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ABSTRACT Time-slotted channel hopping (TSCH) is a medium access control technology that realizes
collision-free wireless network communication by coordinating the media access time and channel of
network devices. Although existing TSCH schedulers have suitable application scenarios for each, they
are less versatile. Scheduling without collisions inevitably lowers the throughput, whereas contention-based
scheduling achieves high-throughput but it may induces to frequent collisions in densely deployed networks.
Therefore, a TSCH scheduler that can be used universally, regardless of the topology and data collection
characteristics of the application scenario, is required to overcome these shortcomings. To this end, a multi-
agent reinforcement learning (RL)-based TSCH scheduling scheme that allows contention but minimizes
collisions is proposed in this study. RL is a machine-learning method that gradually improves actions to
solve problems. One specific RL method, Q-Learning (QL), was used in the scheme to enable the TSCH
scheduler to become a QL agent that learns the best transmission slot. To improve the QL performance,
reward functions tailored for the TSCH scheduler were developed. Because the QL agent runs on multiple
nodes concurrently, changes in the TSCH schedule of one node also affect the performance of the TSCH
schedules of other nodes. The use of action peeking is proposed to overcome this non-stationarity problem in
a multi-agent environment. The experimental results indicate that the TSCH scheduler consistently performs
well in various types of applications, compared to other schedulers.

INDEX TERMS Internet of Things (IoT), time-slotted channel hopping (TSCH) scheduling, wireless sensor
networks.

I. INTRODUCTION
Time-slotted Channel hopping (TSCH) combines slotted
access and channel hopping to enable reliable communica-
tion, making it a promising medium access control (MAC)
technology for industrial Internet of Things applications such
as smart metering networks. The most distinctive feature of
TSCH is that the medium access time and channel of net-
work devices can be tuned to achieve collision-free wireless
network communication.

Many researchers have studied the optimization of TSCH
schedulers for their intended applications. Specifically, most
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studies have examined collision-free schedulers to achieve
high reliability. However, collision-free schedulers have lim-
ited scalability, making them suitable only for small net-
works, low traffic, or deterministic applications. This is
because it is difficult for a node to allocate collision-free
slot schedules between neighboring nodes in large dense
networks owing to limited slot resources. Moreover, low
link throughput due to insufficient slot resources makes it
impossible to transfer large data or process multi-hop routing
packets.

The contention-based TSCH scheduler, which has not
been studied extensively, is useful for large networks, high
traffic, or request-response model-based applications. This
method improves the throughput by sharing slot resources
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and ensures reliability by utilizing retransmission mecha-
nisms [1]. However, the reliability may be insufficient in
high-density environments with frequent collisions. More-
over, it may lower the energy efficiency due to retransmission.
Therefore, there is a need for an advanced TSCH scheduler
that can guarantee reliability and throughput simultaneously.

Reinforcement learning (RL) is a machine-learning
method that performs gradually improved actions to solve
problems. RL can be used to enable a device to find a
schedule that allows contention while reducing collisions.
Interesting studies that have used machine learning for wire-
less MAC have been reported. For example, Li et al. [2]
used a multi-armed bandit algorithm for channel blacklisting
in TSCH networks. However, previous studies only investi-
gated the improvement of channel usage to limit transmission
on poor-quality channels; they did not investigate TSCH
scheduling.

This study proposes a multi-agent RL-based TSCH
scheduling scheme that allows contention and minimizes
collisions at the same time. The proposed scheduler learns
the transmission slot with the lowest transmission failure
rate and transmits only in that slot. This improves the low-
throughput problem, which is the main weakness of collision-
free schedulers. By distributing the medium access slots
of the devices, collisions are reduced, compared to those in
a full contention-based scheduler. In addition, the proposed
scheduler, unlike most other schedulers, is autonomous and
does not require additional communication to distribute or
create schedules.

Changes in the TSCH schedule of one device also affect the
performance of the TSCH schedules of other devices. This
mutual influence, which may prevent the learning process
from converging, is known as the non-stationarity problem,
which is a well-known challenge in a multi-agent system
(MAS). The action peeking method is proposed to mitigate
the effects of this problem.

The proposed RL-based scheduler reduces collisions and
maintains sufficient throughput. The contributions of this
study are summarized below:

– A practical TSCH scheduler is presented for large-scale,
high-density, high-traffic applications.

