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ABSTRACT This paper deals with the synchronization of fuzzy neural networks (FNNs) with time-varying
delays. FNNs are more complicated form of neural networks incorporated with fuzzy logics, which provide
more powerful performances. Especially, the problem of delayed FNNs’s synchronization is of importance
in the existence of the network communication. For the synchronization of FNNs with time-varying delays,
a novel form of control structure is proposed employing affinely transformed membership functions with
memory element. In accordance with affine memory control, appropriate Lyapunov-Krasovskii functional is
chosen to design control gain, guaranteeing stability of the systems with delays. Exploiting the more general
type of control attributed by affine transformation and memory-type, a novel criterion is derived in forms of
linear matrix inequalities (LMIs). As a results, the effectiveness of the proposed control is shown through
numerical examples by comparisons with others.

INDEX TERMS Fuzzy neural networks (FNNs), synchronization, time-varying delay, affine memory
control.

I. INTRODUCTION
Neural networks are a focusing issue not only from research
areas but also from industrial applications due to its outstand-
ing performance and versatileness [1]. Inspired by human
brain, neural networks usually is structured upon multi-
layered with a lot of neurons and the activation functions. The
usage of neural networks can be seen several areas including
image processing [2], pattern recognition [3], [4], and time
series prediction [5].

Even neural network is fruitful, every intelligent technol-
ogy has certain computational properties that make them
suitable for a specific problem rather than another [6]. Neural
networks are good at recognizing patterns but not good at
explaining how to arrive at a decision. Comparing to that,
fuzzy logic systems that can infer from inaccurate informa-
tion are good at explaining decisions, but cannot automati-
cally obtain the rules to make decisions. These limitations
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have become a key driving force in creating intelligent hybrid
systems that combine two or more technologies in a way
that overcomes the limitations of individual technologies [7].
Hybrid systems are also important when considering the
various characteristics of the application domain [8]. Many
complex domains have different component problems and
thus each problem may require a different type of efficient
processing.

Fuzzy neural networks (FNN) are the one of representative
hybrid algorithm of two distinct technologically important
fields: fuzzy logic and neural networks [9]–[11]. Integra-
tion of fuzzy logic into the structure of a neural networks
takes advantage of both methods [12] and thus it can
describe more complicated neural networks including uncer-
tainties or vagueness. Hence, it can improve the accuracy
of algorithm by utilizing fuzzy logic as a ensemble algo-
rithm [13]. Combination of fuzzy logic-based ensemble with
multi neural networks belongs to one of useful application
of fuzzy neural networks. Moreover, there exist numerous
applications with the advantage of FNNs: force control of
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robot manipulators [14], biomedical computing [15], road
lane prediction [16], and so on [17]–[20]. Therefore, FNNs
have been received a lot of attentions during last decades.

On the other hand, the problem of synchronization has
been studied from many researchers in various fields includ-
ing information process [21], secure communication [22],
chemical reactors [23], and biological system [24]. For the
investigation of dynamic behavior, synchronization is one of
important and major issues. Naturally, the synchronization
of neural networks has emerged as promising research issue.
In view of the significance of the synchronization, we can
see that there are many important works have been developed
to make a response system is identical to a driver systems
(synchronization) but early studies [25] has not consider the
effect of time delay which is inevitable physical constraint in
most of dynamical systems.

Time delays in systems are known to be main causes for
instability, periodic oscillation, bifurcation, or chaotic behav-
ior [26] so it should be taken into consideration in the design
of a synchronization controller. The systems with time-
delay are widespread, and unavoidable in most of practical
systems. Furthermore, most systems are composed through
wire/wireless network, which have inherently delays between
sender and receiver. In accordance with the fact, several
strategies are proposed for the synchronization of delayed
neural networks: pinning control [27], impulsive control [28],
intermittent control [29], state feedback control [30], adap-
tive control [31], dissipative finite-time control [32], sliding
mode control [33] and so on [31], [34]. Those approaches
are valuable in common synchronization problem but they
are limited in that the systematic attributes of Fuzzy neural
networks with delays are not fully taken into account. That
is, the existing synchronization methods for delayed FNNs
have not carefully considered the natural characteristics of the
fuzzymembership functions incorporated with compensation
for time delay. Thus, the performance of synchronization is
less impressive.

