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ABSTRACT Human-object interaction (HOI) detection, which finds the relationships between humans and
objects, is an important research area, but current HOI detection performance is unsatisfactory. One of the
main problems is that CNN-based HOI detection algorithms fail to predict correct outputs for unseen test
data based on a limited number of available training examples. Herein, we propose a novel framework for
HOI detection called the on-the-fly stacked generalization deep neural network (OSGNet). OSGNet consists
of three main components: (1) feature extraction modules, (2) HOI relationship detection networks, and (3) a
meta-learner for combining the outputs of sub-models. Here, components (1) and (2) are considered to be
sub-models. Any task-based feature extraction modules, such as classification or human pose estimation
modules, can be used as sub-models. To achieve on-the-fly stacked generalization, the sub-models and
meta-learner are trained simultaneously. The sub-models are trained to provide complementary information,
and the meta-learner improves the generalization performance for unseen test data. Extensive experiments
demonstrate that the proposed method achieves state-of-the-art accuracy, particularly in cases involving rare
classes.

INDEX TERMS Deep learning, human-object interaction, human pose estimation, action recognition.

I. INTRODUCTION
Object detection technology based on deep learning has
developed very rapidly. In recent years, significant research
has been conducted to develop a comprehensive understand-
ing of various types of scenes. In particular, human-object
interaction (HOI) detection can further our understanding of
various scenes. HOI detection can provide important infor-
mation for many applications, including human-robot inter-
action, autonomous vehicles, and abnormal behavior recog-
nition [1]–[3], [32]–[34].

However, the HOI detection problem is difficult to solve
for the following reasons:

• It can occur in a large number of different situations
compared to the number of possible combinations of
people and objects.
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• Assuming that there are one person and one object in an
image, there can be multiple interactions between them,
such as riding a bicycle and sitting on the bicycle. In
other words, HOI detection must detect multiple objects
and recognize multiple labels according to their combi-
nations simultaneously.

• It is difficult to ensure that model training data contain
correct labels for all possible combinations.

For HOI detection, many methods [5], [7], [13], [15], [17],
[24], [29], [30], [35] have been proposed to overcome these
challenges, but HOI detection performance is still unsatisfac-
tory and remains an open problem. One of the major issues is
that convolutional neural network (CNN)-based HOI detec-
tion algorithms fail to produce correct outputs for unseen test
data based on a limited number of available training samples,
particularly for rare classes, such as ‘‘point’’ and ‘‘wash a
knife’’. Therefore, it is desirable to design a CNN structure
to improve generalization accuracy for HOI detection.
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FIGURE 1. Overview: Stacking ensemble. Unlike a general stacking
ensemble, where levels 0 and 1 are trained independently, the proposed
scheme simultaneously trains the sub-models at level 0 and meta-learner
at level 1, allowing for an ‘‘on-the-fly’’ stacking ensemble.

In this article, we propose a novel framework for HOI
detection called the on-the-fly stacked generalization deep
neural network (OSGNet). A stacked generalization is a
type of ensemble technique that is a well-known approach
to improving generalization capabilities in machine learn-
ing [31]. Such an ensemble consists of two stacked levels
called level 0 and level 1, as shown in Figure 1. While
‘‘bagging’’ and ‘‘boosting’’ approaches can only utilize one
type of algorithm at a time, stacked generalization improves
generalization accuracy by combining different types of algo-
rithms (level 0) using a meta-learner (level 1) [20]. To the best
of our knowledge, there has been no prior work analyzing
stacked generalization for HOI detection.

The main advantage of stacked generalization is that it
attempts to learn how to combine predictions optimally to
compensate for each sub-model’s weaknesses by using the
outputs of sub-models as inputs. In this type of ensemble,
the features from different sub-models should contain differ-
ent information. For HOI detection, analyzing human body
parts can aid significantly in understanding the relationship
between a person and an object. This is because when a
person interacts with an object, the interaction mainly occurs
close to body parts such as the head, hands, and feet. Based
on this intuition, we propose a method for using different
feature extraction models trained for different tasks of classi-
fication (e.g., ResNet [11]) and human pose estimation (e.g.,
HRNet [28]).

An overview of the OSGNet architecture for HOI detec-
tion is presented in Figure 1. The OSGNet consists of three
main components: (1) feature extraction modules, (2) HOI
relationship detection networks, and (3) a meta-learner for
combining the outputs of sub-models. Here, components

(1) and (2) are considered to be sub-models and any HOI
network can be used as a sub-model. In this study, sub-
model A is set to a VSGNet [29] that learns HOIs using a
graph convolutional network. For sub-model B, we propose a
human-pose-based HOI network inspired by VSGNet [29].
Additionally, unlike conventional stacked generalization,
which independently trains sub-models at level 0 and a meta-
learner at level 1, the proposed scheme simultaneously trains
the sub-models and meta-learner, thereby facilitating on-the-
fly stacked generalization. This allows sub-models to be
trained such that complementary information can be passed
into the inputs of the meta-learner.

