
Received October 16, 2020, accepted October 19, 2020, date of publication October 23, 2020, date of current version November 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3033421

QoS-Aware Workload Distribution in Hierarchical
Edge Clouds: A Reinforcement
Learning Approach
CHUNGLAE CHO , (Member, IEEE), SEUNGJAE SHIN , (Member, IEEE),
HONGSEOK JEON, AND SEUNGHYUN YOON
Telecommunications and Media Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea

Corresponding author: Seungjae Shin (sjshin0505@etri.re.kr)

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (2017-0-00045, Hyper-connected Intelligent Infrastructure Technology Development).

ABSTRACT Recently, edge computing is getting attention as a new computing paradigm that is expected to
achieve short-delay and high-throughput task offloading for large scale Internet-of-Things (IoT) applications.
In edge computing, workload distribution is one of the most critical issues that largely influences the
delay and throughput performance of edge clouds, especially in distributed Function-as-a-Service (FaaS)
over networked edge nodes. In this paper, we propose the Resource Allocation Control Engine with
Reinforcement learning (RACER), which provides an efficient workload distribution strategy to reduce the
task response slowdown with per-task response time Quality-of-Service (QoS). First, we present a novel
problem formulation with the per-task QoS constraint derived from the well-known token bucket mechanism.
Second, we employ a problem relaxation to reduce the overall computation complexity by compromising
just a bit of optimality. Lastly, we take the deep reinforcement learning approach as an alternative solution to
the workload distribution problem to cope with the uncertainty and dynamicity of underlying environments.
Evaluation results show that RACER achieves a significant improvement in terms of per-task QoS violation
ratio, average slowdown, and control efficiency, compared to AREA, a state-of-the-art workload distribution
method.

INDEX TERMS Deep reinforcement learning, edge computing, resource allocation, workload distribution.

I. INTRODUCTION
Thanks to the recent academic and industrial innovations of
communications, networking, Internet-of-Things (IoT), and
cloud computing, we are seeing that the era of edge comput-
ing is coming [1]–[3]. The main idea of the edge computing
is to deploy edge cloud servers close to users nearby base
stations (BS) or gateways for short-distance access, which
is likely to result in a low delay and high throughput with
energy efficiency. Therefore, edge computing is recognized
as a promising paradigm that can provide users computation
and data resources with an ultra-low delay response time.
It is expected to enable various computation-intensive and
delay-critical services such as virtual reality (VR), augmented
reality (AR), real-time online IoT, and ultra-high-definition
(UHD) video streaming. Leading cloud vendors are attract-

The associate editor coordinating the review of this manuscript and

approving it for publication was Chuan Heng Foh .

ing users to use their edge cloud solutions (e.g., AWS IoT
Greengrass [4], Azure IoT Edge [5]) with smart speakers
(e.g., Echo [6], Google Home [7]) and light-weight cloud
servers (e.g., Snowball [8], Azure Data Box Edge [9]).

In addition to the above progress, the edge computing is
also expected to accommodate Function-as-a-Service (FaaS)
such as AWS Lambda [10], Azure Functions [11], and Open-
Whisk [12]. FaaS is an emerging paradigm that enables
serverless computing to provide a fast, flexible, and conve-
nient way to build customized information technology (IT)
applications. This is done by assembling fine-grained func-
tion blocks over cloud platform without worrying about
low-level development, resource provisioning, and manage-
ment & operation (MANO). The cloud platform with FaaS
itself transparently does those laborious jobs.

In order to make the FaaS come true in edge computing
environments, we should consider resource allocation and
scheduling issues. Due to the fine-grained nature of the FaaS,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 193297

https://orcid.org/0000-0003-1194-2987
https://orcid.org/0000-0001-8806-0101
https://orcid.org/0000-0002-5716-1396

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

the size of the resource allocation and scheduling problems
mainly increases. Moreover, since edge cloud servers are
likely to have limited resources compared to conventional
data centers, we should consider the workload distribution
functionality: workloads are distributed among edge and
remote computing nodes based on their execution charac-
teristics such as Quality-of-Service (QoS), cost, and other
constraints. For example, the tasks of a delay-sensitive or
mission-critical application should be executed at the edge
node. However, it is less critical whether to execute the
tasks of a delay-tolerant application at the edge node or not.
As another example, it may be desirable to execute a task near
the node where its I/O data are located, no matter whether the
node is edge or remote.

There have been many studies that provide delay, energy,
or cost-efficient workload distribution approaches for mobile
edge clouds. Most of the studies model the workload distribu-
tion issues as optimization problems and relax the problems
tomore tractable ones to exploit widely used problem-solving
techniques across convex optimization, graph theory, greedy,
and heuristic methods. Although those works have achieved
meaningful advances, the workload distribution issues still
encounter considerable challenges as follows:
• Most of the existing works do not provide a high enough
level of QoS-awareness, especially in terms of the task
response time. In addition, they consider a limited level
of QoS awareness rather than per-task response time
QoS [13]–[30]. They either rely on the assumption about
a specific task arrival process and service time distribu-
tion [19], [24].

• The workload distribution problem introduces a sig-
nificant decision complexity. In workload allocation,
we typically need to do the job for each pair of user
equipment (UE) and task type. Therefore, the complex-
ity is O(U · K), where U is the number of UEs and K is
the number of task types, which must be tremendous as
U and K increase. We need some approaches to reduce
such complexity, especially for a large U .

• It is tough to precisely model the underlying edge cloud
system due to the uncertainty of details. The workload
arrival patterns are expected to become more dynamic
and unpredictable when a large number of IoT appli-
cations are adopted. Such uncertainty and dynamicity
make the workload distribution problem more difficult.
However, the existing works still model the underly-
ing system in a somewhat unsophisticated manner and
assume the workload arrival pattern as a predictable
stochastic process, which may result in a degraded per-
formance under the real environment.

In this paper, we propose the Resource Allocation Con-
trol Engine with Reinforcement learning (RACER), a novel
workload distribution approach to handle the above three
challenges. Our contributions are as follows:
• First, to address the per-task response time QoS issue,
we revise the conventional problem with the average

task response time constraint to a novel problemwith the
per-task QoS constraint. We derive the constraint from
the well-known token bucket mechanism [31], which
provides a guaranteed upper bound on the task response
time (Section IV-A).

• Second, we significantly reduce the problem complex-
ity by removing the task distribution vector from the
decision variables of the original workload distribution
problem. Instead, the task distribution vector is deter-
mined implicitly by the token bucket mechanism over
the hierarchical edge cloud architecture. Even though
this reduction sacrifices the optimality of the solution,
we show that we can still achieve a desirable suboptimal
performance with some assumptions (Section IV-B).

• Third, by taking the deep reinforcement learning (RL)
approach as an alternative solver of the workload dis-
tribution problem, RACER has an improved capability
against the uncertainty and dynamicity of underlying
environments. By repeating the observe-action-reward
process in the distributed edge computing cloud envi-
ronment, the agent learns a desirable action sequence
for an efficient workload distribution. The learned action
sequence is a strategy that decides the computing
resource allocation and the token bucket shaping for
the efficient resource provision with a per-task response
time QoS (Section V).

• Lastly, through an extensive set of experiments
simulating distributed FaaS on hierarchical edge
clouds, we compare RACER’s performance with
the Application-awaRE workload Allocation method
(AREA) [19], a state-of-the-art QoS-aware workload
distribution algorithm. The experimental results show
that RACER outperforms AREA in terms of per-task
QoS violation ratio, average slowdown, and control
efficiency. RACER achieves on average a 92 per-
cent better per-task QoS violation ratio than AREA
(Sections VI and VII).

The remaining part of this paper is organized as follows.
In Section II, we review the existing workload distribution
schemes for edge clouds. In Section III, we define the work-
load distribution problem as aminimization problem on 3-tier
hierarchical edge clouds, and discuss the three challenging
issues of the problem. Then, we present our approach to
handle each of the challenging issues, i.e., the token bucket
mechanism and reducing decision complexity in Section IV
and RL in Section V. The implementation and evaluation
results are explained in SectionVI andVII, respectively. Then
we conclude in Section VIII.

II. RELATED WORKS
We investigated several state-of-the-art workload distribution
schemes for edge clouds and categorized them in terms of five
features: target environment, decision variables, optimization
objective, problem-solving methods, and QoS awareness,
as listed in Table 1.

193298 VOLUME 8, 2020

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

TABLE 1. Summary of researches on workload distribution of edge
clouds.

A. TARGET ENVIRONMENT
Ordinary workload distribution schemes target generic edge
clouds without any constraints related to network topology
[15], [16], [19], [21], [29], [30]. Some other schemes consider
hierarchical edge clouds, where a higher-tier cloud server
plays a role of back-up for overloaded lower-tier servers
[13], [14], [20], [22]–[24], [26]. Notably, such a hierarchical
structure is proved to be more beneficial for peak load stabil-
ity and resource utilization [13]. Some researches deal with
fog clouds, where even user devices (e.g., laptops, on-board
units on vehicles) dynamically contribute to form distributed
elastic clouds [18], [27], [28]. In addition, Liu et al. [17]
designed a workload distribution scheme for augmented real-
ity applications in edge computing.

B. DECISION VARIABLES
Workload distribution schemes should naturally decidework-
load placement, which refers to determining which cloud
nodes process an arriving workload. In addition, resource
allocation is considered to be another essential decision vari-
able because it is highly correlated with the workload place-
ment in determining the system performance. Therefore, the
majority of existing workload distribution schemes jointly
control the workload placement and resource allocation [14],
[15], [19], [20], [22], [24], [26], [27], [29]. Since such joint
controls may worsen the problem tractability, many methods
only decide the workload placement and then, accordingly,
control the resource allocation by pre-defined equations or
algorithms [13], [16], [21], [23], [25], [28]. Some other meth-
ods handle other decision variables related to specific prob-
lem domains. FACT jointly controls the workload placement
and analytics accuracy for augmented reality applications
[17]. Yu et al. [18] took only workload placement, but also

data routing and network capacity allocation as decision vari-
ables. Xu et al. [30] proposed to jointly control the workload
placement and virtual network function (VNF) allocation.