– Multi-agent RL is applied in a TSCH scheduling algo-
rithm for the first time.

– A method is proposed to address the non-stationarity
problem in multi-agent RL.

The remainder of this paper is organized as follows.
Section II introduces important concepts relating to TSCH
and RL that the design of the proposed TSCH scheduler is
based on. Section III presents the proposed RL-based TSCH
scheduler. Section IV describes the experimental design for
verifying the performance of the RL-based TSCH sched-
uler. Section V presents the experimental results. Section VI
introduces related studies in which RL was applied to link
layers. Finally, Section VII presents the conclusions of this
study.

FIGURE 1. Example of a TSCH schedule in a TSCH network. (a) Topology.
(b) Node B’s TSCH schedule, which is a set of TSCH links. (c) Distribution
of TSCH schedules of all nodes in the network.

II. BACKGROUND
A. OVERVIEW OF TSCH
TSCH is one of the operating modes of the IEEE 802.15.4
standard. It originated from the WirelessHART [3] and
ISA.110.11a [4] industrial wireless standards. TSCH reduces
collisions through slotted access to a medium and mitigates
the effects of multipath fading and interference by using
channel hopping [5]. The key terms and concepts in TSCH
MAC are described subsequently.

Timeslot: A timeslot is a transfer unit of time-slottedMAC.
In a timeslot, one node transfers a frame and receives an
acknowledgment frame. A TSCH node can transmit a frame
at a transmission (Tx) slot. If the transmission fails, the node
retransmits the frame at the next available slot by the TSCH
collision avoidance mechanism.

Slotframe: A slotframe is a collection of timeslots that
cycles as a function of time. The size of the slotframe speci-
fies the maximum number of schedulable timeslots as well as
the cycle of the timeslot, which is the opportunity for a device
to transmit or receive a single frame.

Multi-slotframe structure: In a TSCH network, multiple
slotframes of different sizes can operate concurrently. All
slotframes are arranged in timeslots. In a multi-slotframe
structure, schedules of slotframes may overlap. Therefore,
a priority is assigned to each slotframe, and the schedule
of a slotframe with higher priority is followed. The multi-
slotframe structure enables complex communication such as
the application of different duty cycles for different packet
types [6].

Channel hopping: At the beginning of each timeslot, the
node performs channel hopping by

Ch = Hopping seq[(ASN+ channel offset) mod NCh]. (1)

The absolute slot number (ASN) is the cumulated slot count
form the beginning of the TSCH network. The channel offset
is given by the TSCH schedule. The NCh is the number of
channels used in the network.

TSCH link: A TSCH link is a component of a TSCH
schedule. One TSCH link contains a communication method
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(i.e., channel offset, Tx or Rx, counterpart device address) at
a specific slot offset by one slotframe. The device behaves as
described in a corresponding TSCH link at the beginning of
each timeslot.

TSCHScheduler: The TSCH scheduler is an algorithm that
assigns links to slotframes. Many researchers have attempted
to develop more effective and efficient schedulers [6]–[9].
Each of these schedules has a favorable environment or appli-
cation for performance. A user had to identify and apply the
appropriate TSCH scheduler for the application. For exam-
ple, the Orchestra scheduler can be used for applications
that require high reliability in low-traffic environments. The
FTA scheduler can be used for applications that collect large
amounts of data over a prolonged period in large networks
(e.g., smart metering) [10].

Orchestra [6] is an autonomous TSCH scheduler that max-
imizes reliability based on a collision-free schedule. Each
node has a Tx slot offset independent of its hashed address.
Therefore, although the transmission period is long, no packet
collision occurs. The node also assigns a listening slot (to
receive transmissions from the neighboring node) to a slot
offset derived by hashing the neighbor’s address. Orchestra
has a policy of assigning a unique slot offset to all nodes.
For this to be possible, the number of slots in the slotframe
(i.e., the size of the slotframe) must be larger than the number
of network nodes. Thus, Orchestra is suitable for small net-
works or low-traffic applications rather than for large-scale
networks or high-traffic applications.

The schedule proposed by [1] is a static TSCH schedule
that maximizes the throughput while allowing collisions in
a wireless network. It is suitable for applications that col-
lect massive amounts of data in large networks by allow-
ing transmission and reception in all slots. However, many
collisions occur in high-density networks; these collisions
reduce the network reliability and increase packet latency.
Thus, a TSCH schedule that allows contention with fewer
collisions is required.