Extensive experiments were performed to compare the
proposed method to a baseline method (i.e., VSGNet [29],
which is sub-model A without stacked generalization) on
two popular benchmark datasets: V-COCO [9] and HICO-
DET [4]. The results demonstrate that the proposed OSGNet
achieves state-of-the-art performance, particularly for cases
involving rare classes.

Our main contributions can be summarized as follows:

• Most HOI detection methods combine image and human
pose information using a single underlying model and
do not leverage the advantages of using multiple diverse
models. Unlike such approaches, we propose a stacked-
generalization-based framework for combining image
and human pose information, which results in higher
generalization accuracy.

• The proposed scheme simultaneously trains sub-models
and a meta-learner, which allows the sub-models to be
trained such that complementary information can be
passed into the inputs of the meta-learner.

• Extensive experiments validate the proposed method’s
achievement of state-of-the-art accuracy, particularly for
cases involving rare classes.

The remainder of this article is organized as follows.
Section II introduces related works on HOI methods.
Section III describes the proposed OSGNet. Section IV
presents implementation details and experimental results.
Finally, Section V concludes this article.

II. RELATED WORK
A. HUMAN-OBJECT INTERACTION DETECTION
HOI detection addresses the task of detecting <human,
verb, object> triplets within a given image. In most cases,
the appearance of a person or object contains useful clues
regarding the parts of an image that are relevant to interaction
prediction. Gkioxari et al. [7] proposed a human-centered
approach called InteractNet, whichwas designed based on the
hypothesis that a person’s appearance is a powerful signal for
the localization of the object they are interacting with. Gao
et al. [5] proposed an instance-centric attention module that
selectively aggregates features that are relevant to detecting
HOIs.

Context modeling of the spatial configurations between
humans and objects is also useful for HOI analysis.
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FIGURE 2. (a) VSGNet [29], where the feature extractor is a residual network. (b) HRNet [28].

Qi et al. [24] incorporated structural knowledge using a
graph-parsing neural network (GPNN). Chao et al. [4] pro-
posed interaction patterns that characterize the spatial rela-
tionships between human and object bounding boxes as
binary images with two channels. A similar concept was
introduced as the ‘‘box attention mechanism’’ in [15]. Ulutan
et al. [29] proposed VSGNet architecture, which models the
relative spatial and structural connections between objects.
As mentioned previously, our proposed method uses the
VSGNet architecture as sub-model A.
Recently, significant research has been conducted to

improve HOI detection speed and accuracy. Liao et al. [18]
proposed a single-stage HOI detection method by paral-
lelizing HOI detection and matching. However, the perfor-
mance comparisons in Section IV demonstrate that a single-
stage-based method [18] achieves significantly weaker per-
formance compared to the proposed method for rare data
classes.

B. POSE INFORMATION FOR DETECTING HOI
Human poses are used in many studies because they are
important cues for the analysis of HOI. The multi-level rela-
tion detection strategy proposed by Wan et al. [30] utilizes
human poses to capture the global spatial compositions of
relationships, which are used in an attention mechanism at
the level of human body parts. Zhou and Chi [35] pro-
posed a novel relational parsing neural network (RPNN)
represented by an object-body part graph and a human-
body part graph. The RPNN model can implicitly ana-
lyze pairwise relationships in two graphs in an unsuper-
vised manner. Gupta et al. [10] demonstrated that a simple

factorized model can outperform more sophisticated mod-
els for HOI detection. Recent attempts have been made to
improve HOI performance by leveraging additional informa-
tion. Li et al. [16] used 3D human poses instead of 2D human
poses. Li et al. [37] proposed an integration-decomposition
network that analyzes HOI semantics in the transformation
function space. These methods could be used as a sub-model
for the stacked generalization.

Although progress has been made in terms of improving
HOI detection in a fully supervised manner, it is imprac-
tical to label training data for all possible interactions
between humans and objects. Therefore, various studies have
been conducted to overcome information limitations in HOI
datasets. In these types of studies, detailed cues such as
human poses have been considered. Li et al. [17] explored
interactive knowledge indicatingwhether humans and objects
interact with each other. Their conclusion was that regardless
of the setting of an HOI category, interaction knowledge can
be learned across HOI datasets. Shen et al. [27] extended HOI
awareness to the long tail of HOI categories using zero-shot
learning based on verb-object factorization. Kim et al. [13]
focused on correlations as action co-occurrences in images to
achieve more effective training, particularly for rare classes.

