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1  |   INTRODUCTION

Random-number encryption is used for information security 
in various fields such as electronic commerce and authenti-
cation. In addition, random numbers are used in various ap-
plications such as games, lotteries, sampling, and simulations 
[1]. Various methods for securing random numbers have been 
studied.

In practice, random-number generation is implemented ar-
tificially in the software as a pseudo-random-number gener-
ation technique. When generating a pseudo-random number, 
a device enters a seed, which is a series of bits, as an input to 
the deterministic random-number generator. The stability of 
the random number depends on the seed. Examples of seeds 
include a keyboard input by a user. Noises provided by the 
operating system or noises due to memory access contention 

among the graphical processing unit cores can also be used 
as the seed. The existence of the seed renders the “random” 
numbers from the generator not completely random.

Frequently used pseudo-random numbers are generated with 
computer algorithms, and highly complex computer algorithms 
have generated random numbers with increased complexity as 
well. Nevertheless, as pseudo-random numbers exhibit a unique 
pattern that depends on the algorithm, pseudo-random-number 
generators are vulnerable to hacking (eg, by prediction soft-
ware). In fact, modern security technologies that use cryp-
tographic system intelligence, such as Rivest-Shamir-Adleman, 
have a problem involving random pattern exposure [2]. These 
random number patterns can be extracted with the latest hacking 
techniques using quantum computers and artificial intelligence.

Consequently, technologies generating unpredictable, 
pure random numbers are being rapidly developed in areas 
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such as secure communications, security systems, and on-
line banking. However, current true random-number gener-
ators are expensive, and researchers have been developing 
alternative, affordable true random-number generators. For 
example, true random numbers generated from hardware 
based on random physical phenomena are attracting at-
tention. Random numbers can be extracted from quantum 
mechanical random phenomena, such as an emission of ra-
dioactive isotopes, alpha rays, and beta rays. Studies are 
being conducted to increase the randomness of numbers 
extracted from the random phenomena of hardware further.

Several tests have been developed to determine whether se-
quences were randomly generated. Here, we focus on a test class 
known as statistical tests for randomness [3]. AIS 20/31 [4], de-
veloped by the German Federal Office for Information Security, 
is a certification for entropy estimation that allows the designers 
of true random-number generators to estimate the theoretical 
entropy based on a provided probabilistic model of the entropy 
source. Another testing method is the NIST Special Publication 
(SP) 800-90B, published in 2016 as the second version [5].

Unlike AIS 20/31, NIST SP 800-90B is a statistical algo-
rithm for estimation. Entropy is the final output value of AIS, 
whereas minimum entropy is the output value of SP 800-90B. 
Statistical tests also verify whether the output is independent 
and identically distributed (IID) and use the default tools on 
the IID track. Further reconstructions are performed with addi-
tional entropy estimators on tracks other than IID, and the min-
imum estimates of all the estimators are selected as the final 
result. AIS and SP 900-90B emphasize different aspects. As 
entropy estimation depends heavily on the probabilistic model 
provided, AIS 20/31 is more rigorous, but also error-prone. 
Consequently, NIST certification is convenient for designers 
and verifiers to estimate the entropy of entropy sources.

As a statistical method, the second draft of NIST SP 800-
90B adopted some of the methods based on the output data of 
the entropy example. The basic method is a frequency coef-
ficient estimator, which approximates the power distribution 
over frequency as shown in Ref. [6]. Alternatively, Bayesian 
methods are to estimate entropy, such as in Ref. [7]. In addi-
tion to these two main methods, compression algorithms are 
used to estimate entropy for compression entropy estimation, 
for example, to propose the concept of entropy statistics for 
entropy estimation [8]. Kelsey and others [9] proposed a new 
prediction model for entropy prediction. This method is based 
on simple conversion and decision knowledge, and it is a new 
approach included in the second draft of NIST SP 800-90B.

In this paper, we propose a method of generating random 
numbers using the natural decay of beta radioisotopes, which 
is a true random-number generation technology using beta 
decay, which can be produced in small quantities and mass. 
This study shows that the generated random numbers satisfy 
the SP 800-22 [10] and SP 800-90B [11] standards estab-
lished by the National Standards Institute.

