
sensors

Article

Accelerating On-Device Learning with Layer-Wise Processor
Selection Method on Unified Memory

Donghee Ha , Mooseop Kim , KyeongDeok Moon and Chi Yoon Jeong *

����������
�������

Citation: Ha, D.; Kim, M.; Moon, K.;

Jeong, C.Y. Accelerating On-Device

Learning with Layer-Wise Processor

Selection Method on Unified Memory.

Sensors 2021, 21, 2364. https://

doi.org/10.3390/s21072364

Academic Editor: Sang-Woong Lee

Received: 28 February 2021

Accepted: 26 March 2021

Published: 29 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Human Enhancement & Assistive Technology Research Section, Artificial Intelligence Research Laboratory,
Electronics Telecommunications Research Institute (ETRI), Daejeon 34129, Korea; dhha@etri.re.kr (D.H.);
gomskim@etri.re.kr (M.K.); kdmoon@etri.re.kr (K.M.)
* Correspondence: iamready@etri.re.kr; Tel.: +82-42-860-4937

Abstract: Recent studies have applied the superior performance of deep learning to mobile devices,
and these studies have enabled the running of the deep learning model on a mobile device with
limited computing power. However, there is performance degradation of the deep learning model
when it is deployed in mobile devices, due to the different sensors of each device. To solve this issue,
it is necessary to train a network model specific to each mobile device. Therefore, herein, we propose
an acceleration method for on-device learning to mitigate the device heterogeneity. The proposed
method efficiently utilizes unified memory for reducing the latency of data transfer during network
model training. In addition, we propose the layer-wise processor selection method to consider the
latency generated by the difference in the processor performing the forward propagation step and the
backpropagation step in the same layer. The experiments were performed on an ODROID-XU4 with
the ResNet-18 model, and the experimental results indicate that the proposed method reduces the
latency by at most 28.4% compared to the central processing unit (CPU) and at most 21.8% compared
to the graphics processing unit (GPU). Through experiments using various batch sizes to measure
the average power consumption, we confirmed that device heterogeneity is alleviated by performing
on-device learning using the proposed method.

Keywords: deep learning acceleration; processor selection algorithm; on-device learning; acoustic
scene classification; mobile devices

1. Introduction

Recent developments in computing hardware (e.g., graphics processing units (GPUs)
and tensor processing units (TPUs) [1]) have enabled large scale parallel processing, result-
ing in a substantial reduction in the inference/training time for deep learning on PC/server
platforms. As hardware performance improvements have made neural network models
deeper and wider, the deep learning model has outperformed humans in various fields
such as computer vision, natural language processing, and audio classification [2–6]. Many
recent studies have used the superior performance of deep learning algorithms, which
normally run on PC/server platforms, for their deployment in mobile devices [7–11]. How-
ever, there are several problems to be solved before deep learning applications can be run
on mobile devices.

Device heterogeneity is one of the main challenges encountered when using a mobile
device in the training network model, and it is caused by the differences between mobile
device sensors used to collect the data. The differences between sensors used to gather
training data and those used to classify the test data can cause performance degradation
in the classification model. For example, in the field of acoustic scene classification (ASC),
the classification performance differs by more than 10% depending on the influence of
the microphone used to collect sound [12–15]. To solve this issue, it is desirable to train a
network model using the data collected by the sensor of the mobile device.

Sensors 2021, 21, 2364. https://doi.org/10.3390/s21072364 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4914-0584
https://orcid.org/0000-0002-7221-8303
https://orcid.org/0000-0001-7089-2516
https://doi.org/10.3390/s21072364
https://doi.org/10.3390/s21072364
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21072364
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21072364?type=check_update&version=1

Sensors 2021, 21, 2364 2 of 19

Training the network model on mobile devices can generally be divided into cen-
tralized deep learning and on-device learning. Centralized deep learning is a method of
transmitting data from a mobile device to a server, training it using the server, and trans-
mitting the model trained using the server to the mobile device. In contrast, on-device
learning performs retraining using the data on the mobile device itself. In the case of
centralized deep learning, there are various issues to address such as privacy and com-
munication [16,17]. To overcome these issues, there is an increasing demand for a shift in
training networks from centralized learning to distributed on-device learning.