We have developed a stacked generalization scheme that
can be used to overcome the performance degradation result-
ing from a lack of data.

III. APPROACH
The proposed stacked generalization scheme can be usedwith
any feature maps and sub-models, but for the convenience of
explanation, we will assume the following. 1) Sub-model A
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FIGURE 3. Example graphical representation of a sequence for region of interest (ROI) pooling, a residual block, and global
average pooling (GAP).

in Figure 1 is based on the feature map of a residual network
(ResNet) [11] pre-trained for a classification task and 2) sub-
model B is based on the feature map of an HRNet [28] pre-
trained for a human pose estimation task.

A. NOTATIONS
Let I represent an input image, as depicted in Figure 2a.
The feature mapGg represents the inputs, where g represents
global features for the HOI relation network in sub-model A,
as depicted in Figure 1. This feature map is obtained from
the classification task network (i.e., Gg

= ResNet(I)). The
bounding boxes for humans h ∈ [1,H ] and objects o ∈ [1,O]
are represented by xh and xo, respectively, where H and O
denote the numbers of detected humans and objects in an
input image I, respectively. The bounding boxes xh and xo
can be obtained using any off-the-shelf object detector [26].

We assume that a single-person human pose estimator is
used for sub-model B. A human-centric image Ih is required
for human h. This image is obtained through an affine trans-
formation T (·) of the input image I with a human bounding
box xh (i.e., Ih = T (I, xh)), as depicted in Figure 2b. The
human pose estimator provides a human-pose-based feature
map Fh for a human h, as well as bounding boxes xkh of
keypoints k ∈ [1,K ] on the human h (i.e., {Fh, xkh} =
HRNet(Ih)), as shown in Figure 2b. K represents the number
of keypoints on a human (e.g., five keypoints correspond-
ing to the head, left arm, right arm, left ankle, and right
ankle). Another classification-based feature map Gl , where
‘‘l’’ indicates ‘‘local features’’ in Figure 2a, is also used for
sub-model B.

Finally, Figure 3 presents an example graphical represen-
tation of the generation of a feature vector for an object. The
pink cube represents a VSGNet [29] and the second arrow
pointing to an image with a yellow box indicates that an
object feature map is pooled within the object bounding box
(i.e., a region of interest (ROI) pooling [6]). Next, a residual
block [11] and a global average pooling (GAP) [8] operation
are used to generate an object feature vector. We also use
this type of graphical representation to explain the proposed
sub-model B, as shown in Figure 4. The other notation in
Section III follows that in Table 1 if there are no additional
clarifications.

B. OVERVIEW
The sub-model A (VSGNet) consists of a feature map
extractor and HOI relation network, as shown in Figure 2a.

The HOI relation network consists of visual, spatial, and
graph convolutional branches, and returns three types of
feature vectors. The first type of feature vector, denoted as
gRefho , is a visual feature vector refined by spatial information.
The second type of feature vector, denoted as gAttho , is a spatial
attention feature vector based on the coordinates of human
and object locations. The third type of feature vector, denoted
as gGraphho , is a relational feature vector between humans and
objects [29]. The VSGNet also returns another feature for
calculating the interaction probability between a human and
object (for additional details, please see [29]). These four
features are used as the inputs for a meta-learner, as described
in Section III-D.
Sub-model B is designed with the same architecture as sub-

model A (VSGNet), as shown in Figure 4. Sub-model B also
consists of a feature map extractor and HOI relation network.
The difference compared to sub-model A is that the visual and
spatial feature vectors are based on the human-pose-based
feature map Fh and keypoint bounding boxes xkh of the human
body. These vectors are obtained from the HRNet, as shown
in Figure 2b. We discuss the HOI relation network in sub-
model B in detail in Section III-C based on the explanatory
method proposed in [29] to avoid confusion.

C. LEVEL 0: SUB-MODEL B: HRNet-BASED VSGNet
Because sub-model B is a variant of a VSGNet with human
pose information, it also has three branches for extract-
ing visual, spatial, and graph-based relationship features of
humans and objects.

1) VISUAL BRANCH
The main role of this branch is to extract visual features
from the inputs of human pose and object pairs. Visual fea-
tures consist of human-pose- and keypoint-based features,
an object feature, and a context feature representing an entire
image. For the object feature go and context feature gC ,
we reuse features from sub-model A. These features are
extracted from a classification-based pre-trained model as
follows.