B. RL
RL was applied in TSCH schedulers to create a schedule that
reduces collisions while allowing contention. This is because
RL is amachine-learningmethod that is suitable for achieving
goals while interacting with an environment [11]. RL defines
learners as agents and the circumstances of the agents as
the environment. The interaction between the agent and the
environment is described by three essential elements: state,
action, and reward [12]. An agent in state s performs an action
a selected by policy π and then receives reward r from the
environment. The time at which the agent starts to act until
the determined end is referred to as an episode.

Q-learning (QL) is a representative RL algorithm that has
been used in various fields [11], [13], [14]. It is particularly
suitable for applications that require online learning as the
policy can be improved every time an agent performs an
action within an episode.

FIGURE 2. A multi-agent system where agents interact with the
environment simultaneously.

AQL agent performs an action tomaximize the value func-
tion, Q(s, a), of the state-action pair. Q(s, a) represents the
expected total discounted returns from the action performed
in state s:

Q(s, a)← αQ(s, a)+ (1− α)(r + γ max
a
Q(s′, a)), (2)

where α is a learning rate parameter, and the discount fac-
tor γ determines the importance of future compensation.
Further, Q(s, a) represents the value of the state-action pair,
and maxaQ(s′, a)) represents the largest Q-value that can be
obtained from the actions that can be taken in the next state.
The agent decides the next action based on the predicted
reward of the action that can be taken in that particular state.

For QL to converge on its optimal policy, it is necessary
to explore every state-action pair as much as possible by
running many episodes. In this regard, the ε-greedy strategy
is mainly used to perform this exploration and achieve the
resulting policy improvement. This strategy acts randomly
with probability ε or selects the best action with probability
(1 − ε), with the former known as exploration and the latter
as exploitation.

C. MULTI-AGENT RL
Agents in an MAS interact with other agents in the envi-
ronment or with the environment itself. Agents work either
in cooperation or in competition to perform more complex
tasks. Examples of MASs include cluster drone flight [15],
multiplayer cooperative games [16], and traffic control sys-
tems [17].

An MAS can be adversely affected by the non-stationarity
problem. This is because agents can unintentionally change
the environment during the learning process, thereby mak-
ing the predicted potential rewards for an action inaccurate.
Therefore, the present optimal policy does not guarantee a
future optimal policy. QL has been proved capable of con-
verging in a single-agent environment but not in an MAS
because the Markov property is not maintained in a non-
stationarity environment [18].

III. MULTIAGENT RL-BASED TSCH SCHEDULING SCHEME
An RL-based TSCH scheduler that reduces collisions while
allowing contention is proposed. The proposed method
takes advantage of the contention-based and collision-free
approach as described in Table 1.
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TABLE 1. Brief comparison between the proposed method and related works.

FIGURE 3. (a) An example of the QL-TSCH schedule and (b) structure diagram of RL-based TSCH MAC. The TSCH scheduler is implemented in the form of
a QL agent. The TSCH scheduler allocates the unicast Tx and Rx slots of the unicast slotframe according to the agent’s action. Transmission
success/failure is the input of the reward function, and the Q-table is updated by the function.

The multi-agent environment enables each network device
to optimize its TSCH schedules. Our scheduler is based on
QL and is suitable for online learning. The optimal policy
learning process of QL is modeled as a rescheduling process
toward the optimal TSCH schedule. Specifically, the sched-
uler assigns a Q-value to each slot of a unicast slotframe,
designates the slot with the highest Q-value as the Tx slot,
and uses the remaining slots as listening slots.

The proposed scheduler uses a single-channel offset to
enable all nodes to communicate with neighboring nodes,
regardless of which slot offset is set as the transmission slot.
Therefore, all nodes simultaneously hop on the same channel.

A. RL-BASED TSCH MAC STRUCTURE
Our proposed method uses multi-slotframe TSCHMACwith
a unicast slotframe and a broadcast slotframe. The proposed

scheduler only schedules unicast slotframes, as shown in
Fig. 3. Broadcast slotframes are used to send and receive
broadcast frames such as beacons and network control mes-
sages. For this purpose, all devices have a fixed broadcast
slotframe schedule that contains one broadcast slot. The
broadcast slotframe has a higher priority than the unicast
slotframe, thereby giving priority to broadcast message trans-
mission.