Another related issue to consider is the limited computing power and memory tradi-
tionally associated with mobile devices. Compared to a desktop computer, mobile devices
have insufficient resources to execute the computationally intensive tasks required for deep
learning training. Therefore, existing studies applying deep learning algorithms to mobile
devices mainly focus on accelerating the deep learning inference, which requires relatively
low computing power. To accelerate the deep learning inference, existing approaches opti-
mize inference for mobile processors [18–20] or perform inference by dividing the model
across multiple computing resources of the mobile device [18,21–25]. Other approaches
focus on enhancing the usability of memory to eliminate data copy time [22,23]. However,
the existing approaches for accelerating deep learning inference cannot directly be applied
for accelerating deep learning training because training the network model involves more
complex components.

Deep learning training is more complex than inference because each layer has many
functions and requires data transfer, as depicted in Figure 1. Deep learning inference is
acyclic because it only performs forward propagation (FP) with the trained model. In con-
trast, training is a cyclical process, which includes FP, backpropagation (BP), and weights
update (UP), whereby the model is trained. The existing method, which efficiently uti-
lizes the computing resources and memory of a mobile device for deep learning infer-
ence/training, does not simultaneously consider data transfer and the cyclic process of
on-device learning. Therefore, a new approach to accelerate deep learning training on
mobile devices is necessary.

Figure 1. Conceptual illustration of the process of training and inference.

To address these challenges, herein, we propose a layer-wise processor selection
method (PSM) on unified memory, accelerating deep learning training by efficiently using
the computing resources (i.e., CPU and GPU) and memory of mobile devices. Our work
presents a method for the efficient use of unified memory and a method of selecting
a processor for each layer that can maximize training efficiency. The unified memory

Sensors 2021, 21, 2364 3 of 19

of mobile devices can be accessed by the CPU and GPU simultaneously, minimizing
the overhead of transferring data between processors during the training process. The
proposed method leverages these systemic features of mobile devices. Although the
overhead of data transfer caused by mapping/unmapping on unified memory can be
ignored in the inference step, the overhead of mapping memory to access data occurs
when the processors of FP and BP are different during neural network training. Therefore,
the training step of the deep learning model has a layer-wise dependency on data transfer.
The proposed layer-wise PSM selects a processor by comparing the mapping/unmapping
overhead and latency per layer including FP, BP, and UP. Therefore, layer-wise PSM can
consider the characteristics of unified memory and the cyclic process of deep learning
training and can lead to the acceleration on the network’s model training.

Specifically, this study makes the following contributions:

• We propose the layer-wise PSM on unified memory to effectively utilize memory and
resources. Compared to existing methods for inference, the proposed method is made
more suitable for deep learning training by considering its cyclic process;

• We explore the usability by applying on-device learning to the ASC field. The per-
formance of on-device learning can be varied by various factors such as batch size
and average power consumption. Through experiments using various batch sizes
to measure the average power consumption, we confirm that device heterogeneity,
which is a challenging issue of ASC, is alleviated by performing on-device learning
using the proposed method.

The remainder of this paper is organized as follows. Section 2 reviews the related
works. Section 3 presents a detailed description of the proposed layer-wise PSM on unified
memory. The experiments and results are presented in Section 4. Finally, the conclusions
and discussions are presented in Section 5.

2. Related Work
2.1. Accelerating Inference/Training of Neural Network on Mobile Devices

Many studies have been conducted on the acceleration of deep learning inference on
mobile devices consisting of heterogeneous processors. One approach to accelerate the deep
learning inference is to optimize the deep neural network for use with a heterogeneous
processor. DeepMon [20] is a system to optimize and execute large deep neural networks on
mobile devices at a low latency. Cappucino [18] has proposed efficient parallel processing
technology and the optimization of the convolutional layers of deep neural networks for a
mobile SoC (system on a chip). In another study, to accelerate the inference, CNNdroid [19]
and Deepear [26] optimized the application of deep learning using mobile GPU and a
digital signal processor (DSP), respectively.

