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Abstract: Colorectal cancer is one of the most common cancers with a high mortality rate. The deter-
mination of microsatellite instability (MSI) status in resected cancer tissue is vital because it helps
diagnose the related disease and determine the relevant treatment. This paper presents a two-stage
classification method for predicting the MSI status based on a deep learning approach. The pro-
posed pipeline includes the serial connection of the segmentation network and the classification
network. In the first stage, the tumor area is segmented from the given pathological image using the
Feature Pyramid Network (FPN). In the second stage, the segmented tumor is classified as MSI-L or
MSI-H using Inception-Resnet-V2. We examined the performance of the proposed method using
pathological images with 10× and 20× magnifications, in comparison with that of the conventional
multiclass classification method where the tissue type is identified in one stage. The F1-score of the
proposed method was higher than that of the conventional method at both 10× and 20× magnifi-
cations. Furthermore, we verified that the F1-score for 20× magnification was better than that for
10× magnification.

Keywords: colorectal cancer; pathological image; MSI status; deep learning; segmentation;
classification

1. Introduction

Colorectal cancer (CRC), a malignant tumor that occurs in the colon or rectum, is a
fast-growing cancer related to deaths in both developed and developing countries. In Ko-
rea, 28,111 people were diagnosed with CRC in 2017, according to the National Cancer
Center, Korea; moreover, 8691 people died of the disease that year in Korea alone [1].
The American Cancer Society has reported that in 2020, more than 140,000 patients will be
newly diagnosed with CRC and over 50,000 will die from the disease, nationally [2]. CRC
has typically been among the top five cancers in terms of mortality rates; however, the inci-
dences and the mortality rates have exhibited decreasing trends in recent years, attributed
in part to a consensus on the molecular classification and its targeted therapies [3].

Microsatellite instability (MSI) is a typical pathogenesis of CRC, along with chromo-
some instability (CIN) and CpG island methylator phenotype (CIMP). MSI arises from
the increased abnormal genetic alterations caused by a damaged DNA mismatch repair
system, which can be molecularly detected with the repeated DNA motifs [4]. The Na-
tional Cancer Society defines the MSI status of CRC tissue as MSI-H if it has two or more
among five abnormal microsatellite markers, MSI-L if it has one, and MSI-Stable if it
has none. Identifying the MSI status is crucial because it helps determine the related
disease, such as the Lynch syndrome, and improve the prognosis for cancer treatments.
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Therefore, pathologists are strongly recommended to check the status of MSI in resected
CRC tissue [5]. A general diagnosis procedure is conducted by examining hematoxylin-
and eosin-stained CRC tissue and manually checking any abnormalities in the microscopic
images. However, this procedure is tedious, and sometimes, prone to error.

Automatic diagnosis based on pathological images, initially proposed for breast
cancers, has been widely studied to reduce the fatigue of pathologists [6]. In recent
years, deep-learning-based approaches have been proposed to diagnose different cancers;
moreover, they have exhibited good results, comparable to those of manual diagnoses.
These studies focused on two main tasks for the pathological diagnosis: segmentation
and classification.

Prior to the widespread use of deep learning approaches, various segmentation meth-
ods have been studied: region-based [7–9] and edge-based approaches [10]. Region-based
segmentation methods are generally more robust than edge-based methods, particularly on
images containing noise and texture; however, they are not accurate in determining the
boundary of an object in real-world images. Segmentation methods using deep learning
have outperformed the prior methods both in determining the boundaries and process-
ing the images with noise and texture; therefore, they have been widely used on medi-
cal images [11]. The fully convolutional network (FCN) is the originator of the semantic
segmentation network [12], which has been adapted to vessel segmentation [13], skin le-
sion segmentation [14], and organ segmentation from computed tomography scans [15].
UNet, originally developed for neuronal structure segmentation in electron microscopic
stacks [16], is widely used in medical image segmentation, demonstrating good results on
2D and 3D images [17,18].