Motivated by above discussions, we propose affine mem-
ory control for the synchronization of delayed FNNs. The
proposed control is constructed as a more general structure
with a additive control form of state feedback and memory
feedback control. It should be noted that memory feedback
can effectively compensate for the effect of time-varying
delays [35]. Upon the additive structure, modified parallel
distributed control (PDC) with affine transformation of mem-
bership functions sums up a weighted average of the individ-
ual control laws, which fully exploit the information of fuzzy
systems. Based upon Lyapunov-Krasovskii functional, syn-
chronization controller is designed utilizing parameterization
and improved reciprocally lemma that can handle integrals of
states. Thus, novel advanced synchronization design criteria
using affine memory control is presented for the synchro-
nization of FNNs with time-varying delays in forms of linear
matrix inequalities (LMIs). The effectiveness of employing
the more general type of affine memory control is shown
through numerical examples.

The main contribution of the manuscript can be summa-
rized as follows:

• New synchronization criterion is proposed to pull
dynamics of distinguished fuzzy neural networks
(FNNs) in sync. So called ‘‘affine memory control’’
is firstly introduced to improve the convergence and
performance of synchronization.

• The affine memory control has an specialized structure
designed to fit in the synchronization of delayed fuzzy
neural networks. The membership function, which is
basis of the blending in fuzzy logic, is fully utilized with
affine transformation. Thus, enhanced convergence is
achieved comprising with comparable complexity.

• The memory structure of the proposed control well
compensates for delays of FNNs. Time delays in syn-
chronization is unavoidable in network communication.
Furthermore, the considered FNNs with time-varying
delays aremore general type of systems including delays
in connection part, and thus it is applicable for multiple
time-varying systems.

• The controller design criterion is presented in forms
of linear matrix inequalities based on Lyapunov-
Krasovskii functions. Considering time-delays, it is
derived with the aid of reciprocally convex inequality
and a zero equality for the relationship between mem-
bership functions of the systems and affine transformed
membership functions of the controllers.

Notations: Fairly common notations are used throughout
the paper. A > 0 implies that a matrix A is a positive-
definite matrix. Similarly, A > B denotes that A − B
is a positive definite. Sym(Y ) represents Y + Y T , and
diag{d1, d2, . . . , dn} means a diagonal matrix with diagonal
elements of d1, d2, . . . , dn.

II. PROBLEM STATEMENT AND PRELIMINARIES
Let us consider the model of fuzzy neural networks (FNN)s
with IF-THEN rules as follows:

Fuzzy rule i

If ζ1(t) is Fi1, and . . ., ζr (t) is Fr1
THEN

ṁ(t) = Aim(t)+ Ahim(t − h(t))

+W1if (m(t))+W2if (m(t − h(t)))+ Ji(t)], (1)

where ζi is premise variable, i = 1, 2, . . . , r is index variable,
r is the number of IF-THEN rules, and Fij is jth fuzzy set of
ith rule for j = 1, 2, . . . , r , m(t) = [m1(t), . . . ,mn(t)]T is
the state vector of neurons. Under the given fuzzy rules with
a inference wi(ζ (t)) =

∏r
l=1 Fil(ζl(l)) and center average

defuzzification µi(ζ (t)) =
wi(ζ (t))∑n
i=1 wi(ζ (t))

, the dynamic relation
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of master FNNs is represented as

M :



ṁ(t) =
r∑
i=1

θi(µ)[Aim(t)+ Ahim(t − h(t))

+W1if (m(t))+W2if (m(t − h(t)))
+Ji(t)],

ym(t) = C · m(t),

(2)

where θi(t) is the premise variables, ym is the output vector,
Ai for i = 1, 2, . . . , r is the self-feedback matrix, W1,W2
are weighting matrices, Ji(t) for i = 1, 2, . . . , r is the exter-
nal input vector, C is the output matrix, f (·) is a nonlinear
activation function satisfying Lipschitz condition, and h(t)
is a time-varying scalar with known bounds. Without loss
of generality, it is assumed that time-varying delay and it
derivative are upper-bounded.