Considering the effective use of the available computing power of mobile devices,
some reports propose methods to execute each layer of the network on different processors.
DeepX [21] and Mosaic [25] distribute the execution of model layers to different comput-
ing resources such as the CPU, GPU, DSP, or neural processing unit (NPU). In contrast,
µlayer [22] proposed the execution of a single neural network layer using both the CPU and
GPU. All the approaches used in previous works [18–22,25,26] are limited in that they only
focus on accelerating the inference by optimizing the neural network model or efficiently
using multiple processors of mobile devices.

From a fundamental point of view, methods making efficient use of the shared memory
of mobile devices have been proposed [22,23]. These studies used shared memory to
eliminate the data copy time between the CPU and GPU [22] or prevent data duplication
for the GPU [23]. However, it can only prevent the duplication of memory or eliminate the
data copy time.

The implementation of deep learning training is more complex than that of deep
learning inference owing to a lack of resources and the complexity of the process. To solve
this issue, a study on deep learning training on mobile devices (DeepMobile) has been
conducted [23,24,27]. DeepMobile [23,27] utilized shared memory to solve the memory

Sensors 2021, 21, 2364 4 of 19

shortage during training and to optimize mobile GPUs to accelerate training on mobile
devices. Another study profiled the latency, data copy time, and search processor pathing
using dynamic programming without shared memory [24]. However, these previous
studies either only use the GPU to execute training or do not use shared memory, resulting
in poor memory efficiency.

2.2. Hardware for Accelerating Neural Network

To improve the speed of deep learning inference/training, several studies have used
dedicated hardware accelerators [1,28–30]. An architecture that uses memory efficiently
for automatic and flexible optimization has been proposed [30]. Studies on DianNao [31]
have proposed various neural network accelerators. Google implemented the TPU, which
is the hardware optimized for deep learning operations, by applying the systolic array to
the hardware [1]. However, previous studies are limited to specific purposes and specific
hardware. Thus, in addition to existing methods requiring cost and effort to manufacture
special hardware, because the hardware is designed for a specific purpose, it also has
inferior flexibility.

2.3. Acoustic Scene Classification (ASC)

To show that on-device learning can solve a device heterogeneity, we used ASC,
because it allows the performance of the model to vary depending on the device that
recorded the sound. ASC is the task of identifying a scene as one of a set of pre-defined
classes from a recorded audio signal. It has gained considerable interest in recent years
owing to its diverse applications. The traditional classification method for ASC uses
the support vector machine (SVM) and Gaussian mixture model (GMM). This method
provides an acceptable classification performance but does not have the high-level feature
abstraction capability of deep learning methodologies. Recently, some neural networks
with deep architecture applied to ASC have been proposed [32,33].

A recent trend in the field of ASC is to adopt data driven methods, wherein acoustic
scene features are learned from data [34]. Among the convolutional neural network
(CNN) models, the ResNet model [35] exhibits high accuracy and thus is typically used
as a backbone neural network model [36–39]. A crucial event in this field is the DCASE
(detection and classification of acoustic scenes and event) challenge, which deals with the
various tasks to tackle the issues of the ASC. Among the various tasks of DCASE, task 1.A
deals with the issue of device heterogeneity. The dataset of task 1.A consists of audio scene
samples recorded from multiple devices as well as simulated sound. The test data are used
to evaluate the generalized performance on sound recorded from unknown devices. The
results of task 1.A indicate that it is difficult to classify sounds recorded with different
devices even if they are in the same scene.

3. Proposed Method

The neural network model consists of multiple layers, and each layer can have multiple
steps, such as FP, BP, and UP, during network model training. The inference stage of the
network model has the same number of layers and steps, whereas the training stage of the
network model may have 2 or 3 times as many steps per layer and requires more computing
power than the inference stage. Therefore, to train a network model on mobile devices
that have limited resources, it is necessary to develop a method that can use memory and
computing resources efficiently.