Image recognition competitions such as ILSVRC [19] have brought a dramatic im-
provement in image classification networks. For example, the famous networks such as
AlexNet [20], VGG [21], and Resnet [22] were developed through competitions. VGG demon-
strates that deeper networks have better classification performances. GoogleNet, often re-
ferred to as InceptionNet, uses the Inception block to form a more complex network with
a smaller number of parameters. The skip connection of Resnet enables the formation of
extensively deep networks. These deeper and more complex networks have been widely
used for different medical image classification tasks by achieving performance comparable
to that of medical experts. Inception-V3 has been adopted to diagnose skin cancer [23] and
detect diabetic retinopathy [24]. AlexNet has been applied to classify thyroid cytopathol-
ogy [25]. In pathological image classification, various networks (such as VGG and Resnet)
have exhibited good diagnosis performance [26–28].

A challenge when employing deep convolutional neural networks (DCNNs) is the
extremely large size of pathological images, which can be in gigapixels. To overcome
this issue, Spanhol et al. proposed the use of small patches of the given images for a
convolution neural network (CNN) in breast cancer classification [29]. The original whole
slide image (WSI) was divided into small patches to train the CNN, and the final decision
was made by combining the results for each patch. Different decision methods were
used to combine the patch-wise results; however, they provided similar results, and none
surpassed the individual results. Araúju et al. improved the work of patch-based CNNs by
using a support vector machine (SVM) to combine the patch-wise results [30]. By applying
the inception architecture, Liu et al. extensively compared the performance of different
approaches, such as a multi-scale approach, color normalization, and the use of a pre-
trained network on the ImageNet dataset [31], for breast cancer diagnosis; they resulted in
a similar outcome [32].

The main contribution of the present study is a novel two-stage classification pipeline,
that is, the serial connection of the segmentation network and the binary classification
network. This study was inspired by the results of the breast cancer classification challenge
conducted in 2018, where the accuracy of binary classification (carcinoma or not carcinoma)
was reported to be higher than that of four-class classification (normal, benign, in situ
carcinoma, or invasive carcinoma) [33]. As a preliminary experiment, we trained the
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network for three-class classification (MSI-L, MSI-H, or normal tissue) and two binary
classifications (normal or tumor and MSI-L or MSI-H). The resultant confusion matrix
demonstrated that the binary classifications outperformed the three-class classification
in that the network sometimes misclassified MSI-H patches as MSI-L or normal tissue.
We presumed that the dataset imbalance caused the misclassification; thus we propose
the two-stage classification pipeline that enables to perform classification with a dataset in
which the imbalance is significantly reduced.

In this study, first we segmented the tumor area from the WSI using the Feature Pyra-
mid Network (FPN) [34] to except the normal tissue area from the MSI-status classification.
Then we classified the segmented tumor area as either MSI-L or MSI-H using Inception-
Resnet-V2 [35]. The proposed two-stage classification method is presented in Section 2,
followed by the experimental results in Section 3. We compared the performance of the pro-
posed two-stage classification pipeline to that of the conventional classification algorithm,
which simultaneously classified the patches into normal tissue, MSI-L, and MSI-H.

2. Methods

The original WSI has a gigapixel resolution, which limits the use of a conventional
CNN classifier scheme. Therefore, we adapted the patch-wise classification method.
This section begins with a description of the dataset used in this study, followed by the
patch preparation procedure for the training dataset. The proposed two-stage classification
method is then elaborated, and the section ends with the implementation details.

2.1. Dataset

The dataset used in this study was provided by the PAIP 2020 challenge, which was
aimed at MSI-H classification for CRC [36]. Our dataset included 47 training sets and
10 validation sets. The validation datasets were excluded from the training session and
used only in the validation session. Each dataset contains WSIs, XML files annotating a
tumor area, and ground truths for MSI classification. The WSIs included in the dataset
were the microscopic images of resected tissue, stained with hematoxylin and eosin and
scanned at 40× magnification using Aperio AT2. In addition to the original image with
40× magnification, the WSIs also included images with low magnifications, such as 20×
and 10×, to display the surrounding context information. In this study, WSIs with 20×
and 10× magnifications were mainly used, considering computational time and efficiency.
All WSIs contain at least one region of the colorectal tumor. The ground truths for MSI
classification and tumor area were annotated by pathologists at Seoul National Univer-
sity Hospital (Seoul, Korea), Seoul National University Bundang Hospital (Seongnam,
Korea), and Seoul Metropolitan Government Seoul National University Boramae Medical
Center (Seoul, Korea) from January 2005 to June 2018.