Radioisotopes spontaneously release energetic particles, such 
as alpha or beta particles (alpha or beta rays), for stabilization, 
which is a natural decay phenomenon. The spontaneous decay 
of radioisotopes has the advantage of being able to produce 
small-scale and mass-produced products that are not affected 
by the randomness of the decay events and the random number 
generated, and the change in the physical environment. Intrinsic 
random-number generators have been constructed using quan-
tum mechanical random phenomena and specifically, the natural 
decay of radioisotopes [12–14]. In particular, beta source-based 
random-number generation shows the advantages of small size, 
portable line, high speed, mass production, low generation rate, 
and low semiconductor damage compared with that based on 
alpha sources, as indicated in Table 1. Furthermore, a beta cell 
can be constructed from a p-i-n junction based on silicon car-
bide fabricated on a custom semiconductor and Ni foil plated 
with the Ni-63 radioisotope [15].

In this paper, we propose a new method to improve true 
random-number generation. The proposed method provides 
a strategy for counting the values of “0” and “1” of random 
numbers based on a beta source by storing P-values, labeling 
them, and comparing the new random numbers. The proposed 
scheme is implemented in RTL [16], and the generated true 
random number is verified using SP 800-22 and SP 800-90B 
standard tests. Section 2 discusses the proposed algorithm and 
architecture. Section 3 presents the system architecture and 
RTL simulation results of the LabVIEW-based random-num-
ber generator and describes the SP 800-22 and SP 800-90B 
test methods. Section 4 concludes the paper.

2  |   PROPOSED ALGORITHM AND 
ARCHITECTURE

2.1  |  True random-number generator system

The random-number generation system consists of a beta 
source, silicon PN diode, preamplifier, pulse shaper, discrimi-
nator, counter, random-number output circuit, and controller. 
The random-number generator generates intrinsic random 
numbers from events, entropy, or particles emitted from the 
beta source. The source detector consists of silicon PN diodes 
and can detect particles emitted from a source such as a radio-
isotope. The source of the silicon PN diode is a beta source, 
and the source detector generates a detection signal based on 

T A B L E  1   Comparison of radioactivity types

Radioactive 
decay type Size Portability

Generation 
rate

Semiconductor 
damage

Alpha 
(Am-241)

Small High Low High

Beta (Ni-63) Small High High Low
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the detected particles. The detection signal is an analog electri-
cal signal, such as voltage or current, and is used as the input 
of the preamplifier. As an example, the time at which particles 
are detected and the time at which they are not detected in the 
detection signal are distinguished. The preamplifier amplifies 
the detection signal to generate an amplification signal, and 
amplifies the magnitude of the detection signal, so that the time 
at which the particles are detected and the time at which they 
are not detected can be easily distinguished. The amplified sig-
nal allows the output signal of the preamplifier to remain in 
the short section for a long time, maintains the peak point for 
a long time, and solves the problem that the output decreases 
for a long time through the pulse shaper and the discriminator. 
Logic pulses greater than the noisy level are sent out to allow 
the times at which particles are detected to be determined based 
on the magnitude of the detection signal.

The counter counts the number of clocks during the time 
interval between two adjacent pulses in the pulse signal. The 
counter receives a clock signal from the controller to count the 
clocks. However, the clock signal is generated directly inside 
the counter. The counter generates binary count values as the 
count result of each time interval between the pulses. Each 
binary count value includes a “0” or “1” value of the set num-
ber of bits. The number of binary count values with the set 
number of bits corresponds to the number of measured time 
intervals. Each binary count value depends on the length of 
the measured time interval. That is, as the length of the mea-
sured time interval increases, the corresponding binary count 
value increases. The random-number output circuit can vali-
date the binary count values generated by the counter based on 
the conversion result. Validating binary count values indicates 
extracting binary count values from real random numbers.

As the sample size of true random numbers becomes larger, 
the probability that the random number (binary count value) 
will have a certain value becomes more uniform across differ-
ent values. For example, if there are n bits in a binary count 
value, the probability that one of them converges to 1 is 1/2n. 
That is, if the sample is larger, the binary count values have 
evenly distributed values in the range of the random number, 
and the numbers of “1” and “0” values become nearly equal. 
That is, when the difference between the numbers of “0” and 
“1” values included in each of the binary count values is large, 
the binary count values would be pseudo-random numbers. If 
there is no or a small difference between the numbers of “0” 
and “1” values included in each of the binary count values, the 
binary count values would be true random numbers.