The existing methods [21,22] focus on minimizing the processing time of each step
and do not consider the data transfer time. When the processors used for the FP and BP
steps are different in the same layer, the total latency of training is affected by memory
access time caused by the data copy. The existing methods do not consider this overhead
and cannot optimize the total latency of network model training. Therefore, we propose
a layer-wise PSM on a unified memory method to optimize the total latency of network

Sensors 2021, 21, 2364 5 of 19

model training considering the overhead due to the processor difference in the same layer.
In this section, we describe the data transfer on unified memory and layer-wise PSM.

3.1. Data Transfer on Unified Memory

Compared to a desktop computer, mobile devices have limited resources and memory.
Deep learning inference typically takes a single piece of data as an input and requires
a small amount of memory for the model. Typically, neural network model training
processes N data at once to use memory efficiently; thus, training requires more memory
than inference. When using N training data simultaneously, deep learning training requires
N times more memory and data than inference. NVIDIA GPUs, which are used for deep
learning training on desktop computers, have access to both host memory and device
memory. As depicted in Figure 2a, because the desktop computer has a separate memory
for the CPU and GPU, performing an operation on the GPU inevitably requires a data copy,
which leads to high latency due to the limited bandwidth of data transfer.

(a) Memory architecture on a desktop. (b) Existing programs on unified memory. (c) Memory architecture of shared memory
on unified memory.

Figure 2. Memory architecture comparison of desktop platforms and mobile devices.

In contrast, mobile devices have a unified memory without physical memory sepa-
ration, as depicted in Figure 2b,c. When performing operations on a different processor,
the existing programs and framework, such as Tensorflow, Darknet-OpenCL, and pyTorch,
use copying to transfer the data, which is an inefficient process. For example, to perform
on the GPU after finishing execution on the CPU, the data used by the CPU must be trans-
ferred to the GPU via copying. Figure 2b shows a data copy between the CPU and GPU
on unified memory. However, the proposed method using unified memory transfer data
for use by one processor is also to be used by a different processor by transferring access
to allocated memory addresses, as depicted in Figure 2c. Our method simply changes the
accessibility of physical memory addresses. Thus, the proposed method can increase the
efficiency of memory usage by preventing memory duplication and data copy. Therefore,
the proposed method can train the network model with a larger number of layers and a
larger batch size and can reduce the latency of training by eliminating the data-transfer
overhead. In addition, the proposed method devises a selection method to find an optimal
processor for each layer for model training on a mobile device using unified memory.

3.2. Layer-Wise Processor Selection Method (PSM)

The latency of each step of the neural network varies depending on the characteristics
of the layer, size of the filter, and size of the input data. When performing deep learning
inferences, ResNet-18 performs the same number of steps as the number of layers. ResNet-
18 [35], which has 31 layers by separating maxpool and shortcut into different layers, is
performed in 31 steps. In contrast, deep learning training requires 82 steps (32 FP, 32 BP,
and 18 UP) because convolutional layers and fully connected layers have a weight update
step. The existing methods accelerate the deep learning inference by selecting a processor
with low latency for each layer, and these methods can be applied to accelerate the deep
learning training. When performing deep learning inference/training on a mobile device,
data must be copied between processors. In addition, as the number of steps increases
in the process of training a network model, data transfer occurs more frequently, and the

Sensors 2021, 21, 2364 6 of 19

overhead increases. Therefore, we need to consider the overhead of data transfer for model
parameters and the output of executing steps, as depicted in Figure 3.

Figure 3. Illustration of the on-device learning with data transfer.

Because training is performed step by step, adjacent steps and layers are affected by
the data transfer of model parameters and training data. Overhead due to data transfer
occurs in two cases: 1. Processors of the current step and the next step are different. Step-
wise input and output data transfer is required. 2. Processors performing FP, BP, and UP in
the same layer are different.