C. OPTIMIZATION OBJECTIVE
Most of the existing workload distribution schemes con-
sider delay or response time as optimization objectives.
The majority of them try to optimize the average response
time [13]–[17], [19]–[21], [26], [28]. As a variant, some
works try to minimize maximum response time [29] or com-
puting delay [27]. Maximizing throughput or utilization is
also chosen as an optimization goal in several methods [18],
[22], [30]. Some researchers attempt to minimize computing
and networking costs [23], [24] or maximize max-min fair-
ness [25] along with their specific assumptions.

D. PROBLEM-SOLVING METHOD
The workload distribution is typically reduced to hard prob-
lems to obtain the optimal solution, sometimesNP-hard ones.
Therefore, existing works mainly adopt two representative
heuristic problem-solving strategies: relaxation and approx-
imation. The relaxation-based approach firstly relaxes the
original problem into a more tractable one while compromis-
ing a little bit of optimality. Then, it solves the relaxed prob-
lem via known optimization techniques such as the following:

• Linear programming [14], [22], [25]
• Coordinated descent method [17]
• A combination of greedy heuristic and convex optimiza-
tion [19], [20]

• A combination of branch-and-bound, simulated anneal-
ing, and convex programming [13]

• A combination of greedy heuristic, particle swarm opti-
mization, and semidefinite programming [29]

The approximation-based approach tries to solve the origi-
nal difficult problem with a bounded time complexity while
obtaining a plausible solution instead of an optimal one via
known approximation algorithms as follows:

• Solving the workload distribution problem via
O(1+ ε)-competitive approximation [15]

• Solving the workload distribution problem via a fully
polynomial-time approximation scheme (FPTAS) [18]

• Solving the matrix chain ordering problem via a variant
of the shortest path algorithm [21]

• Solving the graph embedding problem by a greedy
heuristic [23]

• Solving the minimum weight maximum matching prob-
lem via a greedy heuristic [30]

• Solving the minimal capacity network optimization
problem by a two-phase iterative optimization (TPIO)
heuristic [24]

• Solving the workload distribution problem by using
a greedy heuristic method that combines the shortest
remaining time first (SRTF) and task preemption [26]

Sometimes, game theory is also exploited. Liu et al. [24]
described the workload distribution as a variational inequality

VOLUME 8, 2020 193299

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

theory problem and solved it by an iterative proximal algo-
rithm (IPA) to find out the Nash equilibrium solution. Along
with the recent emergence of artificial intelligence technolo-
gies, several researchers propose heuristics based onmachine
learning. Liao et al. developed multi-armed bandit (MAB)
control-based workload distribution schemes that cope well
with information asymmetry and uncertainty in IoT and
vehicular fog computing environments [27], [28].

E. QoS AWARENESS
QoS awareness is still an ongoing research issue in workload
distribution problems for edge clouds. A number of existing
approaches belong to the best-effort approach, which does not
consider any QoS awareness [13], [16], [21]–[23], [28], [29].
Along with problem and application domains, several QoS
metrics are used, such as communication cost [14], resource
recruitment cost [27], and analytics accuracy [17]. The most
popular QoS metric is response time, i.e., the delay or latency
of tasks, which is addressed in a variety of service-level
agreements such as the following:
• Take into account (but not guarantee) per-task response
time [15]

• Take into account the aggregate utility of response
time [25]

• Guarantee that the response time of a task is improved
when it is offloaded [26]

• Guarantee per-task network delay [18], [30]
• Guarantee the success probability of per-task response
time QoS [24]

• Guarantee the average response time QoS [19], [20]
Here, the notable thing is that any of the above works do not
support a high enough level of per-task response time QoS.

Although the above schemes have made considerable
achievements, they do not adequately handle all three chal-
lenging issues described in Section I, i.e., QoS aware-
ness, decision complexity, and uncertainty related to the
workload distribution problem in edge computing environ-
ments. Our goal is to design a more innovative solution that
addresses these issues. In designing our proposed scheme,
RACER, we considered three-tier hierarchical edge clouds
to take advantage of the resource efficiency discussed in
[13]. We adopt an average slowdown as the optimization
objective from considering that a lower slowdown is likely to
result in better throughput [32]. Primarily, by solving the joint
decision problem of task assignment and resource allocation
through the reinforcement learning method, RACER effec-
tively handles the complex workload distribution problem.
It provides a more improved per-task response time QoS than
existing schemes in hierarchical edge cloud environments
where the system dynamicity and uncertainty appear.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION
A. SYSTEM MODEL
As illustrated in Fig. 1, we consider a hierarchically dis-
tributed edge computing infrastructure that was proved
to be more beneficial for load stability and resource

FIGURE 1. Hierarchically distributed edge computing infrastructure.

utilization [13]. We assume that user equipments (UEs) have
tasks that should be offloaded to the computing nodes in the
infrastructure for some reasons, such as energy savings or
computation efficiency. Tier-1 nodes, which are colocated
with a base station (BS), execute tasks offloaded from a group
of UEs associated with the corresponding BS. Assume that a
UE has a time-sensitive task that should be offloaded, and
its response time is critical. A UE may prefer to offload the
task to the tier-1 node colocated with its associated BS if
it has sufficient computing resources because the network
delay between the UE and tier-1 node is accounted only for
the wireless link delay between the UE and BS. Despite the
advantage in terms of network delay, tier-1 nodes should be
used carefully because they generally have a limited comput-
ing capacity. A group of tier-1 nodes is connected to a tier-
2 node with more computing capacity than tier-1 nodes, but
much less than a tier-3 node (remote node). Tier-2 nodes can
be realized as edge clouds such that each of them consists
of a considerable number of computing and storage hosts.
Network delays to tier-2 nodes experienced by UEs are more
significant than those of tier-1 nodes, but are much smaller
than that of a remote node. The remote node (e.g., a cloud
computing center) has a nearly unlimited computing capacity.
However, the network delay experienced by UEs is much
more significant than those of the other nodes. Note that
it is not always favorable to choose a lower-tier node to
run offloaded tasks even though it has sufficient computing
resources. We assume that each task should access input data,
and the location of the data is dependent on the task type.
Therefore, if a task needs to read sizable input data in the
remote node, it is desirable to run it on the remote node rather
than on lower-tier ones. This reduces the overall response
time by shrinking the network delay required for reading the
input.

Table 2 lists the symbols and notations used in our system
model. We denote a set of computing nodes N and a set of
directional logical links L. Each UE u ∈ U is connected to a
node n ∈ N1 where N1 is the set of tier-1 computing nodes.
Each tier-1 computing node is connected to a node n ∈ N2,
whereN2 is the set of tier-2 computing nodes, and every tier-2
computing node is connected to a remote computing node nr .

193300 VOLUME 8, 2020

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

TABLE 2. Summary of notations.

UEs run applications, each of which consists of several
fine-grained tasks that are offloaded to computing nodes and
then remotely executed.1 We assume that tasks are catego-
rized into a set of types K based on their properties: request
message size wreqk , response message size wresk , demanded
computing workload wcomk , input data size wink , location of
input data nink , and response time QoS threshold Dk , where
k (∈ K) represents a task type.

Applications in a UE generate task requests, each of which
is sent to the network and then offloaded to one of the com-
puting nodes. Once a computing node is selected to handle the
requested task, it allocates a fraction of its computing capacity
to run the task. Then the task reads the input data from nink and
processes the workload. After it finishes the processing, the
computing node returns a task response to the UE.

Same as in [13], a higher-tier node backs up its descendant
lower-tier nodes in the edge hierarchy. Considering the scale
of recent data centers, we assume that the remote computing

1In FaaS, each task corresponds to a fine-grained executable routine
referred to as function.

FIGURE 2. Problem decomposition into edge regions.

node has enough capacity to back up every descendant node.
This property can be represented as an infinite capacity of the
remote node for modeling convenience. Therefore, we can
offload every task among the computing nodes on the path
from its originated UE to the remote node. By exploiting
this property, we can decompose the problem into multiple
smaller ones such that each smaller subproblem is defined for
an edge region. For a task requested from u, the decision space
for offloading is confined to N (u). For example, as in Fig. 2,
to offload the tasks requested from u11 or u12, we should
choose one among the nodes n11, n21, and nr . Similarly, the
tasks requested from u41 or u42 must be processed among
nodes n14, n22, and nr . Hereafter, we redefine N , N1, N2, and
U to denote a set of nodes, tier-1 nodes, tier-2 nodes, and
UEs within an edge region, respectively, for convenience in
dealing with the decomposed problem.