Accordingly, the random-number output circuit can per-
form the conversion and decision. The random-number out-
put circuit extracts “0” and “1” values from the binary count 
value. Based on the numbers of extracted “0” and “1” values, 
the random-number output circuit generates the conversion 
data. Here, the converted data directly or indirectly indi-
cate the numbers of extracted “0” and “1” values. Training 

transform data, test transform data, and target transform data 
are all generated by the particles emitted from the source as 
shown in Figure 1. That is, the binary count value generated 
according to the time interval at which the particles are de-
tected is converted into conversion data.

The random-number output circuit classifies the binary count 
value into a true random number or a pseudo-random number 
based on the training conversion data. Based on the classifica-
tion result, the random-number output circuit labels the training 
transform data to generate labeled data. The labeled data include 
conversion data, and the binary count value corresponding to the 
conversion data indicates the type of random number. For ex-
ample, if the binary count value is a true random number, the 
labeled data include conversion transform data and indicate that 
the transform datum is a true random number. As another ex-
ample, when the binary count value is a pseudo-random num-
ber, the labeled data include training transform data and indicate 
that the training transform datum is a pseudo-random number. 
In the following descriptions, the training transform data and la-
beled data generated based on the binary count value, which is a 
pseudo-random number, are represented as being included in a 
pseudo class. In addition, the transform and labeled data gener-
ated based on the binary count value, which is an intrinsic ran-
dom number, are represented as being included in the intrinsic 
class. The random-number output circuit obtains reference data 
for classifying the labeled data into a pseudo or intrinsic class as 
a conversion result, based on the labeled data.

The reference data include information about a hyperplane. 
A hyperplane is a boundary for classifying labeled data as a 
pseudo or intrinsic class. For example, the labeled data dis-
played below the hyperplane are classified into an intrinsic 
class, and those displayed above the hyperplane are classified 
into a pseudo class. The random-number output circuit deter-
mines whether the random number is truly random based on 
the test conversion data. By using the reference data generated 

F I G U R E  1   True random-number generator system
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through the random-number output circuit conversion, the test 
conversion data can be classified into a pseudo or intrinsic 
class. The random-number output circuit determines whether 
the test conversion data classified into the intrinsic class satisfy 
the intrinsic condition. The intrinsic condition is intended for 
determining whether the binary count value corresponding to 
the test conversion data, classified into the intrinsic class, is 
a true random number. The random number output circuit in 
Figure 1 can change the parameters under the control of the 
controller. With further conversion, the existing hyperplane can 
be modified to have a different value. If sufficient conversion 
is performed, the random-number output circuit classifies the 
target transform data into a pseudo or intrinsic class based on 
the reference data. Based on the classification result, the ran-
dom-number output circuit can output a true random number.

2.2  |  Random-number generation algorithm

Figure 2 is a flowchart illustrating the operation of the ran-
dom-number generator. Conversion is a process in which the 
random-number device generates the reference data based 
on the converted data. In the secondary conversion process, 
the random-number generating device adjusts the reference 
data based on the test conversion data. In operation, the 
random-number generating device performs an initialization 
operation. For example, the reference data previously stored 
are deleted through the initialization operation. Then, the 
random-number generating device measures the time inter-
val at which particles are detected, to generate a conversion 
binary count value. It generates the training conversion data 
based on the numbers of “0” and “1” values included in the 
training binary count value. It generates the labeled data by 
labeling the training conversion data. As shown in Figure 2, 
“conversion data” refer to a conversion binary count value, 
transform data, or labeled data. The labeled data can be used 
to perform first-order conversion. The random-number gen-
erator generates reference data through the conversion data. 
It generates a test binary count value by measuring the time 
interval at which particles are detected. Then, it generates test 
conversion data based on the numbers of “0” and “1” values 
included in the test binary count value. It operates based on 
the test conversion data. Then, it classifies the test conversion 
data into a pseudo or intrinsic class using the reference data 
generated through the operation. The random-number genera-
tor determines whether the test conversion data are classified 
into an appropriate class. If the test conversion data are not 
classified into a suitable class, the random-number generator 
generates new reference data. When the test conversion data 
are classified into a suitable class, the random-number gen-
erator classifies the target data using the reference data. The 
time interval at which particles are detected can be measured, 
to produce a target binary count value. Based on the numbers 

of “0” and “1” values included in the count value, target con-
version data are generated. Based on the newly generated ref-
erence data, the validity of the target binary count values is 
verified. That is, the random-number generator classifies the 
target transform data into a pseudo or intrinsic class. It out-
puts a target binary count value corresponding to the target 
conversion data included in the intrinsic class.