In case 1, the output of the current step is the input data of the next step, as depicted in
case 1 of Figure 3. In case 1 of Figure 3, the step processors of the fourth and fifth layers are
the GPU and CPU, respectively. Since the step processors of the fourth and fifth layers are
different, the output data of the fourth layer step must be copied from the GPU memory to
CPU memory.

Case 2 occurs when FP, BP, and UP are executed by different processors based on the
layer, as depicted in case 2 of Figure 3. In case 2 of Figure 3, the processors of #1 BP of
the fifth layer and #1 UP of the fifth layer are the CPU and GPU, respectively. To update
weights and execute training, data of the model parameters must be copied from the CPU
memory to GPU memory. Additionally, in #1 UP and #2 FP of the fifth layer, the data of
model parameters must be copied from the GPU memory to CPU memory for training.

In deep learning inference, case 2 is not considered because the model weight and
bias do not change. Unlike the inference process, parameters such as model weight and
bias cyclically affect the next training operation in the same layer. The result of FP is used
in BP, and the result of BP is used in UP. The updated weights and bias are used in FP, so

Sensors 2021, 21, 2364 7 of 19

that it can be trained with the next dataset, as depicted in case 2 of Figure 3. Therefore, it is
necessary to cyclically consider the data copy for each layer.

The method with unified memory does not copy data but instead uses the map-
ping and unmapping function to change the memory access. In deep learning inference,
case 1 is ignored because the variables that need to be executed as input and output are
small [22,23,27], and case 2 does not occur because there is no change in the model. How-
ever, in deep learning training, though case 1 can be ignored, case 2 has many variables,
resulting in mapping and unmapping overhead, which should be considered. Therefore,
we focus on case 2, which can significantly impact the latency of network training. Each
of FP, BP, and UP can be performed by either the CPU or the GPU, but they are always
performed in the following order: FP, BP, and UP. Therefore, there are 8 possible permu-
tations of the processors used in that order. In this study, the cases are identified with
three letters according to the order of FP, BP, and UP, with C meaning CPU and G meaning
GPU. Therefore, the 8 cases include CCC, GGG, GGC, GCG, GCC, CCG, CGC, and CGG.
For example, CGG means that the processor for thee FP is the CPU, the processor for the
BP is the GPU, and the processor for the UP is the GPU. To select a processor for each
layer for the proposed layer-wise PSM, we profile 8 layer-wise latencies, data copy time,
and overhead of mapping/unmapping.

Algorithm 1 presents the pseudo code for layer-wise PSM that determines the combi-
nations of processors by layer. In the loop (Lines 4–19), layer-wise PSM iterates the layer
from the first layer to final layer. The shortest time for each layer is compared using the
result of profiling in 8 cases of data copy. It is divided into cases with and without a weight
update. Line 7 is for the weights update, and the fastest combination of processors per
layer is selected, compared to the latency and the 8 data copies profiled per layer. Line 14
is for the case without the weight update. The proposed method compares latency and
four cases (CC, GG, CG, and GC) and selects the processors. After iteration from layer 0 to
the final layer, layer-wise PSM returns the optimal combination of processors by layer.

Algorithm 1 Layer-wise PSM

1: l.latency : Execution time on CPU or GPU per layer
2: l.FPBPdatacopy : Data transfer time on FP and BP per layer
3: l.UPdatacopy : Data transfer time on UP per layer
4: for i = 0→ net.numberO f Layers do
5: l = net.layers[i]
6: min = ∞
7: if l.update is True then
8: l.processor = 0
9: for j = 0→ 8 do

10: temp = l.latency[i] + l.FPBPdatacopy[j] + l.UPdatacopy[j]
11: if min > temp then
12: min = temp
13: net.processors[i] = j
14: else
15: for j = 0→ 4 do
16: temp = l.latency[i] + l.FPBPdatacopy[j]
17: if min > temp then
18: min = temp
19: net.processors[i] = j

return net.processors

The existing methods with shared memory only considers the latency of the processor,
whereas layer-wise PSM considers the data transfer of model parameters in the same layer
in deep learning training. Layer-wise PSM with shared memory is effective in both deep
learning training and inference considering latency and overhead of mapping/unmapping.
Additionally, the layer-wise PSM can effectively reduce the training time of the deep
learning model because it selects the processor with the lowest latency for each layer when
using the mapping/unmapping on shared memory.