For each link l ∈ L, let bl denote its bandwidth and dpl
represent its propagation delay. The network delay for send-
ing the data of size w on link l is the sum of the transmission
delay w/bl and the propagation delay dpl . Then the end-to-
end network delay for sending data with size w from node ni
to node nj for ni, nj ∈ U ∪ N is

dnet (ni, nj,w) ,
w

minl∈p(ni,nj) bl
+

∑
l∈p(ni,nj)

dpl (1)

where p(ni, nj) is the set of links on the path from ni to nj.
Let znk be the computing capacity allocated to run a type k

task at node n. Then the service time for computing a type k
task with workload size wcomk is

dcoms (n, k) ,
wcomk

znk
. (2)

We consider the system model with queues such that tasks
offloaded to a node should wait for the earlier offloaded ones
to finish if there is no sufficient computing resource. Then,
to model the computing delay, we also need to consider how
long a task waits in the queue until the requested computing
resource is available. Let dcomw (n, k) be the queue waiting

VOLUME 8, 2020 193301

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

time for a type k task at node n. Then the overall computing
delay is

dcom(n, k) , dcomw (n, k)+ dcoms (n, k). (3)

Many previous works ignore the waiting delay in a queue
and simply consider the processing time as defined in (2).
Such approaches fail to capture the accurate computing delay
in real systems where offloaded tasks should wait for the
earlier offloaded ones to finish their execution and release
the resources. On the other hand, in [19], [24], the computing
delay is modeled as a M/M/1 queueing system with Poisson
traffic arrivals and exponentially distributed workloads as

dcom(n, k) ,
1

znk
wcomk
− λnk

(4)

where λnk is the arrival rate of type k tasks to node n.
Although this model considers the queueing delay, it is lim-
ited in capturing real-world systems due to the assumptions
on the fixed stochastic properties of the arrival and service
processes. Later, we will propose a solution to overcome this
limitation in Section IV.

The response time of a type k task with properties
(wreqk ,wresk ,w

com
k ,wink , n

in
k ,Dk) requested from UE u, and

offloaded to node n, consists of four components such as

dunk , d requnk + d
com
nk + d

in
nk + d

res
unk (5)

where d requnk is the network delay required to deliver the task
request message from u to n, dcomnk is the computing delay for
processing its workload, d innk is the network delay for reading
the input data, and d resunk is the network delay required to
deliver the response message from n to u. They are defined as

d requnk , dnet (u, n,wreqk), (6)

dcomnk , dcom(n, k), (7)

d innk , dnet (nink , n,w
in
k), (8)

d resunk , dnet (n, u,wresk). (9)

B. PROBLEM DESCRIPTION
Here, we define the workload distribution problem for the
system model described in Section III-A. The workload dis-
tribution handles the following two decision vectors:
• x(t) = [xunk(t)]: Type k tasks requested from UE u
should be appropriately distributed among nodes N (u)
along with the ascending path from u to the remote node
nr in the edge cloud hierarchy. xunk (t) is the fraction of
type k tasks requested from u that are offloaded to node
n at time slot t .

• z(t) = [znk(t)]: Each computing node n should appro-
priately distribute its computing capacity to each type
k task. znk (t) is the fraction of the capacity of node n
allocated to type k tasks at time slot t .

As in [32], we consider minimizing the weighted average
task response slowdown as the problem objective. For each
type k task requested from UE u, and offloaded to node n, the
task response slowdown is given by dunk (t)/Dk . Let λuk (t) be

the expected number of type k task requests generated from
u at time slot t , and denote λunk (t) , xunk (t) · λuk (t) to be the
arrival rate of type k task requests from u, and offloaded to n.
Then the weighted task response slowdown is defined as2

funk (t) ,
λunk (t)∑
ŭ,k̆ λŭk̆ (t)

·
dunk (t)
Dk

. (10)

Then the weighted average task response slowdown is
defined as

∑
u,n,k funk (t). The workload distribution problem

is that we try to minimize the weighted average task response
slowdown experienced by all UEs in an edge region under
several constraints, i.e.,

P1 : min
x,z

∑
u,n,k

funk (t) (11)

s.t.
∑
n∈N (u)

xunk (t) = 1, ∀u ∈ U , ∀k ∈ K (12)

0 ≤ xunk (t) ≤ 1, ∀u ∈ U , ∀k ∈ K , ∀n ∈ N (u)

(13)

xunk (t) = 0, ∀u∈U , ∀k ∈K , ∀n /∈N (u) (14)∑
k∈K

znk (t) ≤ cn(t), ∀n ∈ N (15)

znk (t) ≥ 0, ∀n ∈ N , ∀k ∈ K (16)

λnk (t) · wcomk ≤ znk (t), ∀n ∈ N , ∀k ∈ K (17)

dunk (t) ≤ Dk , ∀u ∈ U , ∀k ∈ K , ∀n ∈ N+(u)

(18)

where (12)-(18) are the constraints to condition valid solu-
tions. Constraints (12) and (13) suggest that, for each u and k ,
all the type k tasks from u should be offloaded to one of the
computing nodes inN (u). Constraint (14) specifies that every
task should only be offloaded to one of the nodes along with
the ascending path from its originated UE to the remote node
in the edge cloud hierarchy. Constraints (15) and (16) provide
conditions for the valid decision of resource allocation. That
is, we cannot allocate more computing resources than the
available capacity of a node. Constraint (17) expresses the
condition that the aggregated workload of type k tasks should
not exceed the computing capacity allocated by n for type
k tasks. Lastly, (18) is the constraint that the average task
response time should be no longer than the response timeQoS
threshold. In (18), N+(u) is the set of computing nodes such
that xunk (t) > 0. It is clear that the average response time
dunk (t) depends on the computing capacity allocation znk (t)
according to (2). It is also influenced by the task distribution
xunk (t) because it determines the aggregate task arrival rate to
a computing node, which affects the waiting time dcomw (n, k)
in (3).

Note that (18) supports the average QoS, not the per-task
QoS, because dunk (t) is the average value that is derived from
mean valued system parameters such as λuk (t), λnk (t), and
λunk (t). Therefore, it deals with the task response time in an
average sense. Roughly speaking, it may result in the case

2We abuse the notation
∑

u∈U
∑

k∈K (·) by
∑

u,k (·), and similarly∑
u∈U

∑
n∈N

∑
k∈K (·) by

∑
u,n,k (·).

193302 VOLUME 8, 2020

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

where almost half of the requested tasks violate the required
QoS, i.e., the task response time threshold. Undoubtedly, this
will weaken the level of QoS awareness. The previous works
described in Section II do not go beyond of this type of QoS
awareness. In Section IV, we will adopt a well-known token
bucket mechanism and reformulate P1 to a novel optimiza-
tion problem that supports a more improved level of QoS
such that we bound the per-task response time instead of the
average one.

Note that the dimension of the decision vectors of P1 may
be huge. The dimension of the offloading distribution vector
x(t) = [xunk (t)] is |U | × |N (u)| × |K |, i.e., 3× |U | × |K | in
the 3-tier hierarchy. The dimension of the computing resource
allocation vector z(t) = [znk (t)] is |N | × |K |. Therefore, the
overall dimension of the decision space is 3 × |U | × |N | ×
|K |2, which may be problematic, especially for a large U .
To address this issue, we will exploit a problem relaxation
technique to reduce the decision complexity by compromis-
ing a little bit of optimality in Section IV-B.

IV. PROBLEM REFORMULATION
A. SUPPORTING PER-TASK QoS WITH TOKEN BUCKETS
To devise a per-task response time QoS, we augment our
system model with the well-known token bucket mechanism
and transformP1 to a new optimization problem that supports
the augmented model. For each task type k , each computing
node n performs the admission control of whether it accepts
executing the task requested fromUEs. It maintains |K | token
buckets such that each token generation rate is set to be equiv-
alent to the allocated capacity znk (t). For each time, it decides
the size of the token bucket ynk for each k . When a type k
task arrives, the node checks whether sufficient tokens are
available in the bucket. If the amount of tokens φnk is greater
than the workload of the requested task wcomk , the offloading
is accepted, and the task is added to a waiting queue for
type k workloads. Then the amount of tokens decreases as
φnk ← φnk − wcomk . Otherwise, if φnk < wcomk , the task is
rejected and then redirected to the parent node of n in the
hierarchy. This implies that the remote node nr is the last
resort of all redirected tasks rejected by lower-tier nodes.
Since the queueing workloads are served at the rate of znk ,
the computing delay must be bounded by ynk/znk , which is
strictly held by the token bucket mechanism. Note that this is
valid no matter what probability distributions are followed by
the task arrival processes and workload sizes.

From the augmented system model with the token bucket,
our workload distribution problem should also determine
y(t) = [ynk (t)]. Let us define dnetunk (t) to be the networking
delay experienced by UE u if a type k task is offloaded to
node n at time slot t as

dnetunk (t) , d requnk (t)+ d
in
nk (t)+ d

res
unk (t). (19)

Then (18), i.e., the average task response time constraint, can
be rewritten as

dcomnk (t) ≤ Dk − dnetunk (t), ∀u∈U , ∀k ∈K , ∀n∈N
+(u).

(20)

According to the guaranteed delay bound property of the
token bucket mechanism [31], we have

dcomnk (t) ≤ d̄comnk (t) ≤
ynk (t)
znk (t)

(21)

where we denote d̄comnk (t) to be the maximum experienced
computing delay at time slot t . And then, we can tighten (21)
harder such that the maximum experienced computing delay
should be bounded as

ynk (t)
znk (t)

≤ Dk − dnetunk (t), ∀u∈U , ∀k ∈K , ∀n ∈ N
+(u)

(22)

ynk (t) ≥ 0, ∀k ∈ K ,∀n ∈ N+(u). (23)

Constraint (22) can be rewritten as

ynk (t) ≤ (Dk − dnetunk (t)) · znk (t),

∀ u ∈ U ,∀k ∈ K ,∀n ∈ N+(u) (24)

which is a new constraint that specifies the task response time
QoS threshold by which we can specify the per-task QoS
instead of the average one. Now, we revise P1 to a new one
P2 that controls ynk (t) as well as xunk (t) and znk (t) with new
constraints (23) and (24) as

P2 : min
x,y,z

∑
u,n,k

funk (t)

s.t. (12), (13), (14), (15), (16), (17), (23), and (24).