The proposed TSCH scheduler is a QL agent. Scheduling
of the unicast slotframe can be regarded as an action per-
formed by the agent. The performance of the updated policy
can be evaluated according to the transmission result, i.e.,
the success/failure of the transmission. Agents use this suc-
cess/failure result as input to the reward function to update the
value of their current scheduling policy and either retain the
current policy or explore to improve the policy. The Q-values
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are stored in a Q-table. We assume that the environment is a
single-state environment, and the number of actions is equal
to the unicast slotframe length; thus, the Q-table is an array
of length a.

Algorithm 1 Policy Update function
Func policyUpdate(void): Repeat at the beginning of
each slotframe cycle.

APT← σ APT

a←

{
argminAPT (o), with prob. pexploration
argmaxQ(s, a), otherwise

Reschedule Tx and Rx slots by a
end

Algorithm 1 represents the policy update function, which
is the main element of the QL-TSCH scheduler. This function
includes the action peeking mechanism. The agent performs
this policy update function at the beginning of every slot-
frame. Depending on the hyperparameter exploration prob-
ability, Pexploration, the least active slot o or the action a with
the highest Q-value is selected. Based on the selected action
and the slot offset, a slot of the unicast slotframe is scheduled
as a transmission slot, and the remaining slots are scheduled
as listening slots.

Algorithm 2 Q Update function

Func qUpdate(s,a): when Tx succeeds or fails.

r ←

{
positive value when Tx succeeds
negative value when Tx fails

Q(s,a)← (1−α)Q(s,a)+ α[r+γ maxaQ(s,a)−Q(s,a)]
end

The success/failure of transmission in the transmission slot
is reflected in the reward and Q-value. Algorithm 2 describes
the Q-Table update process. A negative reward is given
for transmission failure. Transfer failure is not commonly
occurred, but it can be a clue that an agent taking the same
action is near by. Thus, the negative reward for transmission
failure allows the agent to learn the optimal transmission slots
faster. The Q-table is updated based on this reward value.

B. ACTION PEEKING
Herein, The use of action peeking is proposed to address the
non-stationarity problem in an MAS. Action peeking is the
act of one agent observing the actions of other agents. More
specifically, a node of the TSCH network may detect com-
munication between other neighboring nodes in the listening
slot. At this time, this node may determine that a nearby node
has selected the current slot as the transmission slot. In other
words, the nodes infer their own communication schedule
while sensing the transmission and reception packets of other
nodes. The nodes aim to not affect the policy of other nodes
by choosing their own slots and avoiding slots selected by
other nodes through an ε-greedy exploration process.

FIGURE 4. Basic principle of action peeking. As soon as the node detects
nearby communication, the slot offset is recorded in the action peeking
table at that time. When a node performs exploration, it selects the slot
offset of the TX slot with the least recent activity.

The action peeking information is stored in an action
peeking table (APT), which is an array of slotframe lengths.
Each cell of the APT stores transmission information detected
at a slot offset corresponding to the cell. As described in
Algorithm 3, the value of the APT index corresponding to
the current slot offset, o, is increased by 1 upon detecting the
transmission of another device.

Algorithm 3 Action peeking
Func actionPeeking(o): when communications of
neighbors detected at slot offset o.

APT (o)← APT (o)+ 1
end

As shown in Algorithm 1, the values in the APT are
degraded each time the slotframe starts. This is because
the current policy of the neighboring agents may have
changed. Degradation can assign a weight to the latest trans-
mission action of neighboring devices. The agent selects
argmino APT (o).

C. COMPARISON BETWEEN TSCH SCHEDULERS
The proposed schedule evenly distributes the transmission
opportunities of the device, thereby allowing fewer devices a
transmission opportunity in one timeslot. Thus, this schedule
may result in a lower probability of collision than the schedule
of [1], in which all devices have transmission opportunities in
every timeslot. This effect is maximized in high-density envi-
ronments. Reducing the number of collisions also reduces
the additional traffic due to retransmissions and the packet
latency. However, owing to the duty cycle, the maximum
device throughput is reduced, compared to that with the
FTA scheduler. In particular, when a large amount of data is
divided into several frames and transmitted, the time taken to
deliver all the data to the receiver increases.