0 ≤ h(t) ≤ hM , ḣ(t) ≤ µ (3)

where hM is a given maximum value of time delay, µ is
a maximum bound of delay-derivative with a given scalar.
Then, taking the following subsystem as a slave system

S :



ṡ(t) =
r∑
i=1

θi(µ)[Ais(t)+ Ahim(t − h(t))

+W1if (s(t))+W2if (s(t − h(t)))
+Ji(t)− u(t)],

ys(t) = C · s(t),

(4)

where u(t) is the control input. Widely used parallel dis-
tributed control (PDC) is denoted as

Controller rule j

If ζ1(t) is Fj1, and . . ., ζr (t) is Fj1
THEN

u(t) = Kje(t), (5)

where ey(t) = ym(t)− ys(t). Then,

u(t) =
r∑
j=1

θj(µ)Kjey(t), (6)

where Kj is the control matrix. Instead of using the presented
control method, affine memory control is newly designed for
synchronization, which is in forms as follows:

u(t) =
r∑
j=1

ϑj(µ)[Kjey(t)+ Kmjey(t − h(t))], (7)

where ϑk = T (θk ) for k = 1, 2, . . . , r , T (x) = px + q is a
affine transformation function, p > 0 and q are scalar param-
eters, and Kj,Kmj are the control gain matrix. For simplicity,
θj, ϑj are used instead of θj(µ), ϑj(µ) throughout the paper.
Remark 1: It should be noted that the proposed control

is designed utilizing affinely transformation of each mem-
bership functions from those of FNNs. Taking more general
membership function as a synchronization control, it much

relaxes the conservative of the widely used parallelly dis-
tributed control which uses exactly same membership func-
tion from those of master systems.

The relations of fuzzy weighting parameters regarding
membership functions satisfy the following conditions.

r∑
i=1

θi =

r∑
i=1

ϑi = 1, (8)

0 ≤ θi ≤ 1, 0 ≤ ϑi ≤ 1, (9)

|ϑi − ϑj| ≤ δ. (10)

for i, j = 1, 2, . . . , r .

For the master-slave synchronization, the overall error
dynamics is derived from (2), and (4).

ė(t) =
∑r

i=1
∑r

j=1 θiϑj[Aie(t)+ Ahie(t − h(t))

+W1ig(e(t))+W2ig(e(t − h(t)))
+KjCe(t)+ KmjCe(t − h(t))],

(11)

where g(e(t)) = f (m(t))− f (s(t)). Without loss of generality,
the nonlinearity f (·) fulfills

0 ≤
fi(b)− fi(a)
b− a

≤ li, for a ≤ b (12)

where li for i = 1, 2, . . . , r are the known constant
bounds. The bounds of slope are integrated into S =

diag{l1, l2, . . . , lr }.
Remark 2: Under the synchronization problem of error

dynamics in FNN, there is a difficulty in inducing the rela-
tions between the membership function of the master systems
and that of slave systems with error system dynamics. There-
fore, there should be a method that can handle the differently
designed membership function. The introduced Lemma 1.
make it possible to separate the systems dynamics for each
rules, and reconstruct the equations in (8)-(10).
Some important Lemmas are introduced to derive the main
results.
Lemma 1 [35]: For a given vector 2 = [θ1, θ2, . . . , θr ],

and a transformed vector 2̄ = T (2) where T (x) = px + q
for a positive contant p, the following inequality is satisfied
if 0 < 0

Sym{
[
2⊗ I
I

]
0

[
2̄⊗ I
I

]
} < 0, (13)

where ⊗ denotes a Kronecker product.
Lemma 2 [36]: For a given positive matrix R, and any

matrices X ,Y ,Z , and a scalar α ∈ [0, 1], the following
inequality holds for a smooth function x(t) in [a, b] ∈ Rn:

−hM

∫ t

t−hM
ėT (s)Rė(s)ds

≤ −

[
ζ1
ζ2

]T [Ra + (1− α)X − Y
−Y Ra + αZ

] [
ζ1
ζ2

]
(14)

where Ra = diag{R, 3R}, ζ1 = [e(t)T −e(t−h(t)))T , e(t)T +
e(t − h(t)))T − 2

h(t)

∫ t
t−h(t) e(s)ds]

T , and ζ2 = [e(t −
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h(t))T − e(t − hM ))T , e(t − h(t))T + e(t − hM ))T −
2

hM−h(t)

∫ t−h(t)
t−hM

e(s)ds]T .
The role of Lemma 2. is to get a tight upper bound of

integral terms in the design procedure. When the systems
with time delay are handled via time domain approach, it is
unavoidable to have integral terms which contains the infor-
mation of the delayed states. Lemma 2. is the efficient tool to
approving integrals in the literature.

