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ABSTRACT Despite various success in computer vision with facial images (e.g., face detection, recognition,
and generation), facial expression recognition is still a challenging problem yet to be solved. This is because
of simple but fundamental bottlenecks: 1) no global agreement on different facial expressions, 2) significant
dataset biases that prevent cross-dataset analysis for a large-scale study, and 3) high class imbalance in
in-the-wild datasets that causes inconsistency in predicting expressions in images using a machine learning
algorithm. To tackle these issues, we propose a novel Deep Learning approach via adaptive cross-dataset
scheme. We combine multiple in-the-wild datasets to secure sufficient training samples while minimizing
dataset bias using ideas of reversal gradients to retain generality. For this, we introduce a flexible objective
function that can control for skewed label distributions in the dataset. Incorporating these ideas, together
with the ResNet pipeline as a backbone, we carried extensive experiments to validate our ideas using three
independent in-the-wild facial expression datasets, which first confirmed bias from different datasets and
yielded improved performance on facial expression recognition using the multi-site dataset.

INDEX TERMS Cross-dataset bias, deep learning, domain adaptation, facial expression recognition,

in-the-wild dataset.

I. INTRODUCTION

Face is a primary means to transfer information not only
among humans but it is an effective tool for communica-
tion between humans and machines as well. In this regard,
analyses of faces using images have been adopted for fun-
damental researches in various areas such as neuroscience
[1], psychology [2], human-computer-interaction [3], etc. It
is indisputable that computer vision methods are the driving
forces of such researches; there is a rich history of works
in vision with face detection [4], [5], face recognition [6],
[7], 3D face construction [8], [9], facial image generation
[10], [11] as well as substantial extensions in security such as
personal identification [12], face spoofing and anti-spoofing
[13], [14]. Recent works with Deep Learning (DL) demon-
strate remarkable advances in these applications by combin-
ing a flexible neural network that can train a generalized
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model and large-scale training samples that recently became
available, e.g., [15], [16]. The prediction performance of
these algorithms is up to human-level precision [16] and these
methods are deployed on many commercial devices with
cameras.

The visual information from a face is mainly delivered
by facial expressions. However, despite a rich body of suc-
cessful works with facial images in machine learning and
computer vision, facial expression recognition still remains
a challenging task that is yet to be solved. First of all,
we face a lack of data with reliable annotations to train
a data-driven machine learning model. This problem stems
from two issues: 1) personal facial expressions are driven
from subjective emotions that are difficult to assign objective
labels [17], and 2) there exist substantial ambiguity between
emotion classes [18]. That is, there is a severe diversity in
expression caused by personal and cultural differences that
lead to large intra-class variation and small inter-class vari-
ation. For example, the same emotional expression shown
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FIGURE 1. Facial expression images of the same class (Neutral) across different datasets. Although all images are annotated as the neutral class,

actual facial expressions may be inconsistent across the three datasets.

in an image can be categorized differently in a different
dataset and vise versa for different emotions (See Fig. 1).
Also, a mixture of emotions, which often arise in various
real facial expressions, makes the expression recognition
problem even more challenging. Such issues are clearly dis-
tinguished from recent popular datasets such as ImageNet
[19] and MS-Celeb-1M [20], whose annotation and identity
information are creditable.

Notably, there have been several tries to tackle the
facial expression recognition problem in a data-driven way.
However, individual dataset acquired at different sites often
includes substantial dataset bias caused by local data col-
lection protocol and the aforementioned diversity in expres-
sions. These biases include selection bias caused at the image
searching stage using limited key words or the participants
recruiting stage, capturing bias caused by the data collec-
tion environment, and annotation bias caused at the image
labeling stage [21]. In the end, regardless of classification
algorithms, these (potentially large) biases make it difficult
for the algorithms to agree on the same expression coming
from different images. Datasets collected in the past two
decades are mostly in-the-lab setting where their participants
acted to make specific expressions or to induce to make
spontaneous expressions based on the psychological ground
in restricted lab environments, which eventually leads to
exaggerated expressions [22]. Some of the recent datasets
broke away from restrictions from the labs and collected a
large number of online facial expression images based on a
set of keywords. These crawled images were then annotated
to constitute in-the-wild datasets [22]—[24].

One approach to reducing the annotation bias is to have a
diverse group of annotators to soft-label the data with prob-
ability [25], however, it requires substantial resources and
efforts. The simplest way would be to perform cross-dataset
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generalization: to combine data from multi-sites to secure a
sufficient number of samples [26], [27]. This is conceptually
easy but reducing annotation bias across datasets remains a
challenging task. There have been several tries [28]-[31],
but these works often lack explanation on dataset invariance,
suffer from complex architecture with label combination,
overfit to a single dataset, and cannot control for selection
and annotation biases. Moreover, even if we have enough
data, many facial expression datasets have class imbalance
problem that affects downstream classification, which is com-
mon in vision datasets [19]. The class imbalance occurs more
frequently in the in-the-wild datasets since the frequencies
of each expression depends on the emotion type. For exam-
ple, facial expressions are typically categorized by 6 basic
emotions (i.e., Happiness, Surprise, Disgust, Sadness, Fear
and Anger) and 1 neutrality, and some of these emotions are
expressed more often than others. Such natural phenomena
affect the skewed distribution of data labels in the wild; ~70%
of class labels in many in-the-wild datasets belong to either
Happiness or Neutral.