Sensors 2021, 21, 2364 8 of 19

4. Experiments
4.1. Experimental Setup

To evaluate the effectiveness of layer-wise PSM on unified memory, we measured
latency, data copy time, overhead of mapping/unmapping, and average power on an
ODROID-XU4 computing device [40]. As a target platform for our experiment, we used
the ODROID-XU4 because it has unified memory, has performance that is similar to a
smartphone, and is suitable for heterogeneous computing due to the performance balance
between the CPU and GPU. The ODROID-XU4 is equipped with a Samsung Exynos
5422 [41] that consists of a four big cores, ARM Cortex-A15 up to 2 Ghz, and four small
cores, ARM Cortex-A7 Octa core CPUs upto 1.4 GHz, and Mali-T628 MP6 GPU. The
Mali-T628 MP6 GPU offer key API support for OpenCL 1.2 Full Profile. The Exynos 5422
has 2 Gbyte LPDDR3 RAM, which is a unified memory that both the CPU and GPU can
physically access in the same location, and support Linux Kernel 4.14 LTS. To measure
the average power of the mobile device, we utilized the high voltage power monitor
(HVPM) [42], as depicted in Figure 4.

Figure 4. Evaluated ODROID-XU4 and high voltage power monitor (HVPM) to measure energy con-
sumption.

To implement our proposed method, we modified the Darknet-OpenCL framework [43],
which is an open-source framework ported from Darknet [44] using CUDA [45] to OpenCL [46].
To accelerate matrix multiplication, which takes up most of the time in deep learning
operations, we modified the basic linear algebra subprograms (BLAS) library of Darknet-
OpenCL, OpenBLAS [47] for CPU, and CLBlast [48] for GPU. OpenBLAS is a BLAS library
optimized for specific processor types and supports acceleration through multiple threads.
CLBlast is a BLAS library based on OpenCL optimized for various OpenCL devices from
different vendors. We modified Darknet-OpenCL to allow both the CPU and GPU to be
used, whereas the unmodified Darknet-OpenCL only allows the use of a single processor.
Our modification eliminates data redundancy in the unified memory and allows the unified
memory to be used by the CPU and GPU simultaneously. We implemented a function
to profile the CPU and GPU execution time and the transfer time between processors.
After profiling is finished, the model is trained by finding the layer-wise optimal processors.

We used a ResNet model, which typically performs well in ASC. To use the model on
mobile devices, which typically have insufficient resources, the small model used ResNet-
18 and applied weighted sum pruning. The architecture structure we used is shown in
Figure 5. In detail, the proposed method performs efficiently by dividing the network
model operation, where the 18 layers of ResNet-18 are divided into 31 layers by dividing
maxpool, avgpool, and shortcut softmax into one layer.

Sensors 2021, 21, 2364 9 of 19

Figure 5. CNN (convolutional neural network) architecture of modified ResNet-18. We applied
weighted sum pruning.

4.2. Experiments of Device Heterogeneity in ASC

To investigate the mitigation of device heterogeneity by applying the proposed method
to the ASC task, we used the dataset of DCASE Task 1.A [49]. The dataset is recorded
from 14 cities and by various devices (3 real devices, 6 simulated devices). To show device
heterogeneity, we selected the data recorded by device A and device B. The device A
dataset consists of 10,215 training data and 330 verification data. The device B dataset
consists of 750 training data and 330 verification data. The dataset comprises audio with a
44.1 kHz sampling rate. To compress the input size, we took 13,850 FFT points with 50%
overlap, and calculated the log-Mel spectogram. The result of a log-Mel spectogram with
64 frequency bins is 64 frames. We calculated deltas and delta-deltas from the log-mel
spectogram. The result of the input size calculated from the audio signal is 64 × 64 × 3.
We labeled both the device A dataset and device B dataset as 3 classes of indoor, outdoor,
and transportation from 10 classes.