Given an object bounding box xo, the features of the cor-
responding object region are extracted using ROI pooling. A
residual block [11] and GAP operations are applied to extract
a visual feature vector go for an object of size R.

go = GAP(ResO(ROI (Gg, xo))), (1)
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FIGURE 4. Graphical representation explaining the proposed sub-model B.

TABLE 1. Symbols used in this article.

where ResO represents a residual block for an object input. A
context feature vector gC of size R is extracted from an entire
image. The residual block and GAP are then applied as

gC = GAP(ResC (Gg)), (2)

where ResC represents a residual block for a context input.
These two feature vectors are the same as those in sub-model
A (i.e., VSGNet [29]).
However, the visual feature vector for a human in the

proposed OSGNet is designed as the following:
1) A global human pose feature vector fgh of size P is

obtained from Fh instead of Gg as

fgh = GAP(ResgH (Fh)), (3)

whereResgH represents the residual block for the human
input.

2) Local keypoint feature maps Fkh are obtained from Fh,
Gl , and the bounding boxes xkh.

Fkh = ROI (Fh, xkh)⊕ ROI (G
l, T −1(I, xkh)), (4)

where⊕ is a concatenation operation and T −1(·) is the
inverse affine transformation for generating keypoint
bounding boxes corresponding to a feature map in sub-
model A, as depicted in Figure 4.

3) By concatenating local keypoint feature vectors Fkh of
size Q, a local human pose feature vector for each
human h is obtained as

flh = ⊕
K
k=1GAP(Res

k
H (F

k
h)), (5)

where ReskH represents the k-th residual block for the
k-th keypoint of a human body and⊕Kk=1 concatenates
the K feature vectors obtained by K GAP operations.
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4) The visual human pose feature vector for a human h is
generated through the concatenation of global and local
human pose feature vectors and spatial information.

fho = fgh ⊕ flh ⊕ fspatho , (6)

where fspatho of size S is an encoding of xo in a coordinate
space relative to xh and xkh [7].

Finally, all types of visual feature vectors are concatenated
and projected onto a D-dimensional feature space.

fVisho =WVis(fho ⊕ go ⊕ gC ), (7)

where WVis represents two sequences of a fully connected
layer and rectified linear unit (ReLU ) layer [21], and fVisho is
a combined visual feature vector based on the human pose
estimation task, where ho represents a human h and object o
pair.

2) SPATIAL ATTENTION BRANCH
This branch learns spatial interaction patterns between human
keypoints and objects. Given a set of human keypoint bound-
ing boxes xkh and an object bounding box xo, we generate a
six-channel binary spatial configuration mapBho, as depicted
in Figure 4. It should be noted that VSGNet [29] generates
two binary maps based on two bounding boxes: those for
a human and an object. The binary maps contain zeroes
except for in the locations of human keypoints and object
box coordinates xkh and xo, respectively. This operation is
followed by six convolutional layers ConvSpat for analyzing
the spatial configuration map of the human and object pair.

aho =WSpat (GAP(ConvSpat (Bho))), (8)

where WSpat is a fully connected layer for generating an
attention feature vector of sizeD. Because the locations of an
object and human keypoints are in different channels, a model
using the spatial configuration mapBho can learn the possible
spatial relationships between human keypoints and an object.

The attention feature vector aho can be used to classify
HOIs [15], [29] because it encodes spatial configurations. To
this end, we generate a spatial context feature vector fAttho of
size M as

fAttho =WAtt (aho), (9)

where WAtt is a fully connected layer. This layer is followed
by a sigmoid function σ (·) for generating an action class
probability pAttho as

pAttho = σ (f
Att
ho ). (10)

In stacked generalization, a meta-learner is able to learn
classification boundaries based on confidence scores. How-
ever, the confidence scores produced by sub-models are typ-
ically not actual probabilities or are not well calibrated [25].
In this study, we use the feature vector fAttho as an input for the
meta-learner, as discussed in Section III-D, instead of directly
using the confidence score vector pAttho .

As discussed in [29], aho is also used as an attention mech-
anism to refine visual features by multiplying two vectors.

aRefho = aho ⊗ fVisho , (11)

fRefho = WRef (aRefho ), (12)

where ⊗ denotes element-wise multiplication and fRefho is a
spatially refined feature vector of sizeM .

The refined feature vector fRefho is utilized to predict the
probabilities of action classes pRefho and the interaction pro-
posal score iho for the human and object pair ho as follows:

pRefho = σ (f
Ref
ho ), (13)

f IPho = WIP(aRefho ), (14)

iho = σ (f IPho ), (15)

where f IPho is a scalar for the interaction proposal probability,
which can be used as an input for the meta-learner.