Figure  3 is a flowchart illustrating the operation of the 
random-number output device. The training data are gener-
ated based on the count value. Through conversion, the ref-
erence data, which indicate information on the hyperplane 
for classifying values into a pseudo or intrinsic class, are 
generated. Test data are generated based on the count val-
ues, and the generated reference data classify the test data. 
The proper classification is determined by checking whether 
conversion has been performed sufficiently. If the test data 
are not properly classified, the parameters are changed, and 
the aforementioned steps are repeated. Through this iterative 
process, random data classified as an intrinsic class among 
target data are output.

Figure 4 is a flowchart illustrating the updated method. 
The comparator extracts the “0” and “1” values included in 
the binary count value. The numbers of extracted “0” and 
“1” values are counted. The conversion circuit generates the 
conversion data based on the numbers of “0” and “1” val-
ues. Based on the conversion data, it is determined whether 

F I G U R E  2   Flowchart of the operation of the random-number 
generator
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the numbers of “0” and “1” values are within a reference 
range. For example, the classification circuit determines 
whether the ratio of the number of “1” values to the number 
of “0” values is within a reference range. In this case, the 
reference range is between 0.49 and 0.50. If the numbers 
of “0” and “1” values are within the reference range, the 
classification circuit labels the transform data with a true 
class to generate labeled data. If the numbers of “0” and “1” 
values are not within the reference range, the classification 
circuit labels the transform data with a pseudo class to gen-
erate labeled data.

2.3  |  Proposed architecture

Figure 5 is a block diagram showing the digital part. The block 
consists of a flip-flop, counter, converter, multiplier-accumu-
lator (MAC), memory, comparator, total controller, and clock 
generator. The counter measures the time intervals between 
pulses to produce a count value. It works by synchronizing the 

influx pulse signal of the flip-flop and the detection time of the 
particles, that is several pulses corresponding to the time be-
tween the pulses. The number of clock ticks during the interval 
is counted. The output of the counter accumulates the numbers 
of “0” and “1” values in the converter. In the MAC block, the 
cumulative product of the output value of the converter is cal-
culated and is stored in memory. When a new random value is 
input, the comparator compares it with the stored value to deter-
mine the pseudo-random number and true random number, and 
outputs the true random number.

Figure 6 shows a block diagram of a 32-bit fixed-bit mul-
tiplier. The block comprises an 8-bit adder, 9-bit subtractor, 
24 × 24 multiplier, XOR, normalizer, and final output. It has 
32-bit single-precision IEEE 754 floating-point operation, 
with 1-bit sign, 8-bit exponent, and 23-bit mantissa place 
values.

3  |   SIMULATION AND VERIFICATION

3.1  |  RTL simulation

This platform design architecture uses a dedicated hard-
ware engine with a system clock operating at 200 MHz. 

F I G U R E  3   Flowchart decision for true random number
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Figure 7 shows the simulation result of the proposed mod-
ule using Verilog hardware description language and veri-
fication. The system is implemented using the 0.45  μm 
library (TSMC). The simulation shows the conversion and 
classification of results for the lightweight true-random 
generator.

3.2  |  Logic synthesis

Table  2 shows the result of logical synthesis. The TSMC 
40 nm target library was used to synthesize logic using the 
Synopsys design compiler. The logic synthesis resulted in a 
logic gate count of approximately 11,866.

3.3  |  System design

The beta source-based true random-number generator is 
shown in Figure 8. The system was designed using a beta 
source, detector, and LabVIEW (cDAQ9031) system.

Figure 9 shows a LabVIEW-based digital random-number 
generator system. The digital random output of the FPGA is 
shown via a digital waveform.