III. MAIN RESULTS
A. THE DESIGN OF AFFINE MEMORY CONTROL
In this section, the designmethodology for synchronization of
FNNs is presented. Before denoting the main results to have
an appropriate control gain, some notations are defined for
simplicity. ei denotes ith identity matrix with zero matrices.
(For example, e4 = [0n, 0n, 0n, In, 0n, 0n, 0n, 0n] ∈ R8n×n)

φ(t) = [ė(t), e(t), e(t − h(t)), e(t − hM ),
1
h(t)

∫ t

t−h(t)
x(s)ds,

1
hM − h(t)

∫ t−h(t)

t−hM
x(s)ds, g(t), g(t − h(t))],

φa1(h(t)) = [e2, h(t)e5, (hM − h(t))e6],

φa2 = [e1, e2 − (1− µ)e3, (1− µ)e3 − e4],

φb1 = [e2 − e3, e2 + e3 − 2e5],

φb2 = [e3 − e4, e3 + e4 − 2e6],

φy = e1 + κe2,

φzij = −e1+ Aie2+ Ahie3 +W1ie7+W2ie8
+HjCe2+ HmjCe3.

In addition,Ms = M +MT , Ls = L+ LT are defined. Under
given notations, the main theorem is induced.
Theorem 1: Suppose that there exist given scalars α, p ∈

[0, 1], q, r, µ, κ , and positive-definite matrices P ∈

R3n×3n > 0,Q1 ∈ Rn×n > 0,Q2 ∈ Rn×n > 0,R ∈ Rn×n >
0, diagonal matrices 31 ∈ Rn×n,32 ∈ Rn×n, any matrices
G,L,M ,Ni,Hj,Hmj for i, j = 1, 2, . . . , r , h(t) ∈ [0, hM ]
satisfying

D1(h(t))+ C < 0 (15)

where

D1(h(t))

=


D11 D12 . . . D1r 0
D21 D22 . . . D2r 0
...

...
...

... 0
Dr1 Dr2 . . . Drr 0
0 0 0 0 0

 ,
Dij
= Sym(φTa1Pφa2)+ e

T
2Q1e2 − (1− µ)eT3Q1e3

+eT2Q2e2 − eT4Q2e4 + eT1 Re1 − φ
T
b1(Ra + (1−α)X )φb1

−Sym(φTb1Yφb2)− φ
T
b2(Ra + αZ )φb2 + Sym(φyφzij)

C =


−(r−1)Ms−Ls . . . −Ms−Ls Ms+Ls+N1

...
...

...
...

∗ . . . −(r−1)Ms−Ls Ms+Ls+Nr
∗ . . . ∗

r
r−1δMs − Ls

 ,
then, the error dynamics is stabilizable with the gain Kj =
G−1Hj and Kmj = G−1Hmj for j = 1, 2, . . . , r , which implies
that the state of slave systems asymptotically follows the state
of master systems.
Proof. Lyapunov-Krasovskii functional (LKF)V (x(t)) is cho-
sen as

V (x(t)) = ηT (t)Pη(t)+
∫ t

t−h(t)
xT (s)Q1x(s)ds

+

∫ t

t−hM
xT (s)Q2x(s)ds

+hM

∫ 0

−hM

∫ t

t+u
ẋT (t)Rẋdsdu (16)

where η(t) = [eT (t),
∫ t
t−h(t) e

T (s)ds,
∫ t−h(t)
t−hM

eT (t)]T . The
time derivatives of V (x(t)) can be calculated as

V̇ (x(t)) ≤ sym{ηT (t)Pη̇(t)} + xT (t)Q1x(t)

−(1− µ)x(t − h(t))TQ1x(t − h(t))

+xT (t)Q2x(t)− x(t − hM )TQ2x(t − hM )

+ẋT (t)Rẋ(t)−
∫ t

−hM
ẋT (s)Rẋ(s)ds.

Using Lemma 2, the upper bound of integral is estimated.
Then, it is easily derived.

V̇ (x(t))

≤ Sym(φTa1Pφa2)+ e
T
2Q1e2 − (1− µ)eT3Q1e3

+eT2Q2e2 − eT4Q2e4 + eT1 Re1 + φ
T
b1(Ra + (1− α)X )φb1

−Sym(φTb1Yφb2)+ φ
T
b2(Ra + αZ )φb2. (17)

From the sector-bounded condition of the nonlinear activation
function in (12), it is obtained.