In this regard, we tackle the issues addressed above by
proposing an adaptive cross-dataset framework let us com-
bine multiple datasets to constitute a larger-scale multi-site
dataset with minimal dataset bias. The framework is a variant
of domain adaptation methods; unlike other tries to reduce
differences between source and target domains [32], the key
idea is to rather minimize bias between datasets to boost facial
expression recognition performance with a global multi-site
dataset. We deal with two of the biases introduced above: 1) to
reduce selection bias, we train our model such that it mini-
mizes differences in distributions of image features extracted
from different datasets, and 2) to reduce annotation bias, we
add a label extractor in our pipeline that generates pseudo
emotion labels used as image feature/label pairs to train our
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model such that it does not distinguish different datasets.
Finally, in order to tackle the class imbalance issue that
typically arises in many in-the-wild datasets, we introduce an
adaptive cross entropy as an objective function that assigns
different weights to class-wise cross entropy according to a
statistical property of each class and training precision during
optimization.

Our work throughout this article suggests the follow-
ing contributions: 1) we successfully combine multiple
in-the-wild facial expression datasets to provide a sufficient
number of samples for training an machine learning (ML)
model by minimizing biases between datasets, 2) we intro-
duce an adaptive cross entropy scheme to work around the
skewed class distribution of facial expressions in the dataset,
3) we demonstrate extensive empirical experimental results
identifying dataset bias and validating the performance of our
framework on facial expression recognition using the aggre-
gated data from multiple in-the-wild datasets. The results
show that our framework is able to accurately classify various
facial expressions and performs better than other state-of-the-
art baseline methods.

Il. PROPOSED METHOD

We tackle the two major issues in facial expression
recognition with multi-site datasets with in-the-wild images:
1) dataset bias, and 2) class imbalance problems. We propose
a cross-dataset adaptation (CDA) scheme to address selection
and annotation biases from different datasets using separate
feature extractor and pseudo-label extractor, and adaptively
control classification error from cross-entropy to mitigate the
class imbalance problem. The details are given below.

A. CROSS-DATASET ADAPTATION

Combining multiple datasets from multi-sites is a common
approach to secure a sufficient number of meaningful sam-
ples. However, the bias introduced from different datasets
(i.e., cross-dataset bias) must be minimized to improve the
generalization capability of an ML algorithm trained by the
multi-site dataset. For facial expression datasets, one cause
of such bias may be regional/cultural specific annotation
resulting in inconsistent labels between different datasets.
This means simply gathering and training with facial images
and their labels can lead to harmful effects on generaliza-
tion, especially when the datasets have very different char-
acteristics or include conflicting annotations on the same
expression.

In this scenario, our idea to control for the cross-dataset
bias is to construct features robust to dataset type and utilize
a pseudo label for emotion to reversely train on dataset label.
We design two components: 1) a feature extractor, which
learns image features using a Residual Network (ResNet)
that reduces specificity between different datasets while
increasing discriminant ability for emotion classes, and 2) an
emotion label extractor using a Convolution Neural Net-
work (CNN) that is used to reduce annotation inconsistency
between datasets. We utilize a dataset classifier with a Gra-
dient Reversal Layer (GRL) [32], which can be viewed as a
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control tower to minimize biases between datasets. The GRL
reversely trains both the feature extractor and the label extrac-
tor not to distinguish different datasets while training the
emotion classifier to accurately predict emotions based on
the trained features. The overall architecture of our proposed
method with CDA is shown in Figure 2. There are multi-
ple emotion classifiers (three classifiers for our experiment),
ie., e = (e, ez, e3), that are assigned to individual dataset
within the full multi-site dataset. The details of our approach
are described below.