3.4  |  SP 800-22 Test

Table 2 shows the statistical test suite for the random num-
bers based on Python. The statistical tests on the randomness 
of the random numbers consisted of 15 types of test meth-
ods using pseudo-random numbers and true random numbers 
on a 1.6M bit dataset. The experiment showed that the true 
random numbers generated using the beta source increase 

F I G U R E  7   RTL simulation [Colour figure can be viewed at 
wileyonlinelibrary.com]

Conversion Decision

T A B L E  2   Logic synthesis*
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Top control 188 269

Sum 8240.1 11 866

*Target Lib: TSMC 45 nm tcbn45gsbwplvtbc Gate Counter: 2-input NAND 
gate = 0.7 �m
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F I G U R E  8   True random-number generator system [Colour figure 
can be viewed at wileyonlinelibrary.com]
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F I G U R E  9   Digital true random-number generator system based 
on LabVIEW [Colour figure can be viewed at wileyonlinelibrary.com]
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the reliability of the marginal line with a significant level of 
probability of making an error.

3.5  |  SP 800-90B test

For each IID and non-IID test, 1M data are collected and a 
restart test is performed. SP 800-90B is a statistical eval-
uation of noise sources and is used to evaluate random-
number generators in cryptographic module verification 
systems [7,8]. As a representative standard to evaluate 
the safety of noise sources, a second draft complement-
ing the existing SP 800-90B was published by NIST on 
January 27, 2016 [14]. This revision of the SP 800-90B 
introduces a new method of estimating using a predictor 
to estimate the minimum entropy of non-IID tracks. The 
predictors are known to detect the periodic characteristics 
of a noise source easily, but no specific reference is made 
to those characteristics. The noise source based on the 
beta source was tested using the software provided in the 
standard.

All test conditions have a minimum entropy of 5.768870 in 
the non-IID track. Tables 3, 4, and 5 show a random number SP 

800-90B test using pseudo-random numbers and beta sources. 
The test results showed that the proposed random number gen-
eration passed SP 800-90B. Furthermore, the pseudo-random 
number obtained a Chi-square independence score of 65 212.6, 
and the proposed method obtained a value of 64 757.5. The min-
imum entropy was 7.86511 in the IID test, which exceeded that 
of the pseudo-random number, and 5.78597 in the non-IID test.

4  |   CONCLUSION

This paper presents an efficient hardware random-number 
generator based on beta sources. The proposed random-num-
ber generator uses a method to distinguish between pseudo- 
and true random numbers via simple cumulative comparison 
operations in real time, which is then implemented in the hard-
ware. The random-number generator generates labeled data 
indicating whether the count value is a pseudo- or true random 
number according to the bit value of the binary count value 
based on the generated labeling data. Random and pseudo-
random numbers are used as reference data. The proposed 
method is verified with Verilog RTL coding and a LabVIEW-
based system for hardware implementation. The generated 
random numbers are tested according to the NIST SP 800-22 

T A B L E  3   NIST SP800-22 test

Items P-value of pseudo-random number P-value of Proposed method Results

Monobit test 0.292462749356 0.0501884500565 Pass

Frequency within block test 0.230443081147 0.0150075360195 Pass

Runs test 0.4984920945 0.31234747611 Pass

Longest run ones in a block test 0.326054130504 0.242788674655 Pass

Binary matrix rank test 0.169187100709 0.230412253352 Pass

DFT test 0.460252039688 0.783303943576 Pass

Non-overlapping template matching test 0.999999815175 1.00014332003 Pass

Overlapping template matching test 0.313392365595 0.894431974104 Pass

Maurer's universal test 0.999909497336 0.999554384562 Pass

Linear complexity test 0.106412399501 0.800437373096 Pass

Serial test 0.132634957334 0.0175486078436 Pass

Approximate entropy test 0.131667431003 0.0175004296891 Pass

Cumulative sums test 0.305577573144 0.0287624305175 Pass

Random excursion test 0.0746419980822 0.185145908489 Pass

Random excursion variant test 0.22010219462 0.0875273565741 Pass

T A B L E  4   NIST SP800-90B test

Test 
items

Min-entropy of pseudo-
random number

Min-entropy of 
proposed method

IID 7.86511 7.85964 True

Restart 7.86511 7.85964 True

Non-IID 5.78597 5.76887 True

Restart 5.78597 5.76887 True

T A B L E  5   NIST SP800-90B test

Test items
Pseudo-random 
number

Proposed 
method

Chi-square independence score 65 212.6 64 757.5

Chi-square goodness-of-fit score 2449.48 2373.33

IID permutation Pass Pass
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and SP 800-90B standards and satisfy the test items provided 
therein.
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