(25)

B. REDUCING PROBLEM COMPLEXITY
The decision complexity of P2 becomes larger than that of
P1 due to the introduction of new decision variables ynk (t).
Since the dimension of the decision vector y(t) = [ynk (t)] is
|N |×|K |, that of the decision space for P2 is 3×|U |×|N |2×
|K |3 (= (|N | × |K |)× (3× |U | × |N | × |K |2)).
Inspired from the assumption that |U | � |N | > |K |,

we remove xunk (t) from the decision variables of P2 in order
to eliminate |U | from the dimension of the decision vector.
Instead, xunk (t) is accordingly determined as

xunk (t) · λuk (t) =
λ̂unk (t)∑
ŭ λ̂ŭnk (t)

· λ̄nk (t),

∀u ∈ U ,∀k ∈ K ,∀n ∈ N+(u), (26)

where λ̄nk (t) = znk (t)/wcomk , and λ̂unk (t) is the amount of type
k tasks from user u arrived at node n, but is not yet offloaded.
Note that λ̂unk (t) includes also the redirected tasks rejected
by lower tier nodes.

Condition (26) suggests that for each pair of node and task
type, the tasks requested from different UEs are accepted
proportionally to the arrival rates from each of the UEs to n.
Assigning znk (t)/wcomk to be λ̄nk (t) implies that we try to
control the aggregate workload of type k tasks offloaded to
n (i.e., λnk (t) · wcomk) to be the same as the allocated capacity
(i.e., znk (t)).

VOLUME 8, 2020 193303

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

The following lemma shows that the solution of P2
with (26) is not far from the original solution under some
minor assumptions. Let f ∗ and 1Dnetnk (t) , maxu dnetunk (t) −
minu dnetunk (t) denote the objective value of the optimal solution
of P2 and the largest difference of network delays experi-
enced by u for the type k task offloaded to n, respectively.
Lemma 1: The objective value achieved by an optimal

solution of P2 with the additional constraint (26) is bounded
by f ∗ +

∑
n,k 1D

net
nk (t)/Dk .

Proof: See Appendix. �
According to Lemma 1, if the network delays experienced

by UE nodes are not significantly different, i.e., 1Dnetnk (t) is
small, then our approach can achieve a desirable suboptimal
solution. While compromising a bit of optimality, we can
take advantage of a significant reduction of problem com-
plexity. Since we do not have to control xunk (t) anymore,
the dimension of the decision vector is remarkably reduced
to |N |2 × |K |2. The trade-off between the complexity and
optimality becomes better as |U | increases.

Eventually, we reformulate P2 to a new one P3 with (26)
as

P3 : min
y,z

∑
u,n,k

funk (t)

s.t. (12), (13), (14), (15), (16), (17), (23), and (24)

(27)

where xunk (t) is determined by the condition (26).

V. LEARNING-BASED APPROACH
Inspired from some recent works applying RL to mobile edge
computing researches [27], [28], [33], we consider RL as a
solution to cope with the system dynamicity and uncertainty
discussed as the third challenge in Section I.
RL is a type of interaction-driven learning paradigm con-

sisting of two entities: agent and environment [34]. For each
interaction at time slot t , the agent observes the state s(t)
of the environment and decides an action a(t) based on its
policy function. As a result of the action, the environment
issues the agent with a reward r(t) as feedback to evaluate
the policy function’s quality. Repeating this observe-action-
reward process, the agent incrementally learns a desirable
action strategy by improving its policy function to maximize
the expected cumulative discounted reward E[

∑
∞

t=0 γ
tr(t)]

where γ ∈ [0, 1) is the discount factor. Recently, deep
neural network technologies are exploited for boosting policy
improvement procedures.

We exploit RL to sequentially control the token bucket
sizes ynk (t) and the resource allocations znk (t) such that it
solves P3 in a long time average sense. Therefore, we try to
minimize

lim
T→∞

1
T

T−1∑
t=0

γ t
∑
u,n,k

funk (t). (28)

In our experiment, we set γ to be 0.99. Note that when γ = 0,
the objective is the same as (27).

A. CONTROL AND LEARNING ARCHITECTURE
Our proposed system, RACER, consists of two entities: con-
troller and agent for each edge region. The RACER con-
troller maintains |N1 ∪N2| · |K | token buckets, each of which
corresponds to a pair of node n ∈ N1∪N2 and task type k ∈ K
to control the admission of tasks. The tokens for a type k task
are generated at the rate of znk (t). The maximum amount of
tokens is bounded by the bucket size ynk (t). Each node n has
|K | queues that correspond to |K | task types, respectively.
Once node n receives a request for the offloading of type
k task from a UE, the controller checks whether the token
for type k is enough. If the token size φnk is greater than the
workload of the task wcomk , the request is admitted. Then the
task is pushed to the queue for its corresponding type. The
tasks in a queue are served in FIFO fashion with the same
service rate as znk (t). If the request is rejected due to a lack of
tokens, it is redirected to the parent node of n in the hierarchy.
Then the parent repeats the same admission process. With
exception, the remote node nr does not conduct the admission
control because it is assumed that cnr � cn for n ∈ N1∪N2 in
Section III-A. Note that a large cnr leads to a small computing
delay, but it does not mean the satisfaction of response time
QoS, possibly due to the long network delay from UE.

The RACER agent controls y(t) = [ynk (t)] and z(t) =
[znk (t)] for every time slot t . Before the agent starts to play its
role in the edge region, it is trained using RL, rather than pro-
grammed as a handcrafted algorithm. The RL agent repeats
the observe-action-reward process for every t . For each t ,
the agent receives the observation data s(t) representing the
current state of the edge region and then gives an action
a(t) = (y(t), z(t)) to the RACER controller. Then the agent
receives the reward r(t) that is used to evolve its policy from
the controller.

Note that we can make sure the constraints from (12)
to (17) and (23) are satisfied under the above control archi-
tecture. However, it is somewhat challenging to meet (24),
the QoS constraint, because the network delay dnetunk (t) is
generally assumed to be unknown at the time of control. One
possible way is to estimate the dnetunk (t) for all the tuples of
u ∈ U , n ∈ N , k ∈ K . However, doing this is burdensome and
difficult to be accurate. Rather than enforcing the constraint
directly, we introduce the violation cost to the reward r(t)
to train the agent trying to satisfy it, which is elaborated in
Section V-D.
We summarize our approach to learn the control policy in

Algorithm 1. The detailed descriptions on how to build s(t),
ã(t), a(t), and r(t) are in the following subsections. The detail
of the PPO algorithm is omitted since it is not a focus of this
paper.

B. STATE DESIGN
At the start of each time slot t , the agent observes a state
input vector s(t) = (3̃(t), b(t), c(t), c̃(t), q(t), o(t)). 3̃(t) =
[λ̃nk (t)] is a (4×|N1|×|K |)-dimensional vector that represents
a measured statistics tuple, (mean, max, min, variance), of the
task arrival rate for each n ∈ N1 and k ∈ K . b(t) = [bij(t)] is

193304 VOLUME 8, 2020

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

Algorithm 1 RACER Approach to Learn the Control Policy
RACER controller:
1: Set the initial state s(0).
2: t = 0.
3: repeat
4: Collect the state s(t) and pass it to the agent.
5: Get the action a(t) from the agent and update the

token bucket sizes and resource allocations of the nodes.
(Then, the nodes run the workload distribution.)

6: Compute the reward r(t) and pass it to the agent.
7: t = t + 1.
8: until the agent stops learning.

RACER agent:
1: repeat
2: Receive the state s(t) from the controller.
3: Determine the nomalized action vector ã(t) from s(t)

using the policy neural network model.
4: Compute the action a(t) and pass it to the controller.
5: Receive the reward r(t) from the controller.
6: Update the policy and value neural network models

using the PPO algorithm [35].
7: until the mean episode reward is converged.

a (4× (4× |N1| + 2))-dimensional vector that represents the
measured statistics tuple of the network bandwidth between
the nodes in an edge region, including the groups of UEs
and the remote node. We assume that a group of UEs under
the same BS experience the same dedicated bandwidth. Then
for each pair of a UE group and the corresponding tier-1
node in N1, we only measure two statistics tuples, each one
for uplink and downlink, respectively. c(t) = [cn(t)] is a
(4× |N |)-dimensional vector that has the measured statistics
tuple of the available computing capacity of each n ∈ N .
c̃(t) = [c̃nk (t)] is a (4 × |N | × |K |)-dimensional vector
that represents the measured statistics tuples of how much
computing resources have been used for each n ∈ N and
k ∈ K . q(t) = [qnk (t)] and o(t) = [onk (t)] are (|N | ×
|K |)-dimensional vectors that specify the current lengths of
waiting queues and amounts of tokens, respectively, for each
n ∈ N and k ∈ K .

A notable thing here is that we exploit the measured statis-
tics tuples in constructing s(t). For each time slot t , the tuples
are computed from the statistics measured at the previous
time slot, t − 1. With an LSTM3 layer in our neural network
design, it makes the agent more robust to any uncertainties
caused by changes in task arrival rates, network bandwidths,
and resource utilization.

C. ACTION DESIGN
For each time slot t , after receiving s(t), the agent yields an
action vector a(t) = (y(t), z(t)) where both the token bucket
size vector y(t) = [ynk (t)] and computing capacity allocation

3long short term memory

vector z(t) = [znk (t)] are (|N1 ∪N2| × |K |)-dimensional vec-
tors. Then the controller behaves as described in Section V-
A by using the updated token bucket sizes and computing
capacity allocations.