The proposed scheduler can configure the duty cycle of
the device more flexibly than Orchestra does [6]. This is
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because multiple devices can simultaneously be assigned to a
transmission slot in one timeslot. The length of the slotframe
used by Orchestra is required to be greater than the number
of network nodes to specify a unique transmission slot offset
for every node in the network. Therefore, the duty cycle of
the device is inversely proportional to the number of network
nodes. In large networks, the duty cycle becomes too long to
provide the throughput required to handle a large amount of
traffic.

IV. EXPERIMENTAL DESIGN
We used an ARM Cortex M4 MCU-based IoT platform
device for our experiments. The MCU has 256MB RAM and
1MB internal flash. The device also has a CC1200 chip for
sub-GHz communication.

To implement a large-scale network, 99 devices were
installed in a testbed. One device acts as the sink node and the
others, as host nodes. Devices were installed on both sides of
the steel plate. Because all devices are in close proximity to
each other, each device can listen to the communications of
all other devices. The sink node is connected to a computer
to output log data.

A. PHY AND MAC
The length of the timeslot was 10ms, and three channels were
used. Time synchronization is based on EB. The length of the
broadcast slotframe was set to seven. The maximum number
of frame retransmission attempts was set to three.

FIGURE 5. Difference in performance of QL-TSCH scheduler according to
the hyperparameter value of reinforcement learning. (a) Exploration
probability. (b) Learning rate α. (c) Discount factor γ .

We determined appropriate values for the QL hyperparam-
eters (i.e., the exploration probabilities, learning rate α, and
discount factors γ ) by conducting preliminary experiments
on a simulator as shown in Fig. 5. We set up a 100-node
single-hop topology and prepared a scenario in which nodes
transmit one unicast framewith a 3% probability during every
slotframe cycle by setting the length of the slotframe to 15.

The performance was analyzed by measuring the average
frame delivery ratio 1,000 s after the network was started.
First, the exploration probability was tested both with a fixed
value and with a gradient method that decreased the explo-
ration probability with time. The gradient was set based on the
following equation: pexploration = min(10,000/cycle, 0.5).
The experimental results show that the gradient method out-
performed the fixed exploration probability. Therefore, the
gradient methodwas adopted in this experiment. The learning
rate and discount factor did not show significant difference in
performance depending on the values; thus, we set α = 0.1
and γ = 0.95 arbitrarily.

B. EXPERIMENT 1: TSCH SCHEDULER COMPARISON
We conducted three experiments for an in-depth performance
analysis. The first experiment was used to prove that the
performance of the QL-TSCH scheduler is superior to that
of existing schedulers such as Orchestra [6] and FTA [1] in
various scenarios. To prove that, we prepared three applica-
tion scenarios as described in Table 2. Scenario 1 represents
a smart factory application, which is based on a dense single-
hop network and requires a short data interval. Scenario 2 rep-
resents a high-traffic smart factory application that requires a
multi-hop network and the ability to transmit large amounts
of data. Scenario 3 represents a smart metering application
that requires longer multi-hop and larger data transmission
abilities.

TABLE 2. Summary of three large-scale industrial application scenarios.

Orchestra’s data slotframe size was 101, and it runs on a
collision-free schedule. We assessed the performance of FTA
by conducting measurements with slotframe sizes of 7. The
unicast slotframe sizes of the QL-TSCH scheduler were 9, 15,
and 25.

C. EXPERIMENT 2: REWARD FUNCTION EVALUATION
This experiment was designed to prove that a negative reward
for a transmit failure results in more effective learning com-
pared with a positive reward for a transmit success. For
this, we compared cases in which a positive reward is only
given when the transmission succeeds with cases that include
a negative reward for transmission failure. Positive reward
values of 0, and 1 and negative reward values of 0, -1, and -10
were tested. The size of the unicast slotframe was set to 15.
The tests involved the same topology, packet size, and packet
interval as in scenario 1.

D. EXPERIMENT 3: ACTION PEEKING EVALUATION
Finally, we compared the Tx schedule distribution network
nodes between QL-TSCH with and without action peeking
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to show that action peeking mitigates the effects of the non-
stationarity problem. The size of the slotframe was set to 25,
and we used the same topology as in scenario 1. Every 10 s,
the nodes were sent a UDP packet, which contained informa-
tion of the chosen actions at every slotframe cycle during a
packet interval. When action peeking was applied, an agent
chose the best action candidate by using APT. When action
peeking was not applied, the device assigned any one of the
slots as the transmission slot during the rescheduling process.