Sym{eT S31g(e(t))− g(e(t))31g(e(t))} ≥ 0, (18)

Sym{eT (t − h(t))S32g(e(t − h(t)))

−g(e(t − h(t)))32g(e(t − h(t)))} ≥ 0. (19)

Taking the equation of error dynamics, the following zero
equality holds

Syms(ė(t)G+ κe(t)G)T [ė(t)−
r∑
i=1

r∑
j=j

θiϑjAie(t)

+Ahie3 +W1ig(m(t), s(t))

+W2ig(m(t − h(t)), s(t − h(t)))+ HjCe(t)

+HmjCe(t − h(t))] = 0. (20)

Summation above equations for the variables θ, ϑ , we have

V̇ (x(t)) ≤ D1(h(t)). (21)
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From (8) to (10), the following inequalities are derived.

−{

r∑
i=1

r∑
j=1

θiϑj −

r∑
i=1

θi −

r∑
j=1

ϑi + 1} = 0, (22)

r−1∑
i=1

r∑
j>i

{δ − θiϑi + θiϑj + θjϑi − θjϑj} ≥ 0, (23)

−

r∑
i=1

ϑi(θi − 1) ≥ 0,−
r∑
i=1

θi(ϑi − 1) ≥ 0,

for i, j = 1, 2, . . . , r . (24)

The relations of the membership functions from (22) to (24)
can be reconstructed for the following conditions using addi-
tional auxiliary matrices L,M ,Ni for i = 1, 2, . . . , r .

θ1
θ2
...

θr
I8n


T

syms




−L −L . . . −L L
−L −L . . . −L L
...

...
...

...
...

−L −L . . . −L L
L L . . . L −L






ϑ1
ϑ2
...

ϑr
I8n

 = 0,

(25)
θ1
θ2
...

θr
I8n


T
−(r − 1)Ms . . . −Ms Ms

...
...

...
...

−Ms . . .−(r − 1)Ms Ms
Ms . . . Ms

r
r−1δMs



ϑ1
ϑ2
...

ϑr
I8n

≥0,
(26)

θ1
θ2
...

θn
I8n


T 

0 0 . . . 0 N1
0 0 . . . 0 N2
...

...
...

...
...

0 0 . . . 0 Nr
N1 N2 . . . Nr 0




ϑ1
ϑ2
...

ϑn
I8n

 ≥ 0. (27)

Then, C is easily derived. Applying S-procedure and
Lemma 1, V̇ (t) < 0 can be ensured if (29) is guaranteed,
which ends the proof. �
Remark 3: The proposed affine controller is a more gen-

eral type of controller that reflects the characteristics of
the fuzzy system. The fuzzy systems are composed of sev-
eral rules that is dependent on each membership functions.
It should be noted that parallel distributed control (PDC) is
a type of control which share the exactly same membership
functions with those of systems. However, it is not guaranteed
that the method of PDC is the optimal membership functions
for the controller, and thus the performance is constrained.
Thereafter, affine transformed controller is a wider class of
controller that can enhance stability and performance of the
given control systems.
Remark 4: As reported in Remark 1, affine controller is a

wider class of controller. Thus, the gain of PDC controller
also can be derived utilizing Theorem 1. When the parameter
of affine transformation p = 1, q = 0, the condition of Theo-
rem 1 can be directly applied for PDC. The other advantage of

Theorem 1 is that is can have distributed gains for each rules,
which was not well conducted in the previous researches.

B. THE DESIGN OF AFFINE CONTROL WITHOUT MEMORY
For the purpose of comparison, the following affine controller
without memory is considered.

u(t) =
r∑
j=1

ϑj(µ)Kjey(t). (28)

Then, the following statement can be constructed for the
given controller.
Corollary 1: If there exist given scalars α, p ∈

[0, 1], q, r, µ, κ , and positive-definite matrices P̃ ∈

R3n×3n > 0, Q̃1 ∈ Rn×n > 0, Q̃2 ∈ Rn×n > 0, R̃ ∈
Rn×n > 0, diagonal matrices 31 ∈ Rn×n,32 ∈ Rn×n, any
matrices G,L,M ,Ni,Hj for i, j = 1, 2, . . . , r , h(t) ∈ [0, hM ]
satisfying

D̃1(h(t))+ C < 0, (29)

where

D̃1(h(t)) =


D̃11 D̃12 . . . D̃1r 0
D̃21 D̃22 . . . D̃2r 0
...

...
...

