empirical study needs to be
conducted thoroughly to further improve performance.

VI. CONCLUSION
In this paper, we proposed a method to efficiently transfer
distilled knowledge for DRL based edge device control in
resource-constrained edge computing systems, referred to as
OD3. The goal of the OD3 is to conduct knowledge transfer
and policymodel compression simultaneously within a single
training process on edge devices by leveraging a knowl-
edge distillation technique. We analyzed the performance of
the proposed method by implementing it on a commercial
embedded system-on-module equipped with limited hard-
ware resources. The experimental results showed that OD3
achieved near-cloud-performance although it utilizes only the
significantly smaller policy network than the cloud. Also,
the training time elapsed for edge policy training with our

methods was reduced significantly compared to edge policy
training from scratch. The results well confirmed the effec-
tiveness of the OD3 in resource-constrained edge computing
systems. In future work, we plan to investigate an effective
method for generating optimal neural network architectures
by considering the balance between the performance of the
distilled policy and the resource constraints of the heteroge-
neous edge devices, as well as hyper-parameter optimization
for DRL in resource-constrained edge environments.

REFERENCES
[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, ‘‘Internet of

Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1, pp. 22–32,
Feb. 2014.

[2] J. A. Guerrero-ibanez, S. Zeadally, and J. Contreras-Castillo, ‘‘Integration
challenges of intelligent transportation systems with connected vehicle,
cloud computing, and Internet of Things technologies,’’ IEEE Wireless
Commun., vol. 22, no. 6, pp. 122–128, Dec. 2015.

[3] H. Ma and W. Liu, ‘‘A progressive search paradigm for the Internet of
Things,’’ IEEE MultimediaMag., vol. 25, no. 1, pp. 76–86, Jan. 2018.

[4] Z. Bi, L. Da Xu, and C. Wang, ‘‘Internet of Things for enterprise systems
of modern manufacturing,’’ IEEE Trans. Ind. Informat., vol. 10, no. 2,
pp. 1537–1546, May 2014.

[5] J. Pan and J. McElhannon, ‘‘Future edge cloud and edge computing for
Internet of Things applications,’’ IEEE Internet Things J., vol. 5, no. 1,
pp. 439–449, Feb. 2018.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[7] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang, ‘‘A hier-
archical framework of cloud resource allocation and power management
using deep reinforcement learning,’’ in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jun. 2017, pp. 372–382.

[8] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana,
‘‘Deep reinforcement learning for high precision assembly tasks,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017, pp. 819–825.

[9] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
‘‘Navigating occluded intersections with autonomous vehicles using deep
reinforcement learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 2034–2039.

[10] M.Mohammadi, A. Al-Fuqaha, S. Sorour, andM.Guizani, ‘‘Deep learning
for IoT big data and streaming analytics: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, 4th Quart., 2018.

[11] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick,
R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, ‘‘Policy distilla-
tion,’’ in Proc. ICLR, May 2016, pp. 1–13.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, pp. 529–533, Feb. 2015.

[13] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
in Proc. ICLR, May 2016, pp. 1–14.

[15] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, ‘‘Energy-efficient UAV
control for effective and fair communication coverage: A deep reinforce-
ment learning approach,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 9,
pp. 2059–2070, Sep. 2018.

[16] C. Savaglio, P. Pace, G. Aloi, A. Liotta, and G. Fortino, ‘‘Lightweight
reinforcement learning for energy efficient communications in wireless
sensor networks,’’ IEEE Access, vol. 7, pp. 29355–29364, 2019.

[17] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, ‘‘Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

146596 VOLUME 8, 2020



I. Jang et al.: Knowledge Transfer for On-Device DRL in Resource Constrained Edge Computing Systems

[18] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, ‘‘Learning-
based computation offloading for IoT devices with energy harvesting,’’
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930–1941, Feb. 2019.

[19] X. Chen, Z. Zhao, C. Wu, M. Bennis, H. Liu, Y. Ji, and H. Zhang, ‘‘Multi-
tenant cross-slice resource orchestration: A deep reinforcement learning
approach,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 10, pp. 2377–2392,
Oct. 2019.

[20] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, ‘‘Deep reinforcement
learning for mobile edge caching: Review, new features, and open issues,’’
IEEE Netw., vol. 32, no. 6, pp. 50–57, Nov. 2018.

[21] B. Fang, X. Zeng, and M. Zhang, ‘‘NestDNN: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision,’’ in
Proc. 24th Annu. Int. Conf. Mobile Comput. Netw. MobiCom, 2018,
pp. 115–127.

[22] M.Xu, F. Qian, Q.Mei, K. Huang, andX. Liu, ‘‘DeepType: On-device deep
learning for input personalization service with minimal privacy concern,’’
ACM IMWUT, vol. 2, no. 4, pp. 1–26, 2018.