3) GRAPH CONVOLUTIONAL INTERACTION BRANCH
This branch generates effective features using a graph con-
volutional network [14] in which humans and objects are
represented as nodes and their relationships are represented
as edges, as discussed in [29].

Given the visual features fho and go as nodes, the graph
feature vectors fho′ and foh′ are defined as follows:

fho′ = fho +6O
o=1αhoWoh(go), (16)

foh′ = go +6H
h=1αohWho(fho), (17)

where αho represents the adjacency between h and o.Woh and
Who are mapping functions that project object features into
the human feature space and vice versa, respectively. Adja-
cency values are defined by the interaction score between a
human pose and object pair as

αho = αoh = iho. (18)

By pairing graph features and projecting them using a projec-
tion matrixWGraph, the graph feature vector fGraphho for action
prediction is calculated as

fGraphho = WGraph(aho ⊗WConcat (fho′ ⊕ foh′)), (19)

where WConcat a fully connected layer. fGraphho can be used as
an input for the meta-learner and the action class probability
vector pGraphho is defined as

pGraphho = σ (fGraphho ), (20)

where σ (·) is a sigmoid function.
All of the action predictions from the three branches and

an interaction proposal score are combined by multiplying
the probabilities as follows:

pho = (pAttho ⊗ pRefho ⊗ pGraphho )× iho, (21)

where pho is the final prediction vector for HOI detection.
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FIGURE 5. Meta-learner. The proposed scheme simultaneously trains the
sub-models and meta-learner, which allows for on-the-fly stacked
generalization.

D. LEVEL 1: ON-THE-FLY STACKED GENERALIZATION
1) STACKED GENERALIZATION
The meta-learner at level 1 learns how to combine the out-
puts of sub-models to maximize generalization accuracy.
We designed the meta-learner with four layers of convo-
lutional modules C{} using the ReLU activation function,
as shown in Figure 5 and Table 5. The inputs for the meta-
learner are two sets of three action class features and an
interaction feature generated by sub-models A and B.

fAtt−combho = CAtt (gAttho ⊕ fAttho ), (22)

fRef−combho = CRef (gRefho ⊕ fRefho ), (23)

fGraph−combho = CGraph(gGraphho ⊕ fGraphho ), (24)

f IP−combho = CIP(gIPho ⊕ f
IP
ho ). (25)

Finally, we obtain three combined action class probabilities
and an interaction score by normalizing the four combined
features to a range of zero to one using a sigmoid function
σ (·) as follows:

pAtt−combho = σ (fAtt−combho ), (26)

pRef−combho = σ (fRef−combho ), (27)

pGraph−combho = σ (fGraph−combho ), (28)

icombho = σ (f IP−combho ). (29)

For the final action prediction vector pcombho at level 1, all
three action predictions and an interaction proposal score are
combined by multiplying the probabilities as follows:

pcombho = (pAtt−combho ⊗ pRef−combho ⊗ pGraph−combho )× icombho .

(30)

2) ON-THE-FLY TRAINING LOSS
In the traditional stacked generalization framework, the sub-
models at level 0 and meta-learner at level 1 are trained inde-
pendently. In contrast, the proposed scheme simultaneously
trains the sub-models and meta-learner, which allows for on-
the-fly stacked generalization. We achieve this by combining
the losses of each sub-model with that of the meta-learner.

L = λ1 · Lcomb + λ2 · LA + λ3 · LB, (31)

where L{} represents binary cross entropy loss [8] for multi-
label action classification and λi represents the weight factors
for each term during on-the-fly training. The inputs for the
three loss functions are pcombho , pAho, and pBho, respectively.
The superscripts ‘‘A’’ and ‘‘B’’ denote the action predic-
tion probabilities p{}ho obtained from sub-models A and B,
respectively.

IV. EXPERIMENTS
A. DATASETS AND EVALUATION METRICS
For our experiments, we adopted the widely used V-COCO
dataset [9] and HICO-DET dataset [4] as HOI benchmarks.
The V-COCO dataset was generated by adding annotations
for 29 actions (interactions) to 10,346 images containing
16,199 people based on the COCO dataset [19]. Among the
29 actions, four actions do not have pair relationships with
objects and one action (point) has only 21 samples. Therefore,
similar to previous HOI detection studies, for our experiment
on the V-COCO dataset, we only report the performance of a
total of 24 classes.
TheHICO-DET dataset contains interactions between peo-