Given input images x and their labels y, we constitute
a feature extractor f(x; 6f) with parameters ¢ and a label
extractor g(y; 0g) with parameters 6g. Then, a CDA com-
ponent is defined as CDA(X, y; 6, Og, Oe, 0a) that combines
an emotion classifier e(f(x); 6¢) and a dataset classifier
d(f(x), g(y); 6a), where 6, and 6, are trainable parameters in
the emotion classifier and dataset classifier respectively. The
loss function L, for emotion classifier is defined as

Le(X, Y 0, Oc, 0g) = L(e(f (X)), 8(¥): b, be)
+La(g(¥). y;: 0g) (1)

where, L is an error between an output from the emotion
classifier e(f (x)) and a pseudo label from the label extractor
g(y), and L, is a €>-regularizer for the weights of the label
extractor g to make the pseudo label stable. The loss function
L, for dataset classifier is formulated with dataset label z and
parameters 60, Og, 0q as

La(X,y. z; 6, 0g, 6a) = L(d(f(x), 8(¥)). z: 6. Og. 6a)  (2)

that takes (f(x), g(y)) at the same time to train the dataset
classifier d. Combining these two losses L, and L;, our
multi-task loss E for CDA becomes

E(Xs y3 Z; efs egv eev ed) = Le(x, y; 0f3 967 Qg)
+Ly(X,y,2; 6, 0g,00) ()

and (3) is further reformulated with the GRL at the
backpropagation stage as:

E(Xv yv Z; 9[', va eev ed) - LE(XV ys efv 967 eg)
— diLa(f (x); 6%, 6a)
—A2La(g(y); Og, 6a) (4

where A1 and XA, are user parameters to balance effects
of the feature extractor and the label extractor respec-
tively from the dataset classifier. Minimizing the (4) jointly
trains a DL model such that it correctly classifies different
facial expressions in the images, and learns features from
images and pseudo labels where intra-dataset variation are
maximized simultaneously. The training is performed via
backpropagation with partial derivatives given below:

dL, dLg
o, Of — —Al— 5
t < O M(agf 189f> (5)
0Ly dLy
6 Oy — — — A — 6
g < Ug M<89g 289g> ©)
oL, dLg
0, Oe — u—, 6, Og — p— 7
e < Ue Mage d < Uq M39d @)
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FIGURE 2. The overall architecture of our framework. Features derived from facial images x and altered labels (psuedo labels g(y)) from ground
truths y are inputted to separate emotion classifiers e;, e,, e; and dataset classifier d to minimize emotion classification error and dataset bias

based on the proposed Adaptive Cross Entropy (ACE) Loss.

where, w is a learning rate of the overall DL structure. Notice
that 6¢ is jointly trained by both L, and L; to satisfy both
conditions for emotion classifier and dataset classifier. The 0
is trained by L, and Lg; specifically, the update with respect
to Ly is achieved by implementing the GRL. The gradients
of Ly are applied to 6¢ and 6 in the opposite direction, so
that it degrades precision of dataset classifier and consider all
datasets as a single dataset.

B. ADAPTIVE CROSS ENTROPY

Collecting a sufficient amount of samples for each emotion
category is difficult by the nature of domains where the
data are collected. Many datasets from research labs,
i.e., in-the-lab datasets, collect posed facial expression
images in a constrained laboratory environment (i.e., consistent
pose, angle, illumination, etc.). These datasets usually have
equally distributed samples for facial expression categories
from ideal environments. Although the performance of ML
models with in-the-lab datasets may be reasonable, these
datasets cannot be generalized to the real-world environment
since the data were acquired in restricted settings. This
is because the models trained based on in-the-lab datasets
cannot be adequately extended to real-life conditions, where
the majority of pictures are taken in the wild. This can
be easily verified by testing a pre-trained model (using
in-the-lab data) with in-the-wild datasets, which causes a
significant performance drop in a real-world scenario for
facial expression classification [33].
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We, therefore, must turn to in-the-wild datasets that
provide better generality to a trainable model. Unfortunately,
in a typical in-the-wild dataset, there exists a significant
class imbalance problem. That is, the majority of images
in the dataset are categorized as Happiness and Neutrality
classes, whereas Fear, Disgust, Surprise, Sadness, and Anger
classes have much fewer samples due to the inherent prop-
erties of emotional status. A simple solution to such a class
imbalance problem is to balance the number of samples in
all classes based on the sample size of a minority class.
However, this may lead to a considerable reduction in overall
data volume, which can significantly drop classification
performance, especially with DL algorithms.

In such a scenario, the Adaptive Cross Entropy (ACE)
proposed in this article is designed to reflect the character-
istics of a dataset by constructing a loss function based on
the distribution and precision of prediction for each class.
Specifically, we first define a conventional Categorical Cross
Entropy(CCE) for training a DL. model with total of n samples
with ¢ classes in a multi-class classification problem as:

1 n C
CCE (x,y;0) ==~ ) §i(ynlogf (xi:0)  (8)

i=1 j=1

where x; denotes the i-th training sample, y; denotes a corre-
sponding label, and 6 denotes parameters of the DL model.
The f (x;; 0) in (8) is a return from a soft-max function from
feed-forward result of the network and the §; function creates
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one-hot vector encoding for multi-class classification, which
can be defined as follows:
1 if yi=Jj