FIGURE 6. Comparison of average packet delivery ratio (PDR) between
TSCH schedulers.

V. RESULTS
A. EXPERIMENT 1: TSCH SCHEDULER COMPARISON
Fig. 6 shows the average packet delivery ratio (PDR) of each
QL-TSCH network for each scenario. In scenario 1, the QL-
TSCH scheduler with 15-slot slotframe obtained a PDR of
up to 99.942%, whereas FTA reached 99.728%. Owing to
its collision-free nature, Orchestra achieved a PDR of 100%.
Because scenario 1 was based on a single-hop topology, the
performance of the TSCH schedulers was higher than in other
scenarios.

In scenario 2, the performance of the QL-TSCH sched-
uler was superior. The QL-TSCH scheduler with a 15-slot
slotframe achieved the best performance, i.e., a PDR of
97.674%, whereas Orchestra and FTA achieved 93.611%
and 85.295%, respectively. In contrast, the performance of
the FTA scheduler was dramatically lower for scenario 2.
This is because of its higher frame transmission error ratio
(FER), as shown in Fig. 7. Because a node can transmit a
frame in any slot, considerable contention occurs when there
are multiple transmissions in the network at the same time.
Further, chain action is considered to occur in which more
traffic is generated by the retransmissionmechanism operated
by the contention.

In scenario 3, the QL-TSCH scheduler with a 9-slot slot-
frame achieved the best performance, i.e., a PDR of 99.383%,
contrary to Orchestra, which performed the worst (PDR of
94.236%). The results for scenario 3 confirm the poor perfor-
mance of Orchestra in scenarios in which fragmented packets
are collected in multi-hop environments [1].

As shown in Fig. 8, the packet delay of the QL-TSCH
scheduler is shorter than that of Orchestra for all scenarios.
The packet delay of the Orchestra scheduler was the longest

FIGURE 7. Comparison of average frame transmission error ratio (FER) of
various TSCH schedulers.

FIGURE 8. Comparison of average packet delay of different TSCH
schedulers.

TABLE 3. Performance comparison of QL-TSCH networks with various
reward values.

because the slotframe was sufficiently long to enable all
nodes in the network to have their own unique transmission
slot without collision.

Specifically, in scenario 3, which is a five-hop multi-hop
environment, the packet delay difference was the largest.
The nine-slot QL-TSCH scheduler averaged a packet delay
of 1,841 ms, compared with the 16,155 packet delays of
Orchestra. This is because the duty cycle of the node
reached 101 slots, or 1,010 ms. The FTA schedulers showed
the best performance in terms of packet delay. However,
it should be noted that the FTA scheduler is less reliable
than the scheduler of QL-TSCH owing to the occurrence of
collisions and retransmissions.

B. EXPERIMENT 2: REWARD FUNCTION EVALUATION
In experiment 2, we proved that adopting negative rewards
for transmission failure enables the Tx slot to be learned more
efficiently, as indicated in Table 3. In a casewithout a negative
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reward for failure to transmit, the FER is 23.19%, which is
higher than all the other cases. Frequent transmission errors
result in longer packet delay and lower PDR. The magnitude
of the value of the negative compensation for failure did not
appear to significantly affect the network performance.

FIGURE 9. Comparison of standard deviation of slot distribution
histogram over time flow with and without action peeking. Higher values
imply that the schedule is biased at a specific slot offset.

C. EXPERIMENT 3: ACTION PEEKING EVALUATION
Fig. 9 shows the result of the action peeking experiment;
action peeking mitigated the non-stationarity problem of an
MAS. The use of action peeking enabled faster schedule
convergence. The standard deviation of the slot distribution
histogram was stabilized within 800 slot frame cycles, or 200
s. In contrast, when action peeking was not employed, the slot
distribution was often biased even after 2,400 cycles.