ple and objects with box-level annotations. It contains a total
of 47,776 images with 117 actions. The object categories
correspond to 80 classes in the COCO dataset [19]. The total
number of possible triplets (i.e., {human, object, action}) is
9,360 (=1×117×80), but this the dataset, only 600 categories
are defined and have training data. According to the numbers
of training samples in each category, 138 categories were
defined as rare categories and the remaining 462 categories
were defined as non-rare categories.
The evaluation metric for V-COCO is defined as the role

average precision (AP) value according to the original paper
on this data [9]. In the role AP calculation, two conditions
must be satisfied: 1) the bounding boxes of the person and
object must have an IoU greater than 0.5 with the ground-
truth box and 2) the predicted interaction class label must be
the same as the ground-truth interaction label. For the official
metric [9], two scenarios are introduced for role AP evalua-
tion. If an object does not exist (i.e., only humans are present),
in scenario 1, a prediction is correct if the corresponding
object box is empty. In scenario 2, a prediction is correct if
the corresponding object box is ignored. This makes scenario
1 much more difficult than scenario 2.
The performance of HICO-DET was measured similarly

to that of scenario 1 for V-COCO and is reported in terms of
mean AP for all, rare, and non-rare categories.
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B. IMPLEMENTATION DETAILS
Regarding our experimental implementation, if no additional
explanation is given, we follow the process detailed in [29].
We extract two classification-based feature maps Gg and
Gl from the two residual blocks prior to the final residual
block in a Resnet-152 model [11] that was pre-trained on
the ImageNet dataset [36] for a classification task, as shown
in Figure 2a. For the human-pose-estimation-based feature
map Fh, we use the feature extractor for HRNet [28], which
was pre-trained on the COCO dataset [19] for a pose estima-
tion task, as shown in Figure 2b. The feature extractors (i.e.,
ResNet-152 and HRNet) were not fine-tuned during training,
and the feature maps Gg, Gl , and Fh serve as inputs for the
rest of the HOI relationship networks in the two sub-models.

By using ROI pooling, 10×10 feature maps were extracted
for all humans, objects, human poses, and five different body
parts in the input feature maps. This operation is followed by
a residual block and GAP, and three feature vectors of size
R = 1024 for humans, objects, and contexts are obtained. We
also obtain three feature vectors of size P = 32 for a human
pose and size Q = (32+ 512)× 5 for five human body parts,
as well as a coordinate encoding feature vector of size S = 20.
These features are fed into the remainder of the network. We
use 64× 64× 2 and 64× 64× 6 binary inputs for the spatial
attention branches in sub-models A and B, respectively. As
discussed in [29], all input feature vectors are projected into
a D = 512-dimensional space. For final classification, one
linear layer is applied to all branches. The detailed configu-
rations of the residual blocks Res{}

{}
, convolution block in the

spatial branch ConvSpat , projection layerWVis in Equation 6,
and combination layers C{} in the meta-learner are provided
in Tables 2, 3, 4, and 5, respectively.

TABLE 2. Configuration of the residual blocks discussed in Section III.
[·] denotes the kernel size and number of input and output channels.
Batch normalization [12] follows each Conv layer in Res{}

{}
. See [11] for

additional details.

To generate bounding boxes xkh based on body keypoint
locations, we followed the method discussed in [2]. This
approach simply sets the width and height of a box by adding
a margin derived from the maximum and minimum values of
the spatial distribution of body keypoint locations.

For the V-COCO dataset, the batch size and initial learning
rate were set to 8 and 0.01, respectively. We set the weight
decay to 0.0001 and used a momentum of 0.9 for stochastic
gradient descent optimization. For more efficient training,
the learning rate was increased to 0.01 for all layers except for

TABLE 3. Configuration of ConvSpat discussed in Section III-C.
[·] denotes the kernel size and numbers of input and output channels.

TABLE 4. Configuration of a sequence of two fully connected layers with
a ReLU function denoted as W{} in Equation 6. D, P , Q, and S are the
feature dimensions for concatenation, as discussed in Section IV-B.

TABLE 5. Configuration of the combination layers C{} discussed in
Section III-D. #Input and #Output denote the number of input and output
channels, respectively. M is the number of HOI classes. For the interaction
proposal probability, M is set to one.

the spatial attention branch between epochs 9 and 21 among
a total of 50 epochs. For the HICO-DET dataset, we used the
same hyperparameters as those used for V-COCO.We trained
the networks for 80 epochs on the HICO-DET training set.
The rest of the details are the same as those for the VSGNet
(see [29] for additional details).