... 0
D̃r1 D̃r2 . . . D̃rr 0
0 0 0 0 0

 ,
D̃ij = Sym(φTa1Pφa2)+ e

T
2Q1e2 − (1− µ)eT3Q1e3

+eT2Q2e2 − eT4Q2e4 + eT1 Re1 − φ
T
b1(Ra + (1− α)X )φb1

−Sym(φTb1Yφb2)− φ
T
b2(Ra + αZ )φb2 + Sym(φyφ̃zij),

φ̃zij = −e1+ Aie2+ Ahie3 +W1ie7+W2ie8 + HjCe2,

then, the error dynamics is stabilizable with the gain Kj =
G−1Hj for j = 1, 2, . . . , r , which implies that the state
of slave systems asymptotically follows the state of master
systems.
Proof (The Proof of Corollary 1): is quite similar with that

of Theorem 1, so it is omitted here for brevity. �
Remark 5: The proposed synchronization control can be

regarded as static output feedback control when its simple
equivalent form in linear systems are considered. Therefore,
it has a simple structure and easy to apply in real applications.
However, its performance could be limited since the order
of controller is simple comparing to observer-based control.
It can be compensated through the proposed affine memory
control.
The overall flow chart is displayed in Fig. 1.Working along

the flow diagram of Fig. 1, the synchronization controller can
be calculated with denoted parameters.
Remark 6: The design method of affine memory control

is constructed upon the parameterization of the membership
function. To utilize relations between membership functions,
the conditions are derived for the extended variables. Thus,
the LMI condition, which is dependent on the separatedmem-
bership functions, possibly lead to computational complexity
as the inference rules are increases.
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FIGURE 1. Flow chart of controller design.

Remark 7: Recently, the switching controller in T-S fuzzy
systems has proven its effectiveness in [39]–[43]. Sophisti-
cated Lyapunov-Krasovskii functional also can improve syn-
chronization performances employing parameter-dependent
function [44] or line integrals type [45]. The consideration
with presented method in detailed manner is a possible
direction of further research. The main contribution of this
manuscript is the proposition of the novel controller form
which is affine memory control, thus the results are focused
on it.

IV. NUMERICAL EXAMPLES
Example 1: FNNswith the following parameters is presented.

ṁ(t) =
∑2

k=1 θk (µ)[Akm(t)+W1k f (m(t))
+W2k f (m(t − h(t)))+ Jk (t)],

ym(t) = Cx(t),

(30)

where

A1 = −diag(1, 1, 1), A2 = −diag(1, 1, 1),

W11 =

 −3 −1.2 −4.51.8 1.71 1.15
4.75 0.5 1.1

 ,
W12 =

 2.1 −1.1 6.5
−1.6 −1.21 −3.15
−4 −2.5 6.1

 ,
W21 =

−3.4 0.6 −2.1
−1.4 1.38 −2.3
2.4 1.1 −3.4

 ,
W22 =

 4.36 −0.72 1.5
3.36 −3.342 2.27
−0.54 0.19 1.36

 ,
C = diag(1, 1, 1).

FIGURE 2. Dynamic behavior of master systems.

The membership functions for each rule i = 1, 2 are selected
as

θ1(t) =
M1 − x1(t)
M2 −M1

, θ2(t) = 1− θ1(t). (31)

The dynamic behavior of the given FNNs is displayed
in Fig. 1. For the design of affine memory control, the param-
eters are chosen as κ = 0.1, and p = 0.5. From the
given parameters, the membership functions of master sys-
tems and the control are depicted as Fig. 1. When p =
1, q = 0 is selected, the membership functions of control
are exactly same as that of error systems so it is parallel
distributed control (PDC) scheme in literatures. Therefore,
the proposed affine control method is a much wider class of
control scheme. By using YALMIP toolbox to solve the LMI
problem in Theorem 1, the matrices can be calculated that the
LMIs are feasible. The solutions are given by

P =

 0.2622 −0.0095 −0.0032
−0.0095 0.2729 −0.0090
−0.0032 −0.0090 0.2539

 ,
Q1 =

1.2507 0.0330 0.0261
0.0330 1.0204 0.0243
0.0261 0.0243 1.0661

 ,
Q2 =

 0.9590 −0.0164 0.0076
−0.0164 0.9337 −0.0167
0.0076 −0.0167 0.9363

 ,
R =

 0.0098 −0.0009 −0.0005
−0.0009 0.0128 −0.0009
−0.0005 −0.0009 0.0099

 .
The dynamic behavior of master system is displayed in Fig. 2.
In the Fig. 2, it is shown that the trajectories are in a oscilla-
tory motion. Consequently, the synchronization gain of affine
memory control is designed as follows:

K1 = G−1H1 =

−15.4625 −0.1578 0.6128
−1.6130 −6.1073 −0.5486
−1.9542 −1.1735 −5.9222

 ,
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FIGURE 3. The state trajectory of master-slave systems.