% (i) = [0 e ©)
The CCE Loss function in (8) produces a loss value by
adding all the values of the log operation to the prediction
probability of each class. The prediction probability of each
class is determined by the §;(y;) function, which is deter-
mined by the label y;. That is, since the log-loss is accu-
mulated in proportion to the frequency of the labels during
the training process, it may negatively affect the result of
the backpropagation algorithm in the imbalanced dataset. To
compensate for such shortcomings of conventional categori-
cal cross entropy, we propose an ACE loss as follows:

1 n c . .
ACE (x,y,0) = —— 3 > f(wypwy, a)8j(yidlogf (i 0)

i=1 j=1
(10)

which contain two additional weight terms, i.e., w{, and W,
in addition to (8). We make these weights adaptively behave
according to the precision and skewed class distributions in
the emotion prediction. The weights are defined as

W :C<M) (11)
c—1
: 1 —hij/n;
w o= VI 12
P C(Z;—ll_hj/nj) (12)
- < whw Y whw!
f(W;;ij"x) — @_’_a(%%_@) (13)

where n; is the number of samples of the j-th class, and
h; denotes the number of true positive (hit) samples of the
j-th class in a training process. To improve the accuracy
of minority classes caused by class imbalance, we adopt a
“precision compensation’ weight term wﬁ, in (13), which is
adversely proportional to precision for each class. Differently
expressed but the intuition is similar to that of Focal Loss
[34]: if the precision with respect to a minor class is low, the
weight should become larger to minimize prediction error and
balance the accuracy of the minor class. Conversely, when the
precision with respect to a major class is high, the weight is
decreased to avoid over-fitting towards a major class.

What differentiates our idea on ACE from the convention
is the distribution compensation weight term in (11), i.e., w,,
which alleviates the asymmetry in the loss caused by the data
label imbalance. It increases the loss value when the number
of samples in the j-th class n; is small, and vice versa when
n; is relatively larger than other classes. This is an important
aspect for our CDA framework: since the numbers of samples
in each dataset are significantly different, we address this
issue by balancing the numbers with w’d. Moreover, because
the number of samples for each emotion class is also skewed,
we applied the same scheme to both and dataset classifier
and emotion classifiers. The function f (w,w/,, @) adjusts how
much to concentrate on imbalanced data between CCE and
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ACE by «. (it becomes CCE when « is 0). We expect that
these adaptive parameters will improve the performance of
overall accuracy by balancing the precisions of each class.

In practice, when training a DL algorithm, a loss function
typically is calculated for each mini-batch. If we define
the two weight terms of the ACE loss function for each
mini-batch, n is defined as the size of each mini-batch. Then,
the weight value of the ACE loss function for each mini-batch
is determined based on the statistical property of label distri-
bution and class accuracy, which are adaptively changed for
each mini-batch.

Combining the above two ideas, the final proposed method
uses the ACE as the loss of the emotion classifier in the CDA
structure. That is, L in the equations in (1) and (2) are replaced
with (10) to complete our model.

Ill. EXPERIMENTAL RESULTS

Our experiments were performed based on three different
in-the-wild datasets with facial expression images, which are
the most popularly used in facial expression recognition. The
description on the datasets as well as the experimental setting,
results, and validations are given below.

A. DATASETS

We used various in-the-wild datasets with 7 different
emotion classes. The 7 classes consist of 6 basic emotions,
i.e., Happiness, Sadness, Disgust, Anger, Fear and Surprise,
and Neutral. The three datasets that we used consists of
facial expression images that were collected from the web by
searching with emotion-related keywords.

RAF Dataset: The Real-world Affective Faces (RAF)
dataset contains image data from Flicker (https://www.flickr.
com) by parsing emotion keywords that are related to the
7 emotion classes. There was a total of 315 annotators who
labeled the images based on their knowledge of psychol-
ogy. Specifically, each image and its label were validated
by 40 independent annotators to increase the credibility of
the dataset. The dataset consists of 15, 339 annotated images
where 12, 271 belongs to the training set and the remaining
3,068 images are assigned to the testing set [22].

ExpW Dataset: Facial Expression in-the-Wild (ExpW) is
a dataset collected by a search engine using emotion-related
keywords. It consists of 88,600 facial expression images
and does not offer a train set and a test set separately [24].
Thus, we randomly separated 3, 500 images as a test set and
remaining 85, 100 images as a train set.

AffectNet Dataset: AffectNet is a facial expression dataset
collected by searching 1,250 emotion-related keywords from
search engines such as Google, Bing, and Yahoo. Each image
was assigned to one annotator and labeled. There are a total
of 287,401 images related to 7 classes, including a train set
of 283, 901 images and a validation set of 3, 500 images [23].
A test set has not been made public yet, and thus we used this
validation set as a test set in all our experiments.

Figure 3 shows the facial expression class distributions in
training and testing sets from the three datasets. In the case
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TABLE 1. Comparisons of performances with the state-of-the-art methods.