We measured training and inference times on a single
NVIDIATitan RTXGPU after fixing the numbers of detected
persons and objects to one because the training time and infer-
ence time are determined by the numbers of detected persons
and objects. The training and inference times in one epoch
for the V-COCO dataset were about 4.5 minutes and 3.8 min-
utes, respectively. For the HICO-DET dataset, the training
and inference times in one epoch were about 33.7 minutes
and 7.6 minutes, respectively. The number of parameters is
approximately 135M and the number of GFLOPs is 40.6 for
OSGNet.

C. COMPARISONS TO STATE-OF-THE-ART METHODS
We compared the performance of our method to those
of state-of-the-art HOI detection methods using the V-
COCO and HICO-DET benchmark datasets. Table 6 presents
performance comparisons on the V-COCO dataset. Our
method outperforms the state-of-the-art methods (Interact-
Net [7], Kolesnikov et al. [15], GPNN [24], iCAN [5],
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Interactiveness [17], and ACP [13]) by a mean average pre-
cision (mAP) of 53.43. Additionally, our model outperforms
the baseline (VSGNet) by approximately 2% when using the
same bounding boxes.

TABLE 6. Comparison results for the V-COCO [9] test set for scenarios
1 and 2.

Table 7 presents performance comparisons on the HICO-
DET dataset. Our method outperforms all of the state-of-the-
art methods, except for PPDM [18]. In PPDM, the object
detection network was also trained to be suitable for HOI
problems and exhibits high performance for non-rare classes.
However, PPDM exhibits low performance for rare classes,
which is an important problem in HOI detection based on
common data imbalances. Our method exhibits similar per-
formance compared to PPDM overall. However, for rare
classes, the proposed method exhibits higher performance
than PPDM.

TABLE 7. Comparison of results for the HICO-DET [4] test set. The
proposed method outperforms the baseline. Notably, DJ-RN uses
additional 3D human pose features. Excluding DJ-RN, the proposed
OSGNet exhibits the best performance for rare classes.

Among the rare class performance results for the HICO-
DET dataset, DJ-RN achieves the best performance. How-
ever, DJ-RN uses detailed 3D body representations with spa-
tial volumes, which significantly increasesmodel complexity.
While the proposedmethod operates in an end-to-endmanner
using only 2D image inputs, DJ-RNfirst extracts the 2D poses
of the body, face, and hands, after which SMPLify-X [22] is

applied to obtain 3D body information for inputs. Overall,
the performance of the proposed method using an on-the-
fly stacking structure is comparable to that of DJ-RN, which
improves generalization using 3D information.

TABLE 8. Ablation studies for two branches of sub-Model A and
sub-Model B, as well as the complete OSGNet.

D. ANALYSIS OF BRANCH PERFORMANCE
For our ablation study, we evaluated the performance of
each branch of OSGNet (sub-model A and sub-model B).
As reported in Table 8, the performance of sub-model B
is higher than that of sub-model A for most classes in the
V-COCO dataset. Therefore, for the HOI detection prob-
lem, we hypothesize that human poses and part features
can provide a better understanding of detailed interactions.
However, for the classes ‘‘eat-instr’’ and ‘‘cut-instr,’’ sub-
model A exhibits slightly better performance. The reason
for this is that the ‘‘eat-obj’’ class represents an interaction
in which a person eats an object, whereas the ‘‘eat-instr’’
class judges whether a person uses an instrument to eat.
Therefore, the object class itself is a more important cue com-
pared to detailed relationships between humans and objects.
Additionally, because OSGNet enables the combination of
global representations (sub-model A) and local representa-
tions (sub-model B) for one problem, it achieves a perfor-
mance improvement of nearly 3% compared to sub-model A
alone.

E. ON-THE-FLY TRAINING LOSS
In this section, we analyze the effects of the on-the-fly train-
ing loss in Equation (31). We can adjust the sub-model and
meta-learner losses by using the parameter λi to balance
stacked generalization. As shown in Table 9, the mAP values
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FIGURE 6. Framework of OSGNet-p.

FIGURE 7. Framework of OSGNet-e.

of the trained models using only LA and LB are recorded
as 52.35 and 52.50 for scenario 1, respectively. In the case
of scenario 2, the trained models using only LA and LB
yield mAP values of 57.58 and 57.70, respectively. When the
combined loss for on-the-fly training is applied, performance
is improved compared using the loss of either sub-model
alone in all cases. When the weight of the combined loss is
equal to two, the highest performance is achieved.

F. TWO VARIANT STRUCTURES OF OSGNet
We designed two variant architectures called OSGNet-p
(Figure 6) and OSGNet-e (Figure 7) to analyze the effects of
human poses and low-level features on the proposedOSGNet.