[23] R. Sharma, S. Biookaghazadeh, B. Li, and M. Zhao, ‘‘Are existing
knowledge transfer techniques effective for deep learning with edge
devices?’’ in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jul. 2018,
pp. 29–42.

[24] H. Li, K. Ota, and M. Dong, ‘‘Learning IoT in edge: Deep learning for
the Internet of Things with edge computing,’’ IEEE Netw., vol. 32, no. 1,
pp. 96–101, Jan. 2018.

[25] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and
connections for efficient neural network,’’ in Proc. NIPS, Dec. 2015,
pp. 1135–1143.

[26] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
in Proc. ICLR, May 2016, pp. 1–14.

[27] Y. Guo, A. Yao, and Y. Chen, ‘‘Dynamic network surgery for efficient
dnns,’’ in Proc. NIPS, Dec. 2016, pp. 1379–1387.

[28] J.-H. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level pruning method for
deep neural network compression,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5058–5066.

[29] C. Buciluă, R. Caruana, and A. Niculescu-Mizil, ‘‘Model compression,’’
in Proc. ACM KDD, Aug. 2006, pp. 535–541.

[30] J. Ba, and R. Caruana, R, ‘‘Do deep nets really need to be deep,’’ in Proc.
NIPS, Dec. 2014, pp. 2654–2662.

[31] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531. [Online]. Available: http://arxiv.org/
abs/1503.02531

[32] Q. Lu, W. Jiang, X. Xu, Y. Shi, and J. Hu, ‘‘On Neural Architecture Search
for Resource-Constrained Hardware Platforms,’’ in Proc. IEEE/ACM
ICCAD, Nov. 2019, pp. 1–8.

[33] C. Gong, Z. Jiang, D. Wang, Y. Lin, Q. Liu, and D. Z. Pan, ‘‘Mixed
precision neural architecture search for energy efficient deep learning,’’ in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2019,
pp. 1–7.

[34] Y. Xiong, R. Mehta, and V. Singh, ‘‘Resource constrained neural network
architecture search: Will a submodularity assumption help?’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1–10.

[35] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,’’ 2016, arXiv:1603.04467. [Online]. Available:
http://arxiv.org/abs/1603.04467

[36] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. ICLR, May 2015, pp. 1–15.

[37] D. Masters and C. Luschi, ‘‘Revisiting small batch training for
deep neural networks,’’ 2018, arXiv:1804.07612. [Online]. Available:
http://arxiv.org/abs/1804.07612

[38] M. Roderick, J. MacGlashan, and S. Tellex, ‘‘Implementing the
deep Q-network,’’ 2017, arXiv:1711.07478. [Online]. Available:
http://arxiv.org/abs/1711.07478

INGOOK JANG received the B.S. degree (summa
cum laude) in computer science and engineering
from Chung-Ang University, Seoul, South Korea,
in 2008, and the Ph.D. degree in computer sci-
ence from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2016. Since 2016, he has beenwith the Electron-
ics and Telecommunications Research Institute
(ETRI), Daejeon. His research interests include
machine learning, deep learning, edge computing,
and the intelligent IoT systems.

HYUNSEOK KIM received the B.A. degree in
electronics engineering from Dong-A University,
South Korea, and the M.S. and Ph.D. degrees
from the Korea Advanced Institute of Science
and Technology (KAIST). From 2001 to 2003,
he worked with Samsung Electronics Company
Ltd. From 2004 to 2009, he was with LG Electron-
ics Inc. He is currently a Senior Researcher with
the Electronics and Telecommunications Research
Institute (ETRI), South Korea. His research inter-

est includes developing innovative behavior intelligence in multi-agent
systems.

DONGHUN LEE received the B.A. degree in
computer science from the University of Illinois
at Urbana-Champaign, USA, and the M.S. degree
from Seoul National University, South Korea.
From 2012 to 2013, he worked as a Software
Engineer with Google Korea. He is currently a
Researcher with the Electronics and Telecommu-
nications Research Institute (ETRI), South Korea.
His research interests include variational infer-
ence, model-based reinforcement learning, and
meta learning.

YOUNG-SUNG SON is currently a Principal
Researcher with the Electronics and Telecommu-
nications Research Institute. He is also a Professor
with the University of Science and Technol-
ogy. His research interests include context aware-
ness computing, the intelligent IoT systems, and
autonomous intelligent systems.

SEONGHYUN KIM received the B.S. and Ph.D.
degrees in electrical engineering from Yonsei
University, Seoul, South Korea, in 2009 and
2016, respectively. Since 2016, he has been with
the Electronics and Telecommunications Research
Institute (ETRI), Daejeon, South Korea. His
research interests include machine learning, deep
learning, cloud computing, and cellular systems.

VOLUME 8, 2020 146597