Method Pretrain Train Set Backbone | Align | Aff Test | RAF. Test
Occ. Razor [35] - Aff. ResNet-18 N - 80
ECAN [36] 2.6M RAF2.0 VGG-Face N 51.84 -
IPA2LT [29] - RAF+Aff. ResNet-80 N 57.31 86.77
gACNN [37] ImageNet RAF VGG-16 Y - 85.07
¢ACNN [37] ImageNet Aff. VGG-16 Y 58.78 -
Sep. Loss [38] ImageNet RAF ResNet-18 N 86.38
Sep. Loss [38] ImageNet Aff. ResNet-18 N 58.89
Cov. Pool. [39] - RAF CNN Y - 87.00
Ours - RAF+Exp.+Aff. | ResNet-50 N 61.57 86.83
RAF ExpW AffectNet TABLE 2. Accuracy from cross-dataset facial expression recognition
06 experiment (Training/Testing on different datasets).
05
04 _ Train | RAF Test | Exp. Test | Aff. Test | Avg.
03 1 RAF 82.07 54.54 46.20 60.94
02 Exp. 73.92 70.97 43.09 62.66
o1 I I [ Aff. 76.21 63.86 58.89 | 66.32
00 H_- o4 ks Avg. | 7740 63.12 4939 -
@ FE S @ T 4‘" O R, (Exp.: ExpW, Aff.: AffectNet)

FIGURE 3. Class distribution of RAF, ExpW, and AffectNet datasets. Blue:
training samples, Red: testing samples. Happiness and Neutral are
dominant in all three training sets, but AffectNet dataset has a uniform
testing set.

of RAF and ExpW, we see that class imbalance is reflected
in both the training set and the testing set. However, in the
case of AffectNet, while the class label distributions in the
training set are unbalanced, the class labels in the testing
set are distributed evenly. We will focus on the test set of
AffectNet since we want a classifier that is not biased towards
a few specific expressions.

B. EXPERIMENTAL DESIGN

We used 50-layer ResNet [40] as our backbone network in
all experiments. Throughout our experiment, the batch-size
was 2048, the number of train-epochs was set to 120, and
the stochastic gradient descent optimizer was used as an
optimization method with a GPU, NVIDIA’s TITAN RTX.
In order to evaluate dataset bias only and remove other nui-
sance factors, we did not use the aligned images provided
from each dataset; we only used face region information
provided from each dataset and cropped facial images from
the original images. Then, all images were resized to the
same size of 100 x 100 which were used as the inputs
to our framework. For data augmentation, random-cropping
and horizontal-flipping were applied to all images so that
the quality of all images become randomized. Only for the
experiment in section III-C, we used the batch-size to 350.

C. CLASSIFYING FACIAL EXPRESSIONS IN IMAGES

We first present the main result from a facial expression
recognition experiment comparing performance of our result
to those from state-of-the-art baselines. Table 1 shows
the summary of the performances. We combined the
three datasets (i.e., RAF, AffectNet and ExpW) to cre-
ate a large-scale multi-site dataset and trained our model.
In this experiment, we used ExpW dataset as a part of
training dataset but excluded for evaluation and comparisons
with other methods, because it does not provide a public
testing set. As seen in Table 1, our framework showed the
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best performance on the test set from AffectNet, which
returned 2~9% improvement on the recognition accuracy.
Considering that the distribution of emotion labels are bal-
anced in the test set of AffectNet dataset but all the models
being compared here are trained with skewed distribution of
labels in the training set, the result shows that our model is
able to properly learn and generalize even with substantial
class imbalance. Moreover, notice that the accuracy with our
model is even better than the stat-of-the-art methods (with
pre-training) trained on AffectNet only. This is important
since training a classical DL model with the multi-site data
decrease the performance of the model, which is to be shown
with a separate experiment (Table 2 in section III-E). Here,
we still achieve good accuracy with the combined multi-site
dataset by minimizing dataset biases.

We obtained comparable accuracy to the state-of-the-art
result on RAF test data [39] with only 0.17% difference.
We think that the difference is coming from the conventional
face alignment used in other state-of-the-art baselines, which
is typically used to reduce large unwanted variations on
in-the-wild datasets. We did not apply the face alignment in
the preprocessing since it may behave as a separate covariate
affecting the original biases in each dataset.

D. IDENTIFYING BIAS IN MULTI-SITE FACIAL

EXPRESSION DATASET

In order to confirm that there exists clear bias between
different datasets, we first performed 1) dataset classification
and 2) cross-dataset recognition experiments to quantify the
bias introduced from the three facial expression datasets. In
the dataset classification experiments, we exclusively used
381,272 images as a training set and 10, 068 images as a
test set by combining the three datasets, i.e., RAF, ExpW, and
AffectNet.