TABLE 9. Analysis of stacked generalization.

For OSGNet-p, we removed the usage of Gl for the part
features extracted from ResNet by comparing Figures 4
and 6. In other words, in the original OSGNet, low-level

34260 VOLUME 9, 2021



G. Lee et al.: Improved HOI Detection Through On-the-Fly Stacked Generalization

FIGURE 8. Examples of emulated bounding boxes for OSGNet-e,
including human keypoint bounding boxes for human-centric images and
inverse affine transformation results for input images.

part features are extracted from both ResNet and HRNet,
but OSGNet-p only extracts part features from HRNet. In
the case of OSGNet-e, we emulate predefined keypoints1 in
the affine-transformed image (we call this a pose template),
resulting in keypoint locations that are the same across all
transformed images Ih.We also use a two-channel binarymap
Bho, as shown in Figure 7. However, the sizes of bounding
boxes based on the emulated keypoints can be adjusted to fit
the size of a person in an input image I by inversely trans-
forming them to match the input image, as shown in Figure 8.
In this manner, we can extract low-level features around a
human for the proposed OSGNet, even though the keypoint
locations are inaccurate in input images.

Tables 10 and 11 present performance comparisons
between VSGNet, OSGNet, OSGNet-p, and OSGNet-e on
the V-COCO and HICO-DET datasets, respectively. In the
case of the V-COCO dataset, OSGNet-p exhibits slightly

1Based on an image with dimensions of 192×256 pixels (width×height),
five predefined keypoints (x, y) are defined at (95, 62), (129, 134), (62, 134),
(129, 210), and (62, 210).

TABLE 10. Comparison of class-wise average precision values to those of
the state-of-the-art methods for V-COCO scenario 1. The ‘‘obj’’ and ‘‘instr’’
tags refer to objects and instruments [9], respectively. OSGNet is written
as OSG to reduce the size of the table.

TABLE 11. Comparison of results for the HICO-DET [4] test set.

better performance than OSGNet. For the HICO-DET
dataset, OSGNet exhibits better performance than OSGNet-
p. We believe that in the V-COCO dataset, human images
tend to include most of the body and overlap with objects
is not severe. In the HICO-DET dataset, there are many
images in which only a part of a person appears and much
of the person is obscured by an object. Therefore, using
not only the features from HRNet for humans, but also the
features from ResNet for objects, is helpful for improving
performance. Surprisingly, OSGNet-e outperforms VSGNet
on both benchmark datasets. This means that the proposed
framework itself, even without human pose features, can help
improve the generalization accuracy.

G. QUALITATIVE RESULTS
Figures 9 and 10 present the qualitative results of HOI detec-
tion. The top-three class labels from sub-model A (VSGNet)
are presented above the images and those from OSGNet are
presented below the images. The baseline structure utilizes
the global relationship between a person and object for HOI
detection, but its results are not satisfactory when part or local
information is important. However, because the pro-
posed OSGNet utilizes both global and local information
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FIGURE 9. Qualitative results for the HICO-DET dataset. The top-three classes are extracted from sub-model A (above the image) and OSGNet (below the
image). Through the stacked generalization of OSGNet, the estimated classes are modified by focusing on both global and local features. If the
probability is too low or the class is no-interaction, we omit it in {}.

FIGURE 10. Qualitative results for the V-COCO dataset. The top-three classes are extracted from sub-model A (above the image) and OSGNet (below the
image). Through the stacked generalization of OSGNet, the estimated classes are modified by focusing on both global and local features.

through on-the-fly stacked generalization, it corrects esti-
mated classes and improves HOI performance, as shown
in Figures 9 and 10.

V. CONCLUSION AND DISCUSSIONS
Although there is substantial evidence that human pose infor-
mation is helpful for inferring relationships between people
and objects, most HOI detection methods combine image
and human pose information through a single underlying
model and do not leverage the advantages of using mul-
tiple diverse models. In this article, we proposed a novel
framework for HOI detection called OSGNet. The proposed
method uses different feature extraction models trained for
different tasks, namely classification and human pose esti-
mation. Simultaneously training the sub-models and meta-
learner allows the sub-models to learn complementary infor-
mation for each other. Additionally, the proposed OSGNet
even exhibits improved performance in cases without human
pose features. We believe that the proposed method can
also be utilized for other strategies to enhance generalization
accuracy by combining two different task-based sub-models.
As future work, we plan to study more robust and efficient
algorithms that can be utilized in real-world environments.

To this end, we could consider reducing the dependence of
the object detector and extending the proposed method to use
consecutive frames of a video.
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