The feasible ranges of ynk (t) and znk (t) are likely to be
varied due to the changes in environment parameters such
as Dk , dnetunk (t), cn(t), and so on. Such variability is gener-
ally harmful to the learning performance and flexibility of
the agent. For this reason, we designed the internal neural
network model such that the agent yields a normalized action
vector ã(t) = (ỹ(t), z̃(t)), where ỹ(t) = [ỹnk (t)] and z̃(t) =
[z̃nk (t)] have values between [0, 1]. Then a(t) is computed by
postprocessing ã(t) as

ynk (t) = ỹnk (t) · Dcom · cn(t) (29)

znk (t) = z̃nk (t) · cn(t) (30)

where Dcom is a predefined constant that specifies the desir-
able upper bound on the computing delay when we assume
that all the computing resources of a node n are allocated to
that task type.4

D. REWARD DESIGN
At the end of each time slot t , the agent receives the reward
r(t) = −(h(t)+v(t)), where h(t) is the weighted average task
response slowdown, and v(t) is the violation cost substituted
for the per-task QoS constraint (24). Note that we use the
negative reward because P3 is a minimization problem.

To compute r(t), the controller collects duk (t)/Dk , guk (t),
and vuk (t) for each UE u ∈ U and task type k ∈ K . duk (t)
is the average response time of type k tasks experienced by
u, and therefore, duk (t)/Dk is the average slowdown expe-
rienced by the UE. guk (t) is the number of type k tasks
requested from u and completed during time slot t , and
vuk (t) is the number of completed tasks that violated the QoS
constraint (24). Then h(t) and v(t) are computed as

h(t) =
∑
u,k

guk (t)∑
ŭ,k̆ gŭk̆ (t)

·
duk (t)
Dk

(31)

v(t) =
∑
u,k

ξk · vuk (t) (32)

where ξk is a unit cost of each violation. Note that E[h(t)]
is the same as the objective function of P3. The signaling
overheads for constructing r(t) are not significant. For each
time slot, each UE just needs to deliver O(|K |) messages to
the controller for reporting duk (t)/Dk , guk (t), and vuk (t). Such
overheads may be enveloped into those of ordinary requests
for task offloading.

E. LEARNING ALGORITHM
We used the proximal policy optimization (PPO) algorithm to
train the agent [35]. It is one of the most widely used policy
gradient-based deep RLmethods for continuous control tasks

4We can set Dcom by letting Dcom be sufficiently large such that Dcom ≥
maxu,n,k Dk − dnetunk .

VOLUME 8, 2020 193305

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

FIGURE 3. Policy network model of our approach.

such as robotics [36] and games [37]. To reasonwhywe chose
PPO, we provide two arguments as follows:
• Obviously, P3 is a continuous control task for which
the policy gradient methods are more preferred than
value-based methods.

• Traditional policy gradient methods such as A3C [38]
and DDPG [39] suffer from a destructive policy update
problem [35], which refers to the case where a newly
trained policy abruptly changes the policies previously
trained. It means that an agentmay forget actions learned
in the past due to learning a new action. PPO overcomes
this problem by clipping excessive policy gradients so
that an agent is much more likely to preserve learned
policy in the past [40].

F. NEURAL NETWORK DESIGN
Since we chose PPO as a training method, we designed a
policy approximator function that is a neural network model,
as depicted in Fig. 3. The model consists of three lower
subnetworks, an upper subnetwork, a LSTM layer, and two
sampling logics.

The three lower subnetworks take s(t) as inputs and feed
their outputs to the upper subnetwork. The first lower sub-
network receives the task arrival statistics vector 3̃(t). The
second one takes four statistics vectors (c(t), c̃(t), q(t), o(t))),
each of which corresponds to the available computing capac-
ity, resource utilization, waiting queue backlogs, and avail-
able tokens, respectively. The last one receives the network
bandwidth statistics vector b(t). Each subnetwork has a single
layer with 128 perceptrons. One may recognize that the lower
subnetworks extract the latent features about task arrivals,
resource allocation status, and network status, respectively.

The upper subnetwork is a single layer network consisting
of 256 perceptrons. It takes as inputs the latent features
produced by the lower subnetworks, aggregates them, and
then produces a new latent feature vector that captures the
correlations between the elements of s(t). The output of the
upper subnetwork is fed into the LSTM layer with 64 cells,
which recognizes temporal correlations that appeared in the
30 consecutive state inputs, i.e., {s(t), s(t−1), . . . , s(t−29)}.
The LSTM generates two behavior logit vectors that are
passed to the samplers.

The two sampling logics are responsible for generating ỹ(t)
and z̃(t). The diagonal Gaussian sampler generates ỹ(t) from

FIGURE 4. Architecture for training RL agent.

the behavior logits for the token bucket size. Similarly, the
Dirichlet sampler produces z̃(t) from the behavior logits for
the computing resource allocation.

We also designed the value approximator function such
that it shares all the components of the policy approximator,
except for the last output layer. Instead of the samplers, the
approximator uses a single linear perceptron that produces an
expected return value for the last 30 state inputs.

VI. IMPLEMENTATION
In this section, we describe how we implemented RACER
using RLlib [41] and DFaaSCloud [42], [43]. RLlib is an
RL framework that supports massively distributed parallel
learning, which has proven scalability such that we can use
thousands of CPUs and hundreds of GPUs for large-scale
RL. The DFaaSCloud is a discrete event-driven simulator
for simulating distributed FaaS on edge cloud systems. It is
an extension of CloudSim [44], a well-known simulation
framework for cloud computing systems.

Following the RLlib APIs concept, we developed RACER
using the training architecture illustrated in Fig. 4, where
there are three types of entities: policy trainer, rollout worker,
and simulation environment. The policy trainer and rollout
workers are blocks for training the RL agent. The simula-
tion environment is responsible for simulating the system
model. By concurrently executingmultiple pairs of the rollout
worker and simulation environment, RLlib provides a signif-
icant speed-up for training an agent.

A. POLICY TRAINER AND ROLLOUT WORKERS
Using RLlib, we implemented the policy trainer and the
rollout worker blocks including the PPO algorithm and
neural network model.5 Each rollout worker generates sam-
ple batches of experiences by repeating the observe-action-
reward process in its corresponding environment block.
A rollout worker interacts with its corresponding environ-
ment using REST APIs on an HTTP connection because
they are implemented in different frameworks, RLlib and
DFaaSCloud.

The policy trainer coordinates multiple rollout workers to
train the RL agent. It collects sample batches of experiences

5In RLlib, the rollout worker can be seen as an avatar that exploits the
policy copied from the trainer block.

193306 VOLUME 8, 2020

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

TABLE 3. Network parameters.

from themultiple rollout workers and improves the policy and
value approximator functions. The improved neural approxi-
mators are copied to the rollout workers periodically for more
improved experiences.

By repeating the sample batch collection and the policy
improvement process, the policy trainer evolves the neural
network model for the agent. We finish the training if the
mean episode reward is converged to a desirable level.

B. SIMULATION ENVIRONMENT AND RL AGENT
Using DFaaSCloud, we implemented the simulation envi-
ronment block, including the RACER controller and the RL
agent. The RACER controller actually controls the token
bucket sizes and resource allocations based on the a(t) =
(y(t), z(t)) received from the agent. The agent plays a kind of
broker that is in charge of interacting with its corresponding
rollout worker, which has the neural network model for the
agent. For each time slot t , it delivers state s(t), received
from the controller, to the rollout worker, and then, receives
action ã(t) = (ỹ(t), z̃(t)). From ã(t), the agent computes a(t)
by using (29) and (30) and gives it to the controller. It is
also responsible for passing reward r(t) to the rollout worker.
As mentioned earlier, the exchanges of s(t), ã(t), and r(t) are
conducted through the REST APIs on an HTTP connection.

VII. EVALUATION
We conducted a simulation-based evaluation to compare the
performance of RACER with those of two other approaches:
AREA and a static workload distribution. AREA [19] is a
state-of-the-art algorithm that efficiently distributes the work-
loads fromUEs to a networked edge cloud systemwhile guar-
anteeing the average response time QoS. The static method
distributes workloads according to a deterministic rule that
maps a pair of UE and task type (u, k) ∈ (U ,K) to a node
n ∈ N . For example, if we specify a rule r : U × K → N =
{(u0, 0, n1), (u1, 1, n2), (u2, 2, n0)}, type 0 (1 or 2) tasks from
u0 (u1 or u2) are always offloaded to node n1 (n2 or n0). Later,
we will summarize their specific settings in Section VII-B.

A. SIMULATION SETUPS
As noted earlier, we implemented the simulation environment
using the DFaaSCloud framework. We built a hierarchical
edge cloud that consists of three tier-1 computing nodes,
one tier-2 node, and one remote node. Each tier-1 node
is attached to a BS by which UEs access the edge cloud.
Each BS provides broadband access to 100 UEs that are the
sources of tasks. Table 3 lists the average bandwidth and
propagation delay of the logical link experienced by each

task. To reflect the advantage of the short delay on near-client
edges, we make the lower-tier links provide a higher band-
width and shorter propagation delay. Each link has a sym-
metric bandwidth and propagation delay for the sake of easy
evaluation. Note that every task from a UE can be offloaded
to one of the UE’s ancestor nodes, as discussed in Section III-
A. The network parameters and the offloading location of a
task significantly affect the network delay experienced by the
task.

Each tier-1 node has 10 CPU cores, and the tier-2 and the
remote nodes have 40 and 1000 cores, respectively. The com-
puting capacity of each CPU core is 104 million instructions
per second (MIPS). Thus, the computing capacity, cn, of the
tier-1, tier-2, and remote node becomes 105, 4×105, and 107

MIPS, respectively.
We consider five task types whose parameters are listed

in Table 4. We assume that all the task types have the
per-task response time QoS bound Dk such that any response
exceeding the bound is considered a task failure. Therefore,
we set task parameters with somewhat deterministic comput-
ing workloads so that the response time QoS bound should
be met if the task is offloaded to a proper node in a low
load utilization. For every task type k , we fix the computing
workload size and input data size to be the same values as
wcomk = 1000 MIs and wink = 10 MB for ease of evaluation.
We also assume that each task offloaded to a node can use
only one CPU core. That is, the amount of CPU resource that
a task uses is predetermined, which is an ordinary constraint
in the current FaaS services [10]–[12].