Since these datasets were collected from natural scenes
(i.e., from the wild), we first hypothesized an ideal con-
dition that there wouldn’t be any dataset bias between
these datasets which would yield randomly classified result
(with 33% accuracy). We performed the dataset classification
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TABLE 3. Architecture of label extractor, emotion classifier, and domain classifier. Note that the input dimension for the dataset classifier is 1, 007, which
is the dimension of a concatenated vector of a image feature (1, 000) and a label (7).

Label Extractor

Emotion Classifier

Dataset Classifier

Inputl x 7
Convl x 1 x 512, DropOut, LeakyReLU
Convl x 1 x 512, DropOut, LeakyReLU
Convl x 1 x 512, DropOut, LeakyReLU
Convl x 1 x 512, DropOut, LeakyReLU
Convl x 1 x 256, DropOut, LeakyReLU

Input 1 x 1000
Convl x 1 x 512, LeakyReLU
Convl x 1 x 256, LeakyReLLU
Convl x 1 x7

Input 1 x 1007
Convl x 1 x 512, LeakyReLU
Convl x 1 x 256, LeakyReLU
Convlx1x3

Convl x 1 x7
RAF Exp. Aff. and RAF. Interestingly, we obtained the lowest classification
RAF| 98.6% 1.4% 0.0% performance with AffectNet; this may be because the distri-
bution of images for each class in the training set and the
Exp| 02% 90.1% 9.6% test set are significantly different. In other words, since the
class distributions in the train sets from the three datasets
Aff. 0.0% 2.1% 97.9%

FIGURE 4. Confusion matrix of the dataset classification experiment.
Surprisingly, the three in-the-wild datasets were distinguished with high
accuracy demonstrating there exists dataset bias.

with ResNet-50, which is a part of our framework as a
feature extractor. Unexpectedly, we obtained 91.74% dataset
classification accuracy despite the dataset classification was
performed on in-the-wild datasets. Even though the differ-
ences caused by image quality and alignment from each
dataset were minimized, the unfortunate high classification
performance was achieved clearly demonstrating the exis-
tence of dataset selection bias in each in-the-wild dataset.
Especially, dataset bias of RAF dataset was the largest among
the three datasets, followed by AffectNet and the ExpW
as shown in a resultant confusion matrix in Figure 4. In
case of RAF dataset, there were 40 annotators validating
the images and expressions; perhaps there was a policy for
determining expression labels that the annotators were made
to fit which made the dataset bias stronger with repeated
validation process.

In addition, we performed experiments on cross-dataset
recognition (i.e., training/testing on different datasets) to
validate generality of each dataset and baseline perfor-
mance of the ResNet-50 algorithm trained on each dataset.
Table 2 shows the results of facial expression classification
with cross-dataset setting on the three in-the-wild datasets.

We observed a large performance drop when training and
testing were performed on different datasets as shown in
the off-diagonals of Table 2. Conversely, when training and
testing processes were done on the same dataset, as shown in
the diagonal elements of Table 2, we obtained much higher
classification performances.

In particular, training with RAF dataset showed steepest
drop when tested with test sets from other datasets with the
lowest generalization capability compared to other datasets,
whereas AffectNet dataset had the least performance drop.
This was expected considering the size of training samples in
descending order of AffectNet, ExpW, and RAF. Regarding
the mean of classification accuracies as a measure classifi-
cation difficulty for each dataset, classification with the test
sets became more difficult in the order of AffectNet, ExpW,
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are skewed and the class distribution of the test set from
AffectNet is balanced, this imbalanced distribution between
a train set and the test set may negatively affect overall
performances on test experiments with AffectNet dataset.

Throughout these two experiments, we confirmed that
there exist clear biases among these three in-the-wild
datasets, as well as other potential challenges with skewed
class distributions. These are critical challenges for utiliz-
ing cross-datasets (i.e., multi-site dataset) scheme to setup
a large-scale facial expression classification experiment to
improve performance of DL algorithms; simply merging
different datasets may hurt the performance of the DL
framework. Our framework precisely tackles these issues to
achieve successful results.

E. ANALYSIS ON RECOGNITION PERFORMANCE
WITH MULTI-SITE DATASET
The purpose of this cross-dataset experiment is to validate
improved generalization ability of our framework by run-
ning it over heterogeneous images from different datasets.
We expect the performance to improve as we utilize more
number of training samples by combining multiple datasets
(i.e., cross-dataset) with the ideas we proposed in section II.
Despite a larger dataset size, merging different datasets
requires careful control of dataset bias that come from differ-
ent dataset properties. In the following, we show experimental
results with a multi-site dataset combining RAF, ExpW, and
AffectNet datasets. For these experiments, we used the CDA
architecture with a feature extractor using the ResNet-50 as
a backbone, a label extractor, three emotion classifiers, and a
dataset classifier as shown in Table 3. The A; for the feature
extractor and A, for the label extractor were set to increase
from O to 1 during the entire training epochs. The rest of the
parameters were set as the same as in section III-B.
Different deep learning models were trained using all
training samples from all three in-the-wild datasets. Three
models are compared: 1) baseline method trained only
on AffectNet, 2) baseline method trained on the three
datasets, and 3) our proposed method that uses the CDA
strucutre. As shown in Table 4, the proposed method achieved
better performance than the others on all the test sets.
Comparing the two baseline methods, although it showed