FIGURE 4. The error trajectory of synchronization.

K2 = G−1H2 =

−19.9097 −0.3586 −1.5907−1.6171 −6.2227 0.1378
−0.9973 0.5145 −6.8135

 ,
Km1 = G−1Hm1 =

 1.2051 −0.0601 0.1674
0.2027 0.1559 0.1355
−0.4306 −0.1762 0.3847

 ,

Km2 = G−1Hm2 =

−0.3099 0.0429 −0.1053
−0.7590 0.5536 −0.1642
−0.0337 −0.0243 0.1069

 .
The state trajectories of master and slave systems are pre-
sented in Fig. 3. As shown in Fig. 3, each states of subsystems
tracks well the states of master systems. With the synchro-
nization control, the controlled trajectories of error states are
presented in Fig. 3. For the numerical simulation, an initial
state condition is chosen as m(t) = [−1,−0.5, 1.5].
Example 2: FNNs with the following parameters are

selected as:
ṁ(t) =

∑2
k=1 θk (µ)[Akm(t)+W1k f (m(t))

+W2k f (m(t − h(t)))+ Jk (t)],
ym(t) = Cx(t),

(32)

TABLE 1. Comparisons of the guaranteed stable bound for nonlinear
function.

FIGURE 5. The comparisons of the guaranteed stable bound for nonlinear
function.

where

A1 = −diag(1.06, 1.42, 0.88),

A2 = −diag(6.06, 4.42, 1.88),

W11 =

−0.32 0.85 −1.36
1.1 1.41 1.5
0.72 0.12 −1.95

 ,
W12 =

 1.1 4.1 6.5
−1.6 −1.25 −4.38
−3.5 −1.5 4.1

 ,
W21 =

−2.4 1.6 −3.1
1.3 1.68 0.3
−2.4 1.5 −1.4

 ,
W22 =

 1.26 −0.42 2.5
1.26 −3.342 2.27
−1.54 1.19 1.31

 ,
C =

[
1 0 0
0 0 1

]
.

For the given systems, affine control is utilized and the
allowable upper bound of nonlinear function is compared
with that of PDC to show the superiority of the proposed
control. For the comparison of possible slope bound for non-
linear activate function, the matrix S = diag{l1, l2, . . . , lr }
is selected as S = s · I where s is a scaling parameter. The
value ofµ is selected as 0.8. Then, the allowable upper bound
is presented for the cases with various delay in Table 1. The
table is shown to display clearly compare the results of the
proposed control.
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TABLE 2. Comparisons of the guaranteed stable bound for nonlinear
function.

TABLE 3. Comparisons of the allowable hM for variation of s.

It can be seen from the table that as the upper limit of the
time delay increases, the maximum possible bound of non-
linear function decreases. This means that the two variables
are inversely proportional. As a time delay and nonlinearity in
control systems are main sources of instability, the increase-
ment of them reduces the allowable area of stable regions.
Therefore, it is an adequate indicator for the comparison of
performances. From the Table 1, it can be seen from the
comparison of the table that the proposed method shows
an progressive improvement in average. Fig. 4 shows the
guaranteed stable regions for activate functions with hM =
0.5. Widely used activate functions (Hyperbolic Tangent,
Swish function, ReLU) are drawn with the regions. As shown
in figure, the given activate functions are not available under
parallel distributed control (PDC) with memory while affine
memory control covers all activate functions.

In Table 2, the maximum allowable bound for time delay
is calculated for each method. From the Table 1, it is shown
that the proposed control method guarantees the wider area of
stable region for time delay. Furthermore, it should be noted
that the improved results of the guaranteed region play an
advantageous role in performance of the system.