We vary the aggregate workload of each task type by
adjusting its arrival rate. For each k , the per-task response
time QoS bound, input data location, and preferred node
set for the QoS are highly correlated with each other. In
Table 4, d1k , d2k , and d3k are the per-task response time
experienced by type k tasks when they are offloaded to a
tier-1, tier-2, and remote node, respectively, in a low load
utilization. According to this setup, one can easily identify
that type 2, 3, and 4 tasks should be offloaded to the remote,
tier-1, and tier-2 nodes, respectively, to meet the QoS con-
straint. Type 0 and 1 tasks have both tier-1 and tier-2 nodes
as their preferred node set for QoS. The difference between
them is that the most preferred node of a type 0 (1) task is tier-
1 (tier-2) because its input data location is UE (tier-2). From
this, one can recognize that it is better to offload a task near
its input data location. Note that the QoS constraint cannot be
satisfied, even when the task is offloaded to a preferred node
if it suffers from an excessive workload and large queueing
delay.

Every UE generates tasks. For each UE u, task type k , and
time slot t , tasks are generated as the Poisson arrival process
with an average rate λuk (t). For ease of evaluation, we define
eight profiles of the task arrival rates, as shown in Table 5,
each of which represents a specific resource utilization sce-
nario. In the table, λk denotes the aggregate arrival rate of type
k tasks from 100 UEs attached to each tier-1 node (actually,
its corresponding BS). We assume that the users generate

VOLUME 8, 2020 193307

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

TABLE 4. Task parameters.

TABLE 5. Arrival rate profiles.

tasks uniformly for simplicity. ρ1 and ρ2 are the aggregate
loads for the tier-1 and tier-2 node, respectively, assuming
every task is offloaded to their most preferred node. Each
profile is designed to observe whether RACER performs the
desired behavior or not. For example, when the task arrivals
follow the profile p5, RACER should control a(t) such that
every type 3 task is preferentially offloaded to the tier-1 node.
Type 0 tasks are also carefully distributed to tier-1 and tier-2
nodes in order to prevent an excessive computing delay at
the tier-1 node. On the other hand, in the case of p0, RACER
must feel free to offload every task to its most preferred node.
We increase the load on the tier-1 nodes as we increase the
profile number. We set ρ2 to be lower in profile p7 than the
other profiles so that the tier-2 node has sufficient room to
accommodate the overloaded tasks in tier-1 nodes.

We set the simulation time and control interval to 40 min-
utes and 1 second, respectively, which means that the time
slot t increases by 1 second from 0 to 2400 seconds. In order
to cause uncertain and dynamic system behavior, we realize a
kind of non-stationarity by using different arrival rate profiles
for every 5 minutes during the simulation. The arrival rate
profiles in Table 5 arise one after another in the ascending
order of their indices in the simulation.

B. ALGORITHM-SPECIFIC SETUPS
In addition to RACER, we implemented two other work-
load distribution algorithms: The AREA and a static
method. To provide a better evaluation of the simulation
results, we note some algorithm-specific settings for each
implementation.

1) RACER
We trained the RACER agent using the following settings:
• We used a single policy trainer, 20 rollout workers,
and 20 simulation environments.

• The length of each episode is 1000 time slots.
• In each episode, for each task type k , we set the aggre-
gate task arrival rate from a group of 100 UEs, λk , to a
uniformly random value between 20 and 70. Note that,
in training, we did not provide any information about the
arrival rate profiles in Table 5.

• We trained a different RACER agent with varying vio-
lation unit costs, ξk (see Section V-D): 0, 5, 10, 50,
100, and 500. Later, we will discuss the impact of ξk
on performance.

With the above settings, we conducted the training
for 5000 episodes to get converged policies.

2) AREA
Referring to [19], we implemented AREA to control x(t) =
[xunk (t)] and z(t) = [znk (t)] of P1 taking as inputs λuk (t),
cn(t), dcomnk , d innk , d

req
unk , and d

res
unk , for each u ∈ U , n ∈ N , and

k ∈ K . Among these inputs, dcomnk , d innk , d
req
unk , and d

res
unk should

be computed from other system parameters. In particular,
we have to recompute dcomnk for each time slot t , since it is
determined by the resource allocation control of the previous
time slot, i.e., znk (t − 1). Therefore, we also implemented
a preprocessing module and added it to the original AREA
algorithm.

AREA is a heuristic approach that consists of three sub-
algorithms. Firstly, it greedily controls x(t) based on only
the network delay (i.e., d innk + d

req
unk + d

res
unk). Then, the initial

x(t) is improved by repeatedly changing some assignments,
i.e., xunk (t), while considering the computing delay dcomnk .
Lastly, as a result of the greedy swaps, when the distribution
reaches an equilibrium, where any swapping cannot improve
the objective, it determines z(t) through a nonlinear convex
optimization, for which we use the trust-region constrained
solver imported from the SciPy library.6

It may be difficult for AREA to support real-time workload
distribution when U becomes large. For each time slot t , its
greedy swapping requires O(|U | × |N | × |K |) iterations, and
the nonlinear convex optimizer also causes large execution
overheads.

3) STATIC METHOD
As we discussed earlier, the static method controls x(t) =
[xunk (t)] of P1 according to a static rule that maps a pair of
UE and task type (u, k) ∈ (U ,K) to a node n ∈ N . In the

6https://scipy.github.io/devdocs/tutorial/optimize.html

193308 VOLUME 8, 2020

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

simulation, we specify a rule r such that every type k task is
offloaded to its most preferred node as

r : U × K → N = {(u, k, nprefuk)|∀u ∈ U ,∀k ∈ K } (33)

where nprefuk ∈ N (u) is the most preferred node for task type
k specified in Table 4. In fact, for each task type k , the UEs
attached to the same BS have the same most preferred node.
Thereby, we need to specify just |N1| × |K | rules, since the
number of BS is the same as that of tier-1 nodes.

After x(t) is decided, the static allocation method controls
z(t) = [znk (t)] for each node n and task type k as

znk (t) =

∑
u w

com
k · λuk (t) · xunk (t)∑

ŭ,k̆ w
com
k̆
· λŭk̆ (t) · xŭnk̆ (t)

· cn(t), (34)

which allocates the resource of a node to each task type
proportionally to its aggregate workload.

As one expected, the static method is not appropriate
for time-varying task arrivals. We used this as a baseline
to emphasize the importance of handling the dynamicity of
system behavior.

C. RESPONSE TIME QoS
In this section, we evaluate the response timeQoS of RACER,
AREA, and the static method through the violation ratio,
which is the ratio of the number of QoS violations to that of
the total requested tasks. The QoS violation ratios of RACER,
AREA, and the static method are measured with varying task
arrival profiles from p0 to p7 shown in Table 5. Hereafter,
we categorize the task arrival profiles into two types by the
load utilization of the tier-1 node for ease of presentation.
Profiles p0 to p3 belong to low load utilization profiles since
ρ1 < 1. On the other hand, profiles p4 to p7 are high load
utilization profiles because ρ1 ≥ 1.

Fig. 5(a) and 5(b) show the results for the low and high load
utilization profiles, respectively. For all the methods, as the
load utilization increases, the violation ratio increases.

The static method achieves a good violation ratio between
0.02 and 9.65 percent with the low load utilization profiles.
However, it suffers from a much worse QoS in the high
load utilization scenarios where its violation ratio is between
47.61 and 54.49 percent. This is an inevitable result because
the static method does not handle system dynamicity.

AREA achieves a violation ratio between 0.3 and 17.95
percent by its QoS awareness. The performance for the low
load utilization profiles is comparable with that of the static
method.With the high load utilization profiles, it outperforms
the static method.

RACER shows the best QoS awareness. The
RACER-vc1007 trained with the violation unit cost
of 100 achieves a violation ratio between 0.01 and 4.42 per-
cent. It outperforms AREA for all the task arrival profiles by
reducing the violation ratio by 92 percent on average. It keeps
the violation ratio below 0.09 percent in low utilization. Even

7We denote a RACER agent by suffixing the violation unit cost used in
training.

under high load situations, the achieved violation ratio is
much better than that of AREA. We also measured RACER’s
performance without considering the violation cost by setting
the violation unit cost to 0, i.e., RACER-vc0. Interestingly,
the QoS awareness of RACER-vc0 is still better than AREA.
It reduces the violation ratio by 54.7 percent compared to
AREA on average for all task arrival profiles.

The above difference in response time QoS between
RACER and AREA comes from their design principles.
While AREA considers the average response time QoS,
RACER adopts the token bucket mechanism for task admis-
sion control to bound per-task response time. In addition
to the token bucket, RACER reinforces its QoS awareness
from rewards, including the penalty of QoS violation in
training. From this, one can recognize RACER-vc0 as an
agent that uses only the token bucket mechanism for QoS
awareness without reinforcement from violation penalizing
rewards.

D. WEIGHTED AVERAGE TASK RESPONSE SLOWDOWN
Fig. 6 shows the results for the weighted average response
slowdown. As defined in Section III-B, slowdown is a nor-
malized response time that is the ratio of the response time
of a task to its QoS bound, i.e., dunk/Dk . For example, if the
response time equals theQoS bound of the task, the slowdown
becomes 1.

In low load utilization, as shown in Fig. 6(a), all the meth-
ods show a desirable slowdown performance. All of them
achieve a weighted average response slowdown between 0.65
and 0.75. It implies that the tasks are completed in 65 to 75
percent of their per-task response time-bound on average. In
high load utilization, as shown in Fig. 6(b), the slowdown per-
formance of the static method becomesmuchworse. It suffers
from enormous slowdowns with task arrival profiles p5, p6,
and p7. On the other hand, RACER and AREA successfully
maintain the slowdown between 0.71 to 0.86. It suggests
that their control mechanisms work well to maintain a desir-
able level of slowdown performance as they try to solve the
problem P1.