VOLUME 8, 2020



B. Han et al.: Toward Unbiased Facial Expression Recognition in the Wild via Cross-Dataset Adaptation

IEEE Access

TABLE 4. Comparisons of facial expression recognition accuracy.

Train Set Method Model RAF Te. | ExpW Te. | Aff. Te. || Acc. Avg. | F1. Avg.
Aff. Baseline | ResNet-50 76.21 63.86 58.89 66.32 47.33
RAF+ExpW+Aff. | Baseline | ResNet-50 84.94 72.03 56.80 71.26 57.98
RAF+ExpW+A(ff. Ours CDA 86.60 73.89 61.03 73.83 59.13
(Te.: test set, Aff.: AffectNet, Acc.: Accuracy, F1.: FI score

m RAF
. ExpW
m AffectNet

wiigs

FIGURE 5. UMAP visualization of feature vectors. Left panel: using the
baseline method, Right panel: using the proposed method. While the

three datasets are clearly distinguished in the feature space (left) with
dataset bias, our model is trained to combine them as a single dataset

(right).

better average accuracy when trained on the entire three
datasets than the case with training using AffectNet training
set only, the individual performance on the AffectNet test set
decreased. That is, despite the larger sample size by merg-
ing the three in-the-wild datasets, the selection and anno-
tation bias of the datasets were well highlighted, resulting
in poor performance rather than complementary effects on
the AffectNet test set; we concluded that simply combining
training sets from the multiple datasets does not produce
meaningful results for generalization. On the other hand,
using our proposed method, we gained increase in the accu-
racy for all the test sets despite the training sets were a mixture
of different datasets.

In Figure 5, distribution of trained features from baseline
with combined dataset (left) and the proposed method (right)
are compared using Uniform Manifold Approximation and
Projection (UMAP) [41] to show the effects from the pro-
posed feature extractor. In the left of Figure 5, clear selection
bias for each dataset is observed with clusters of distributions
for each dataset in the trained features, while the features
from our feature extractor show mixed distribution to make
the three dataset as a single global dataset.

Figure 6 expands the results with AffectNet in more
detail with recall matrices obtained from the three methods.
Looking at the recall matrix in the middle column, true
positive rate per class and recall values on the diagonals
of the recall matrix are slightly decreased compared to the
baseline method in the first column (Mean Recall Scores:
Baseline with AffectNet 0.59 £ 0.20, Baseline with the
combined dataset 0.57 £ 0.20). The diagonals representing
recall is higher as the green becomes darker. Notice that the
green colors in the last columns (i.e., elements in the last
column) in each recall matrix in Figure 6 for Neutral are
degrading across baseline with the combined datasets and our
proposed method. This means the proposed method improves
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generalization ability using the training samples from all
three datasets, where dataset bias is decreased compared to
other methods. The proposed method was effectively applied
to the AffectNet test set, with higher and more balanced true
positive rates than the baselines. The mean recall score of the
proposed method was 0.61 £+ 0.15.

Notice that the precision per class using the proposed
framework shown at the bottom of each matrix is much more
balanced than other methods. This is highly desirable consid-
ering that the AffectNet dataset has uniform distribution of
labels in the testing set. In particular, we even get balanced
number of predictions for neutral class. We want to empha-
size this result, since we hypothesized that the dataset bias in
neutral class may be the strongest among the seven classes
of facial expression. This may be because, when a policy to
annotate or select facial expression images as neutral class
is ambiguous, it would result in relatively small inter-class
variation compared to other classes [42]. Using our proposed
method, the number of neutral predictions was reduced from
981 in the baseline with the three datasets to 733. This
means that the range of prediction for neutral class is reduced
compared to those of the baseline algorithms, where more
strict criteria was applied using the proposed method for
predicting the neutral class. Although different datasets have
different opinions on neutral facial expression, predictions
based on our proposed method are narrowed down to common
characteristics of the three independent datasets.

In addition, the precision for neutral class has improved
despite the decrease in the number of predictions for neu-
tral class using our framework. This is because the number
of false positives in terms of neutral class has decreased
significantly compared to the baseline methods. Such result
suggests that the proposed method appropriately drove our
predictions towards reducing dataset biases from the different
datasets for neutral class. Overall performance of the pro-
posed method was improved as seen in the mean of precisions
(Baseline with the three datasets: 0.61 & 0.11, Proposed
method with the three datasets: 0.64 £ 0.11).