Table 3 shows the maximum allowable slope bounds for
given upper bound of delays. Then, it is shown that the superi-
ority of the proposed control by comparisons with the results
of the existing results in the literature. The results in [32],
[46] is modified to the apply to given model of FNNs. From
the given Table 2 and 3, it is clearly shown that the proposed
method provides wider stable regions in synchronization of
FNNs.
Example 3 (Secure Communication): Secure communi-

cation is widely used application of synchronization. The
parameters for FNNs are taken as follows:

ṁ(t) =
∑2

i=1 θi(µ)[Aim(t)++W1if (m(t))
+W2if (m(t − h(t)))+ Ji(t)],

ym(t) = C · m(t),
ṡ(t) =

∑r
i=1 θi(µ)[Ais(t)+W1if (m(t))
+W2if (s(t − h(t)))+ Ji(t)− u(t)],

ys(t) = C · s(t),

FIGURE 6. The schematic diagram of secure communication.

where

A1 = −diag(1, 1, 1), A2 = −diag(0.9, 0.8, 0.5),

W11 =

 1.2 −1.6 0
1.24 1 0.9
0 2.2 1.5

 , W12 =

1.4 −2.0 1.2
1 1 0.9
1 2.0 1.5

 ,
W21 = W22

−3.4 0.6 −2.1
−1.4 1.38 −2.3
2.4 1.1 −3.4

 ,
C =

1 0 0
0 1 0
0 0 1

 ,
f (·) =

1
2
(|mi(t)+ 1| − |mi(t)− 1|), for i = 1, 2, 3.

The block diagram of secure communication is shown
in Fig. 6. The original signal h(t) is sent through the network,
and to safely send the message, it is encoded with the signal
of master systems in forms of fuzzy neural networks. The
encoder and decoder is composed of the states from the
chaotic fuzzy neural networks, the message can’t be recon-
structedwithout synchronization ofmaster and slave systems.
Furthermore, chaotic fuzzy neural networks is very sensitive
to an initial condition, it is hardly to be synchronized. The
encoder signal ĥ(t) is chosen as

ĥ(t) = h(t)+ m(t)Tm(t). (33)

Then, h̃(t) is reconstructed by designing the decoder as fol-
lows.

h̃(t) = ĥ(t)− s(t)T s(t). (34)

Applying Theorem 1, the synchronization controller can be
easily obtained, and the result is presented in Fig. 7. As shown
in Fig. 7, the recovered message h̃(t) is the identical to the
original message h(t) when the master-slave fuzzy neural net-
work is fully synchronized. Moreover, the transmitted signal
ĥ(t) is very distinct from the original signal, so the secure
communication is well conducted using the synchronization
of fuzzy neural networks.
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FIGURE 7. The message signals through secure communication.

TABLE 4. Comparisons of the guaranteed stable bound for nonlinear
function.

For given system matrices, additional results are provided
to present the effect of each part in the proposed method.
Under the given condition, the system is over-stable, so it is
restricted with the matrix C = diag{1, 1, 0}. By choosing
it, the result shows off the reasonable value for the appar-
ent comparison. The simulation is conducted for the given
parameters hM = 3, µ = 1.1, κ = 5.0. Under the condition,
the allowable upper bound of slope is derived using Theo-
rem 1 and Corollary 1. In Table 1, the result of Corollary 1
(p = 1, q = 0) is the one without using any developed
memory & affine algorithm. Theorem 1 (p = 1, q = 0) is the
one using only state feedback with memory element, and thus
it shows off the effect of memory control. Theorem 1 (p =
0.5, q = 0) is the one using affine memory control. As shown
in Table 4, it can be noticed that the proposed control is
effective andwiden the region of stability. Therefore, it proves
the improved synchronization performance of the proposed
method.

V. CONCLUSION
Affine memory control is newly proposed for the synchro-
nization of fuzzy neural networks with time-varying delays.
Utilizing transformation of membership function which is
differ from that of master systems, improved affine fuzzy
control is designed with compensation for the time-varying
delay frommemory control. Hence, the design criteria for the
enhanced control is derived based on Lyapunov-Krasovskii
functional. Improved reciprocally convex inequality and
parameterization results in designing method in forms of

linear matrix inequalities for compositive controller gains.
Numerical simulations have shown the validity and superi-
ority of the proposed control scheme. The proposed control
scheme can be extended to more complicated type of fuzzy
neural networks including fuzzy cellular network, fuzzy
impulsive networks, and so on. More progressive results
could be investigated through integration with switching type
control or adaptive mechanism. As a further study, the anal-
ysis and enhanced conditions with model uncertainties and
physical constraints such as network limitations and input
saturation also could be a promising and attractive issue.
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