As opposed to the case of response time QoS,
RACER-vc100 achieves a little worse slowdown per-
formance than that of RACER-vc0. It is because the
RACER-vc100 agent considers the response time QoS
more than the RACER-vc0 agent, which compromises the
slowdown performance. An encouraging result is that
the RACER-vc100 agent reduces the QoS violation ratio
by 82.3 percent while increasing the weighted average
response slowdown just by 6.3 percent compared to those of
RACER-vc0 on average for all the eight task arrival profiles.

E. CONTROL EFFICIENCY
To evaluate the control efficiency, we measured the control
decision time of RACER, AREA, and the static method dur-
ing the simulation.8 We define the control decision time as

8We used RACER-vc100 as a representative.

VOLUME 8, 2020 193309

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

FIGURE 5. QoS violation ratio: (a) in low load utilization (b) in high load utilization.

FIGURE 6. Weighted average slowdown: (a) in low load utilization (b) in high load utilization.

the duration between the time of receiving inputs and the time
of producing control outputs. Note that it is not a simulation
time, but a wall clock time. We implemented the control
decision modules of RACER, AREA, and the static method
as Python script and conducted the simulation on a 2.2GHz,
128GB RAM Intel Xeon processor. Additionally, RACER
uses an NVIDIA Titan XP GPU since its decision is made
with a neural network.

Fig. 7 shows that the control decisions of the static method,
RACER, and AREA require 5.5, 66.6, and 3497.3 millisec-
onds (ms), respectively, on average for all the task profiles.
We believe that the result is highly related to the decision
complexity of the problems each method solves. The static
method has the decision complexity of O(1) because it con-
trols decision variables by not solving P1, but just by deriving
from pre-specified rules. In the case of RACER, the decision
complexity of the problem is O(|N | × |K |), which affects the
size of the neural network. Then the control decision time
in RACER is dominated by a single forward computation
on the neural network. On the other hand, the problem of
AREA has the decision complexity of O(|U | × |N | × |K |)
(see Section VII-B). Considering that |U | = 300, |N | = 5,
and |K | = 5 in the simulation, it is obvious that AREA has
the largest decision complexity.

FIGURE 7. Average control decision time.

The control decision modules of all the methods may be
improved by code optimization techniques such as complied
execution and loop parallelism. Nonetheless, we believe that
the relative performance remains a similar trend to the above
results.

F. IMPACT OF VIOLATION UNIT COST
To investigate the effect of the violation unit cost, we evalu-
ated the performance of RACER with various violation unit

193310 VOLUME 8, 2020

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

FIGURE 8. Violation ratios according to violation unit cost.

FIGURE 9. Slowdowns according to violation unit cost.

costs: ξk = 0, 5, 10, 50, 100, and 500. Fig. 8 presents the QoS
violation ratios of the six RACER agents with varying task
arrival profiles. As ξk increases, the violation ratio decreases
until ξk = 100. However, RACER-vc500 shows a higher
violation ratio than those of RACER-vc10, vc50, and vc100.
From the observations in the training phase, we found that
when ξk = 500, the agent had not been trained enough to
converge the mean episodic reward.

We present the weighted average slowdowns of every
RACER agent in Fig. 9. RACER-vc0 shows the best slow-
down performance. It is in agreement as RACER-vc0 does
not compromise the optimality for QoS consideration. How-
ever, an interesting result is that the slowdown does not mono-
tonically increase as ξk increases. On average, RACER-vc50
shows the second-best performance. Except for the case of
RACER-vc0, it is hard to find any tendency about the corre-
lation between the slowdown and ξk . Nevertheless, an encour-
aging thing here is that RACER succeeds in retaining the
slowdown below 1 for all the task arrival profiles, even high
load utilization cases, for every ξk .

G. EVALUATION SUMMARY
We summarize the simulation results in terms of three ques-
tions as follows:

1) Does RACER support the per-task response time QoS?
The RACER-vc100 agent reduces the QoS violation

ratio by 92 percent, compared to AREA, a state-
of-the-art QoS-aware workload distribution scheme
(see Fig. 5).

2) How much does RACER sacrifice the optimality for
per-task QoS? The RACER-vc100 agent succeeded in
reducing the QoS violation ratio by 82.3 percent while
sacrificing theweighted average response slowdown by
a little increase (6.3 percent), compared to RACER-vc0
(see Fig. 6).

3) Is RACER fast and adaptive enough for real-time con-
trol environments with temporal dynamics? Although
implemented in Python script, RACER achieves a con-
trol decision time of a few tens of milliseconds, which
is 52 times faster than that of AREA. Further speed-up
may be possible by code optimization techniques like
complied execution (see Fig. 7).

In our evaluation, we used a somewhat controlled sim-
ulation setup to clearly recognize the effects of workload
dynamicity on system performance. However, we believe
that this is enough to evaluate the potential capability of our
approach. Evaluating the performance of our approach in
more realistic and application-specific environments may be
interesting future work.

VIII. CONCLUSION
In this paper, we presented RACER, a novel workload dis-
tribution approach that supports per-task response time QoS
in hierarchical edge clouds. RACER is an elaborate combi-
nation of token bucket mechanism and reinforcement learn-
ing for dynamic control to balance the trade-off between
the task response slowdown and response time QoS under
non-stationary task arrival scenarios that imply uncertainty
of system behavior. The simulation results show that RACER
achieves a competitive performance in terms of task response
slowdown, response time QoS, and control efficiency.

APPENDIX
PROOF OF LEMMA 1

Proof: Let (x∗(t), y∗(t), z∗(t)) be an optimal solution of
problem P2 and (x̂(t), ŷ(t), ẑ(t)) be an optimal solution of P2
with an additional constraint (26). Let (x′(t), y∗(t), z∗(t)) be
the solution of P2 satisfying (26) such that its aggregate type
k task traffic to node n is equal to that of the optimal solution
(x∗(t), y∗(t), z∗(t)) of P2. That is, we have∑

u

x ′unk (t) · λuk (t) =
∑
u

x∗unk (t) · λuk (t) (35)

for all n and k .
Let f (x′(t), y′(t), z′(t)) and f (x′(t), y∗(t), z∗(t)) be the

objective function value of (x′(t), y′(t), z′(t)) and
(x′(t), y∗(t), z∗(t)), respectively. Then, we obtain

f (x̂(t), ŷ(t), ẑ(t))− f ∗ ≤
∑
n,k

1Dnetnk (t)

Dk
(36)

which is derived from (37) to (43), as shown at the top of the
next page.

VOLUME 8, 2020 193311

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

f (x̂(t), ŷ(t), ẑ(t))− f ∗ ≤ f (x′(t), y∗(t), z∗(t))− f ∗ (37)

=

∑
u,n,k

x ′unk (t) · λuk (t)∑
ŭ,k̆ λŭk̆ (t)

·
d ′unk (t)

Dk
−

∑
u,n,k

x∗unk (t) · λuk (t)∑
ŭ,k̆ λŭk̆ (t)

·
d∗unk (t)

Dk
(38)

≤

∑
u,n,k

x ′unk (t) · λuk (t)∑
ŭ,k̆ λŭk̆ (t)

·
maxŭ d ′ŭnk (t)

Dk
−

∑
u,n,k

x∗unk (t) · λuk (t)∑
ŭ,k̆ λŭk̆ (t)

·
d∗unk (t)

Dk
(39)

=

∑
u,n,k

x∗unk (t) · λuk (t)∑
ŭ,k̆ λŭk̆ (t)

·
maxŭ d ′ŭnk (t)

Dk
−

∑
u,n,k

x∗unk (t) · λuk (t)∑
ŭ,k̆ λŭk̆ (t)

·
d∗unk (t)

Dk
(40)

≤

∑
u,n,k

x∗unk (t) · λuk (t)∑
ŭ,k̆ λŭk̆ (t)

·
1Dnetnk (t)

Dk
(41)

=

∑
n,k

λ∗nk (t)∑
ŭ,k̆ λŭk̆ (t)

·
1Dnetnk (t)

Dk
(42)

≤

∑
n,k

1Dnetnk (t)

Dk
. (43)

Inequality (37) holds because (x̂(t), ŷ(t), ẑ(t)) is an opti-
mal solution of P2 with (26). Inequality (39) holds because
d ′unk (t) ≤ maxŭ d ′ŭnk (t). Equality (40) holds due to (35).
Inequality (41) holds because

max
ŭ
d ′ŭnk (t)− d

∗
unk (t)

= max
ŭ

(dcomnk (t)+ dnetŭnk (t))− (dcomnk (t)+ dnetunk (t)) (44)

= max
ŭ
dnetŭnk (t)− d

net
unk (t) (45)

≤ 1Dnetnk (t). (46)

Inequality (43) holds because
λ∗nk (t)∑
ŭ,k̆ λŭk̆ (t)

≤ 1 for all
n and k . �

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions, which helped them
improve the quality of the paper.

REFERENCES
[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile edge

computing—A key technology towards 5G,’’ ETSI White Paper, vol. 11,
no. 11, pp. 1–16, 2015.

[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[3] E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M. Imran, and
M. Shoaib, ‘‘Bringing computation closer toward the user network: Is
edge computing the solution?’’ IEEE Commun. Mag., vol. 55, no. 11,
pp. 138–144, Nov. 2017.