We also performed visualization of feature vectors using
the UMAP method to see how well the extracted feature
vectors are representing the seven emotions. In Figure 7,
the left panel shows the result from the baseline method where
the seven classes for facial expression are not clearly distin-
guished with mixed distribution; we observe samples only in
the happiness class (brown tags) form a cluster. However,
in the right panel showing our result, we can see that the
emotions are separately distributed at intervals to distinguish
those clusters. Notice that the Neutral samples are clustered
at the center of the distribution, which is desirable since
different emotions manifest from the Neutral status.

159179



IEEE Access

B. Han et al.: Toward Unbiased Facial Expression Recognition in the Wild via Cross-Dataset Adaptation

Predictied Label

_Sur. _Fea. Dis. Hap. Sad. Ang. [Neu_ Sur. Fea. Dis. Hap. Sad. Ang. Neu, Sur. _Fea. Dis. Hap. Sad. Ang. Neu,

é 0.41 ( 0.06 | 0.01 | 0.18 | 0.04 | 0.02 J0.27 l:j; 0.36 | 0.10 | 0.01 | 0.17 [ 0.05 | 0.02 § 0.27 é 0.54 | 0.09 | 0.02 | 0.08 | 0.06 | 0.02]0.19

..i:i 0.16 | 0.48 | 0.02 | 0.04 | 0.11 | 0.05 J0.13 § 0.16 | 0.48 | 0.02 | 0.04 | 0.12|0.05]0.12 E 0.19|0.49 | 0.02 | 0.03|0.12 | 0.09] 0.07

< E 002002035 0.10| 0.10 | 0.27 J0.15 g 0.01|004 036 |0.11 | 0.11|0.20]0.16 5 0.03]0.020.39| 007|013 |026]0.10

E 'I% 0.00 | 0.00 | 0.00 {0.95 | 0.01 | 0.00 | 0.05 :‘,:%- 0.00 | 0.00 | 0.00 | 095 | 0.00 | 0.00 | 0.05 E 0.02 | 0.00 | 0.00 [0.89 | 0.01 | 0.00] 0.07

= : . 3

= E 0.02 | 0.01 | 002 | 0.03|0.58 | 0.07 J0.27 3 0.01]0.01|0.02 | 0.03 [0.56 | 0.07 ] 0.31 E 0.02|0.02 |0.02|002|0.67 0.08]017

? 0.02|0.02 | 003 |0.03|0.04 |0.57 J0.29 g 0.03|002|0.06 | 004|007 |0.49]0.28 {g 0.03|0.03|0.06|002|0.080.61]0.18

g'; 0.03 | 0.00 | 0.00 | 0.10 | 0.04 | 0.04 J0.79 é 0.02|0.01|0.01|0.12|0.05|0.04 0.77 5 0.05|0.01 | 0.01|0.07|0.08 | 0.09]0.68

Prec. 0.62 080 081 066 064 055 040 Prec. 061 074 075 065 058 056 039 Prec. 060 075 075 0.76 0.59 053 047
FIGURE 6. Recall matrices and Precision from expression recognition on the test set from AffectNet. Left: baseline trained on the AffectNet, Middle:

baseline trained on the combined datasets, Right: proposed method on the three datasets. Notice that the prediction result with our method is much
more evenly distributed than others on the AffectNet test set as shown in the diagonal elements of each recall matrix. The darker the color in the

diagonals, the better true positive rate (recall).

m Fea.
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FIGURE 7. UMAP visualization distribution of samples in the feature
vector space. Left panel: from the baseline method, Right panel: from the
proposed method. The colors denote facial expressions Fear(red),
Anger(green), Neutral(blue), Sadness(pink), Disgust(cyan), Surprise

(dark yellow). Our result show better clustering of emotions with the
Neutral (blue) being at the center of distribution.

IV. CONCLUSION

We designed a cross-dataset adaptation scheme for
combining multiple datasets to retain sufficient sample size
to train a DL model and minimize biases that exist across dif-
ferent datasets. Our model is designed to learn the ‘““general”
representation of data in specific classes that exist across
multiple datasets. We applied our framework to a facial
expression recognition problem using three independent
in-the-wild datasets which had large dataset biases and class
imbalance problem. We confirmed that this is a serious
bias between datasets with dataset classification analyses
and demonstrated extensive empirical results to evaluate the
performance of generalization ability of our framework. We
achieved improved performance over state-of-the-art algo-
rithms with a balanced test set, i.e., AffectNet, when trained
with multiple independent training sets with skewed class
distribution as well as comparable results on RAF test dataset.
There is a great potential that our method can be applied to
various domains where combination of multi-site datasets is
required to acquire enough data.
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