2.2. Patch Preparation

We adapted the patch extraction method described in [37], wherein the color charac-
teristics of the stained tissue were considered. The overall patch preparation procedure is
presented in Figure 1. The procedure began with the foreground mask extraction. The color
format of the original WSI was converted from RGBA to the CIE L*a*b* color space,
which helped separate the red-stained tissues from the background. To extract the fore-
ground mask, we applied the Otsu thresholding method [9] to the a* channel of the image
and a closed morphology to eliminate noise. This foreground mask was combined with
the mask created from the given XML annotation file to create the masks for normal tissue
and tumor area. The tissue and tumor masks were created by applying pixel-wise NOT
and AND operations on the two masks, respectively. Notably, the mask obtained from the
annotated XML file contained the background, as shown in Figure 2. This might deteriorate
the network performance; therefore, we used the newly created mask to improve the
accuracy, as shown in Figure 2d.
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Figure 1. Overview of the patch preparation procedure: foreground mask extraction, new tissue and mask creation, and
patch extraction.

(a) (b) (c) (d)

Figure 2. The original whole slide image (WSI) and the associated tumor mask: (a) the original WSI, (b) the tumor mask
created from the given XML annotation, (c) the segmented tumor area from WSI, and (d) the created tumor mask without
background.

The created tissue and tumor masks were used to obtain the WSI without a back-
ground. The segmented WSI was then cropped into small patches with a size of
224 × 224 pixels. The patches were extracted with 50% overlap for data augmentation. The
patch-wise annotation was labeled as follows: MSI-L = 0, MSI-H = 1, and normal tissue = 2,
according to MSI classifications diagnosed by the pathologists.

2.3. Two-Stage Classification

A two-stage classification pipeline is proposed for MSI status classification, inspired by
the findings that the network performs better at binary classification than at multiple clas-
sification. As a preliminary experiment, we trained the network with Inception-Resnet-V2
that classified three classes simultaneously with 20× and 10× magnified WSIs. The pro-
posed pipeline included two main steps: tumor segmentation and patch-wise MSI status
classification. In the tumor segmentation step, a pre-trained network on the ImageNet
dataset [31] is used to divide the patches into two types: normal tissues and tumors (MSI-L
and MSI-H). Then, the patch-wise MSI status classification is performed on only the patches
labeled as tumors. A schematic of the overall pipeline is presented in Figure 3.
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Figure 3. Two-stage classification pipeline for microsatellite instability (MSI) status prediction.

The patches were prepared similar to the training patches described in Section 2.2.
Particularly, the patches were split with a size of 224 × 224 pixels, similar to the training
patches, but without overlapping areas. Patches with more than 50% foreground pixels
were fed into the pre-trained segmentation network based on FPN. The segmentation
network produced a tumor mask for each patch, annotating one for tumor area and zero for
normal tissue area. The masks were then stitched into the overall tumor mask, which had
the same size as the WSI. This whole-slide-sized mask and the original WSI were used to ex-
tract the area containing tumors using the pixel-wise AND operation. The resultant images
were again split into patches. If more than 50% of a patch corresponded to background
or normal tissue area, that patch was discarded and not used for MSI status classification.
The second network, which was a patch-wise MSI status classification network, was then
used to classify the patch into MSI-L or MSI-H based on Inception-Resnet-V2. Finally, the
patch-wise classification results were collected to determine the MSI status of the given WSI.
Among the various ensemble methods, the majority vote method was chosen in this study.

3. Experimental Results
3.1. Implementation Details

We generated patches for three classes (i.e., MSI-L, MSI-H, and normal tissue) by
preprocessing the training dataset. To avoid the class imbalance problem, classes with fewer
patches were oversampled by allowing replacement. Eighty percent of the patches were
used for training and the remaining were used for cross-validation. To avoid overfitting,
we applied different data augmentations to the patches, including horizontal and vertical
flips, random rotations, and crops.