[4] (2020). AWS IoT Greengrass. [Online]. Available: https://aws.amazon.
com/greengrass/

[5] (2020). Microsoft Azure IoT Edge. [Online]. Available: https://docs.
microsoft.com/azure/iot-edge/

[6] (2020). Amazon Echo. [Online]. Available: https://www.youtube.
com/channel/UCz2-0uvBJt-AwoiFSyMb_yQ

[7] (2020). Google Home. [Online]. Available: https://store.google.
com/product/google_home

[8] (2020). Amazon Snowball Edge. [Online]. Available: https://aws.amazon.
com/snowball-edge

[9] (2020).Microsoft Azure Data Box Edge. [Online]. Available: https://azure.
microsoft.com/en-us/services/databox/

[10] (2020). AWS Lambda. [Online]. Available: https://aws.amazon.
com/lambda/

[11] (2020). Microsoft Azure Functions. [Online]. Available: https://docs.
microsoft.com/en-us/azure/iot-edge/tutorial-deploy-function

[12] (2020). OpenWhisk. [Online]. Available: https://openwhisk.apache.org/
[13] L. Tong, Y. Li, and W. Gao, ‘‘A hierarchical edge cloud architecture for

mobile computing,’’ in Proc. IEEE INFOCOM, Apr. 2016, pp. 1–9.
[14] L. Yang, J. Cao, G. Liang, and X. Han, ‘‘Cost aware service placement and

load dispatching in mobile cloud systems,’’ IEEE Trans. Comput., vol. 65,
no. 5, pp. 1440–1452, May 2016.

[15] H. Tan, Z. Han, X. Li, and F. C. M. Lau, ‘‘Online job dispatching and
scheduling in edge-clouds,’’ inProc. IEEE INFOCOM, May 2017, pp. 1–9.

[16] C. Liu, K. Li, and K. Li, ‘‘A game approach to multi-servers load balancing
with load-dependent server availability consideration,’’ IEEE Trans. Cloud
Comput., early access, Jan. 15, 2018, doi: 10.1109/TCC.2018.2790404.

[17] Q. Liu, S. Huang, J. Opadere, and T. Han, ‘‘An edge network orchestrator
for mobile augmented reality,’’ in Proc. IEEE INFOCOM, Apr. 2018,
pp. 756–764.

[18] R. Yu, G. Xue, and X. Zhang, ‘‘Application provisioning in FOG
computing-enabled Internet-of-Things: A network perspective,’’ in Proc.
IEEE INFOCOM, Apr. 2018, pp. 783–791.

[19] Q. Fan and N. Ansari, ‘‘Application aware workload allocation for
edge computing-based IoT,’’ IEEE Internet Things J., vol. 5, no. 3,
pp. 2146–2153, Jun. 2018.

[20] Q. Fan and N. Ansari, ‘‘Workload allocation in hierarchical cloudlet net-
works,’’ IEEE Commun. Lett., vol. 22, no. 4, pp. 820–823, Apr. 2018.

[21] T. Elgamal, A. Sandur, P. Nguyen, K. Nahrstedt, and G. Agha,
‘‘DROPLET: Distributed operator placement for IoT applications spanning
edge and cloud resources,’’ in Proc. IEEE 11th Int. Conf. Cloud Comput.
(CLOUD), Jul. 2018, pp. 1–8.

[22] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, ‘‘It’s hard to
share: Joint service placement and request scheduling in edge clouds with
sharable and non-sharable resources,’’ in Proc. IEEE ICDCS, Jul. 2018,
pp. 365–375.

[23] J. Gedeon, M. Stein, L. Wang, and M. Muehlhaeuser, ‘‘On scalable
in-network operator placement for edge computing,’’ in Proc. 27th Int.
Conf. Comput. Commun. Netw. (ICCCN), Jul. 2018, pp. 1–9.

[24] Y.-D. Lin, Y.-C. Lai, J.-X. Huang, and H.-T. Chien, ‘‘Three-tier capacity
and traffic allocation for core, edges, and devices for mobile edge com-
puting,’’ IEEE Trans. Netw. Service Manage., vol. 15, no. 3, pp. 923–933,
Sep. 2018.

[25] Y. Jiang and D. H. K. Tsang, ‘‘Delay-aware task offloading in shared
fog networks,’’ IEEE Internet Things J., vol. 5, no. 6, pp. 4945–4956,
Dec. 2018.

193312 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCC.2018.2790404

C. Cho et al.: QoS-Aware Workload Distribution in Hierarchical Edge Clouds: A Reinforcement Learning Approach

[26] L. Lin, P. Li, X. Liao, H. Jin, and Y. Zhang, ‘‘Echo: An edge-centric code
offloading system with quality of service guarantee,’’ IEEE Access, vol. 7,
pp. 5905–5917, 2019.

[27] H. Liao, Z. Zhou, S. Mumtaz, and J. Rodriguez, ‘‘Robust task offloading
for IoT fog computing under information asymmetry and information
uncertainty,’’ in Proc. IEEE ICC, May 2019, pp. 1–6.

[28] H. Liao, Z. Zhou, X. Zhao, B. Ai, and S. Mumtaz, ‘‘Task offload-
ing for vehicular fog computing under information uncertainty: A
matching-learning approach,’’ in Proc. 15th Int. Wireless Commun. Mobile
Comput. Conf. (IWCMC), Jun. 2019, pp. 2001–2006.

[29] X. Niu, S. Shao, C. Xin, J. Zhou, S. Guo, X. Chen, and F. Qi, ‘‘Workload
allocationmechanism forminimum service delay in edge computing-based
power Internet of Things,’’ IEEE Access, vol. 7, pp. 83771–83784,
May 2019.

[30] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao, ‘‘Task offloading with
network function requirements in a mobile edge-cloud network,’’ IEEE
Trans. Mobile Comput., vol. 18, no. 11, pp. 2672–2685, Nov. 2019.

[31] A. Leon-Garcia and I. Widjaja, Communication Networks: Fundamen-
tal Concepts and Key Architectures, 2nd ed. New York, NY, USA:
McGraw-Hill, 2006.

[32] M. Guo, Q. Guan, and W. Ke, ‘‘Optimal scheduling of VMs in queueing
cloud computing systems with a heterogeneous workload,’’ IEEE Access,
vol. 6, pp. 15178–15191, 2018.

[33] H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz, A. Jolfaei, S. H. Ahmed,
and A. K. Bashir, ‘‘Learning-based context-aware resource allocation
for edge-computing-empowered industrial IoT,’’ IEEE Internet Things J.,
vol. 7, no. 5, pp. 4260–4277, May 2020.

[34] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ Jul. 2017, arXiv:1707.06347.
[Online]. Available: http://arxiv.org/abs/1707.06347

[36] (2019). Learning Dexterity. [Online]. Available: https://openai.
com/blog/learning-dexterity/

[37] (2019). OpenAI Five. [Online]. Available: https://openai.com/five/
[38] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. ICML, Jun. 2016, pp. 1928–1937. [Online]. Available:
http://proceedings.mlr.press/v48/mniha16.html

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
in Proc. ICLR, 2016. [Online]. Available: http://arxiv.org/abs/1509.02971

[40] (2019). OpenAI Spinning Up: Proximal Policy Optimization. [Online].
Available: https://spinningup.openai.com/en/latest/algorithms/ppo.html#

[41] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez,
K. Goldberg, and I. Stoica, ‘‘Rllib: Abstractions for distributed rein-
forcement learning,’’ Dec. 2017, arXiv:1712.09381. [Online]. Available:
http://arxiv.org/abs/1712.09381

[42] H. Jeon, C. Cho, S. Shin, and S. Yoon, ‘‘A CloudSim-extension for simu-
lating distributed functions-as-a-service,’’ in Proc. 20th Int. Conf. Parallel
Distrib. Comput., Appl. Technol. (PDCAT), Dec. 2019, pp. 386–391.

[43] (2019). DFaaSCloud: Distributed Function-as-a-Service Simulator.
[Online]. Available: https://github.com/etri/DFaaSCloud

[44] (2019). CloudSim: A Framework for Modeling and Simulation of
Cloud Computing Infrastructures and Services. [Online]. Available:
http://www.cloudbus.org/cloudsim/

CHUNGLAE CHO (Member, IEEE) received the
B.S. and M.S. degrees in computer science from
Pusan National University, South Korea, in 1994
and 1996, respectively, and the Ph.D. degree
in computer engineering from the University of
Florida, Gainesville, in 2011. He is currently
with the Electronics and Telecommunications
Research Institute (ETRI), Daejeon, South Korea.
His research interests include computer networks,
software-defined networking, cloud computing,

edge computing, and machine learning.

SEUNGJAE SHIN (Member, IEEE) received the
B.S. degree in electrical and computer engineer-
ing from Chung-Nam National University, Dae-
jeon, South Korea, in 2007, and the M.S. and
Ph.D. degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, in 2009 and 2017, respectively.
He is currently with the Electronics and Telecom-
munications Research Institute (ETRI), Daejeon.
His research interests include computer networks,

cloud computing, and reinforcement learning.

HONGSEOK JEON received the B.S. degree
in industrial engineering from Sungkyunkwan
University, Seoul, South Korea, in 2002, and
the M.S. degree in engineering from Informa-
tion and Communications University (ICU), Dae-
jeon, South Korea, in 2004. He is currently
with the Electronics and Telecommunications
Research Institute (ETRI), Daejeon. His primary
research interests include computer networks, net-
work functions virtualization, and reinforcement

learning. He has also made several contributions to IETF and IEEE
standardization.

SEUNGHYUN YOON received the B.S., M.S.,
and Ph.D. degrees in industrial engineering from
Sungkyunkwan University, Seoul, South Korea,
in 1991, 1993 and 1997, respectively. He is cur-
rently with the Electronics and Telecommunica-
tions Research Institute (ETRI), Daejeon, South
Korea. He is interested in the computer networks,
cloud computing, and optimization in network and
computer.

VOLUME 8, 2020 193313