VI. RELATED STUDIES
In this section, we briefly review related studies on RL for
MAC.

A. RL-BASED CHANNEL BLACKLISTING
Apart from TSCH scheduling, the TSCH MAC performs
channel hopping according to the hopping sequence. How-
ever, interference and fading in a specific channel have a
negative effect on the TSCH network performance. This has
led to the proposal of an adaptive channel selection method
for TSCH to mitigate this effect [2]. A channel in which
interference is expected to occur is not used for transmission.
This algorithm is based on the Gittins index calculation for
the multi-armed bandit problem. The authors showed that
the environment can be estimated only by transmitting and
receiving dozens of packets. In addition, the use of an optimal
channel selection algorithm showed that the throughput of
TSCH can be up to 85% of the maximum value.

B. OTHER RL-BASED MAC
Studies have applied RL to improve the performance of
MAC. Along with QL methods, deep RL methods such as
the deep Q-network and generative adversarial network have
been investigated.

In [19], a dynamic spectrum access problem was consid-
ered to maximize network utility in a multichannel wireless
network. The authors demonstrated a multiuser strategy for

spectrum access that maximizes certain network utilities in
a distributed form without online coordination or message
exchange between users. Spectrum access problems are very
expensive to compute owing to the large state space and
partial observability of states. To solve this problem, the
authors developed a new distributed dynamic spectrum access
algorithm based on deep multi-agent RL. Unlike in the TSCH
MAC, this MAC allows a sink node to simultaneously receive
frommultiple channels. The authors also performed an analy-
sis from the game theory perspective of the system dynamics
of the designed algorithm.

In [20], the authors introduced a secure wireless sensor
network middleware (SWSNM). The SWSNM comprised
two networks: a generator network for sensor nodes and a
discriminator network for base stations. The former creates
fake data resembling real samples and combines them with
real sensor data to confuse attackers. The latter includes mul-
tiple layers that distinguish between real and fake data. The
experimental results showed that this combination makes it
possible to collect data securely in a wireless sensor network.
Unlike conventional middleware, data can be protected from
malicious or unknown attacks during transmission.

In [21], a monitoring framework based on deep learning
was proposed to analyze streaming data generated by a wire-
less sensor network. A distinctive feature of this framework
is that adaptive query refinement is performed such that the
predictor can conduct the timely analysis of the wireless
sensor network data. As a result, reasonably accurate query
analysis results were obtained within the deadline, even if
some sensor data were not synchronized in time or some data
had not yet arrived.

In [22], an RL-based energy-conserving MAC protocol
was proposed to extend the network life. The proposed
QL-based protocol converges to a low-energy state by adjust-
ing the MAC parameters using a trial-and-error process. This
protocol is similar to the proposed QL-TSCH in that it does
not need to determine the systemmodel in advance and adapts
itself to the topology and other external changes. The authors
reported that nodes can reduce their energy consumption by
adjusting the sleep and active periods of their radio based on
the predicted traffic and transmission conditions of neighbor-
ing nodes.

In [23], an apprenticeship learning based cross-layer rout-
ing scheme was proposed for cognitive radio networks.
Apprenticeship learning is a way for apprentice nodes to
learn strategies from nearby expert nodes. For efficient expert
node identification, the authors proposed the adaptive radius
Bregman Ball model. For improving the training, multi-
teacher deep Q-learning from demonstrations (MT-DQfD)
was proposed. MT-DQfD accelerated the learning process by
sharing demonstrations derived from multiple expert nodes.
The simulation results show that the proposed cross-layer
routing protocol improved the transmission quality compared
with existing algorithms, while reducing the training period.
In addition, newly joined nodes achieved better performance
than the experts.
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VII. CONCLUSIONS
Existing TSCH schedulers have suitable application sce-
narios for each type of scheduler, but they are less ver-
satile. Scheduling without collisions inevitably results in
low throughput, whereas the throughput of contention-based
scheduling is high, but it causes too many collisions in high-
traffic applications. We developed a TSCH scheduler that
could be used universally regardless of the topology and data
collection characteristics of the application scenario. In this
paper, we proposed a multi-agent RL-based TSCH schedul-
ing scheme that allows contention but minimizes collisions.
The TSCH scheduler adopts QL to learn the most optimal
Tx slot. To enhance the QL performance, we developed
reward functions tailored for the TSCH scheduler. In addi-
tion, we proposed methods to address the well-known non-
stationarity problem in the multi-agent RL process. The
experimental results showed that the performance of the
TSCH scheduler was consistently good for various applica-
tions, compared with other schedulers.
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