For the segmentation network, we used FPN [34], which was robust in multi-scale
object detection. In this study, we used EfficientNets [38] as the encoder backbone network
because it is more accurate and efficient compared to other convolutional networks such as
VGG16 [21] and ResNet [22]. For the classification network, we selected Inception-Resnet-
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V2 because it showed the best performance for breast cancer classification compared to
VGG19, Inception-V3, and Inception-V4 [37]. The segmentation and classification networks
were trained using the same data, prepared as described in Section 2.2. We chose a dice loss
for the segmentation network to consider the imbalance of the dataset. For the classification
network, we used a cross entropy as a loss function, which is commonly used for such
a task; the imbalance in the dataset still exists; however, it was dealt with oversampling.
Table 1 represents the F1-score results when different optimizers and learning rate sched-
ulers were implemented. Based on the preliminary results, the Adam optimizer was used
with an initial learning rate of 1e-4 and a step decay scheduler for both networks.

The models were implemented in PyTorch using the Python library for segmenta-
tion [39]. We trained the network for 100 epochs with a batch size of 64 using NVIDIA Tesla
V100 GPU. The network was trained using 47 training datasets and tested with another 10
validation datasets, comprising five MSI-L and five MSI-H WSIs.

Table 1. F1-score results with different optimizers and learning rate schedulers.

Scheduler Type
(Option)

Step Decay
(Initial lr = 0.0001, Decayed by 10 Every 25 Epochs)

Cosine Annealing
(Maximum lr = 0.0001, Epoch/Cycle = 20)

Optimizer RMSProp Adam RMSProp Adam

Precision 0.93 0.96 0.95 0.96

Recall 0.93 0.96 0.95 0.96

F1-score 0.94 0.96 0.95 0.95

3.2. Results

The performance of the proposed two-stage classification method was compared to
that of the conventional multiclass classification method, which simultaneously identified
the given patches as normal tissue, MSI-L, or MSI-H. The representative cases of the
patch-wise prediction results on the validation datasets were visualized with the heatmaps
created for different image magnifications, as shown in Figures 4–6. Each patch in the
heatmap was colored according to the prediction results; blue, red, and green patches
represented the MSI status of tissues as MSI-L, MSI-H, and normal, respectively.

The representative prediction results are shown in Figures 4 and 5, according to which
both the proposed and conventional methods performed accurate prediction.
Figure 4 shows the results for the MSI-H tissue. The results for the WSIs at 20× mag-
nification and 10× magnifications are depicted in Figure 4b–d and 4e–g, respectively. In all
cases, the network predicted MSI-H using the majority vote method from the patch-wise
classification results. At 20× magnification, the heatmaps created using the proposed
method (Figure 4c) and the conventional method (Figure 4d) were similar. Most patches
were identified as MSI-H within the segmented tumor area. In contrast, at the lower
magnification, the conventional multiclass classification method resulted in a mixture of
red and blue patches in the segmented tumor area (Figure 4g). Certain patches were even
classified as normal tissue, depicted with green color in the heatmap. For the MSI-L tissue,
the proposed and conventional methods performed accurate predictions at both 10× and
20× magnifications, as shown in Figure 5. However, at 10× magnification, the proposed
method did not precisely predict the status of the segmented tumor area, although the ma-
jority vote concluded the status as MSI-L (Figure 5f). Apparently, the proposed two-stage
classification method performed better on 20× magnified images.

Another representative prediction result is shown in Figure 6. The figure shows the
prediction results of the MSI-H tissue, wherein the proposed method and the conventional
method predicted differently. The proposed method determined MSI-H tissues accurately;
however, the conventional method identified them as MSI-L. The proposed method showed
better performance in distinguishing the MSI-L and MSI-H status of the tumor patch,
regardless of the image magnifications. Furthermore, the conventional method determined
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several normal tissue patches as MSI-L, which led to an increase in the number of patches
predicted as MSI-L, and thus, distorted the final decision. This was avoided with the
proposed two-stage classification.

The classification performance of the proposed method is presented with the F1-
score, as shown in Table 2. The final decision obtained after the majority vote was used to
describe the performance of the overall classification pipeline. The F1-score was used as the
performance measure because of the general unequal distribution of data for MSI-L and
MSI-H in clinical practice. The proposed method trained with the 20× magnified images
exhibited the highest F1-score of 0.83. In the case of both the proposed and the conventional
methods, the network trained with the 20× magnified images exhibited better performance
than that trained with the 10× magnified images.

(a)

(c) (d)(b)

(e) (f) (g)

: MSI-L (0)

: MSI-H (1)

: Normal Tissue (2)

Proposed method Conventional method

Figure 4. Patch-wise classification results of the MSI-H tissue, which were predicted as MSI-H for both the proposed and
the conventional method. (a) The original WSI. The segmented tumor mask and the heatmap created using the proposed
method and the conventional method with images at 20× magnification (b–d) and 10× magnification (e–g).

(c) (d)(b)

(e) (f) (g)

: MSI-L (0)

: MSI-H (1)

: Normal Tissue (2)

(a)

Proposed method Conventional method

Figure 5. Patch-wise classification results of the MSI-L tissue, which were predicted as MSI-L for both the proposed and
the conventional method. (a) The original WSI. The segmented tumor mask and the heatmap created using the proposed
method and the conventional method with images at 20× magnification (b–d) and 10× magnification (e–g).
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(a)

(c) (d)(b)

(e) (f) (g)

: MSI-L (0)

: MSI-H (1)

: Normal Tissue (2)

Proposed method Conventional method

Figure 6. Patch-wise classification results of the MSI-H tissue, which were predicted as MSI-H for the proposed method but
MSI-L for the conventional method. (a) The original WSI. The segmented tumor mask and the heatmap created using the
proposed method and the conventional method with images at 20× magnification (b–d) and 10× magnification (e–g).

Table 2. Performance of the proposed two-stage classification method compared to the conventional method on images at
20× and 10× magnifications.

Magnification 20× 10×

Method Two-Stage
Classification

Conventional
Classification

Two-Stage
Classification

Conventional
Classification

Precision 0.83 0.67 0.83 0.67

Recall 0.83 0.80 0.71 0.67

F1-score 0.83 0.73 0.77 0.67

4. Discussion and Conclusions

A typical multiclass classification method categorizes the three MSI status simultane-
ously; however, such a method exhibits poor efficiency in distinguishing MSI-H from other
tissue types. In this paper, we present a novel two-stage classification pipeline to predict
the MSI status of CRC tissue. The proposed classification pipeline serially connected two
classifiers: the segmentation network and the classification network. The segmentation
network, in the first stage, prevented the incorrect prediction of normal tissues as MSI-L
by excluding them in advance; this confusion was, however, observed when using the
multiclass classification method.

The performance of the proposed method was compared to that of the multiclass
classification method using the F1-score as the evaluation measure. The proposed method
notably outperformed the one multiclass classification. In this approach, the binary clas-
sification was performed in the region only determined as tumor tissue using the prior
segmentation techniques, which enables to perform the classification on a dataset with
significantly reduced imbalance. Particularly, the given original dataset we used for this
study was unbalanced; for example, in each WSI, the normal tissue occupied more re-
gions than the tumor tissue. Since we could exclude the region of the normal tissues at
the first segmentation stage, the binary classification at the second stage could result in
better performance.

The results of our classification method were comparable to that of the eighth-place
team for PAIP 2020 competition; however, the direct comparison was hard to be evaluated
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since the dataset we used for this study was different to that used for the final rank.
The first-place team adopted the sequentially connected segmentation and classification
network; after the segmentation stage, one hundred patches were randomly selected
and VGG16 was applied to each patch followed by a recurrent neural network (RNN).
The team scored the F1-score of 0.92 using the test dataset, which is 0.09 higher than that
of our approach. The required high computational power and complexity of the network
pipeline may lead to better performance. Our study rather focuses on experimentally
verifying the performance improvement of using two-stage classification compared to the
one conventional multiclass classification, although different networks for the segmentation
and classification in two-stage classification pipeline may result in better performance.

Furthermore, we have identified the image magnification effect on the F1-Score.
Both the proposed and the conventional method showed better performance with images
at 20× than at 10× magnification. In general, as the magnification increased, information
about the neighboring cells disappeared; however, the geometrical characteristics of each
cell, such as size, convexity, and intervals between cells, were emphasized. We may con-
clude that the geometrical properties improved the classification performance at higher
magnifications. In our future work, more advanced image processing techniques will be
considered at the preprocessing stage, which can help accentuate the geometrical properties
of each individual cell. The final decision-making method considering the distribution of
patch-wise classification results can be one of our future works.
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