To perform deep learning training on a mobile device, we used ResNet-18, the effec-
tiveness of which has already been verified in the ASC field [36–39]. We reduced the size
of the ResNet-18 model, cutting the output of the convolution layer in half by applying
the weighted sum pruning method [50]. The pruned ResNet-18 models used a stochastic
gradient decent (SGD) optimizer with a constant learning rate of 0.001 and batch size set
to 64. The number of epochs was set to 300. Our experiments were conducted using the
Darknet-OpenCL [43] framework.

To solve the issue of device heterogeneity, we used transfer learning [51]. After we
trained the model on the dataset from device A on the server, we deployed the model to
a mobile device. We used the dataset from device B to retrain the model. In the model
with the device A dataset, we used 10,215 training data and 330 validation data. For the
retraining model, the device B dataset consisted of 750 training data and 330 validation data.

The model trained on the device A dataset achieved 70.12% accuracy and was created
by training at the server with the data recorded by device A. When the model trained
on the device A dataset was verified with the device B dataset, the accuracy was 50.12%.
Additionally, the model trained on the device A dataset was retrained on the device B
dataset. As a result, an accuracy of approximately 60.22% was confirmed. The accuracy of
model verification on the device B dataset was 20% lower than that on the device A dataset.
By verifying the model on datasets recorded by different devices, we confirmed device
heterogeneity. After retraining the model on datasets recorded by different devices, we
confirmed that on-device learning can solve this issue.

4.3. Experiments of Proposed Method

To investigate the deep learning training workload, we profiled the latency of each
step in the network model training. In FP, BP, and UP, we confirmed that the latency of each
step is different depending on the characteristics of the layer, the size of the filter, and the
size of the input data [22,24,25]. We profiled the execution time of the CPU and GPU while
training the ResNet-18 model, as depicted in Figure 6. With the result profiled, we could
determine which processor had lower latency. Each layer shows different execution times
on the CPU and GPU. Sincce mobile GPUs have a similar performance to CPUs, processor
execution time varies depending on the characteristics of each layer. In the convolutional
layers between 0 and 16, the latency of the GPU is lower than the latency of the CPU,

Sensors 2021, 21, 2364 10 of 19

as depicted in Figure 6a. In the maxpool and shortcut layers, the latency of the GPU was
lower than the latency of the CPU. Additionally, the latency of the CPU in the avgpool
and softmax layers was lower than the latency of the GPU. With the result of profiling,
the existing method selects the processor with lower execution time for each layer. As
depicted in Figure 6b,c, we can determine which processor has a lower execution time in
the same way as the execution time was checked for BP and UP. Since the training time is
mostly occupied by FP and BP, and the time of UP is less than 0.02, the effect of the update
is small in the existing method.

For the layer-wise PSM to select the optimal process, we profiled 8 cases of different FP,
BP, and UP processors in order, as explained in Section 3.2. We investigated and compared
the data transfer times of the method with shared memory and without shared memory
to confirm the effectiveness of the method. The method without shared memory copied
data between different processors. In contrast, the method with shared memory used
mapping/unmapping to access memory. Figure 7 presents the result of profiling the data
transfer time of the existing method and the method using unified memory. When the
processors of FP and BP are different, such as in the cases of GCG and GCC, more time is
required. This is especially true for BP, which was approximately twice as slow when using
a different processor. In CGC and CGG, data copying takes more time in BP than in FP,
but more mapping overhead is performed in FP than in BP. Additionally, CGC may require
less data copying. However, due to the overall performance of the CPU, the overall learning
time is longer. Layer-wise PSM selects a combination of processors by layer. The result of
profiling latency and data transfer time for each layer is depicted in Figures 6a–c and 7.

The existing methods [21,22] only compare the latency profile and select a processor
at each step. Additionally, the existing methods use their own framework to deploy their
method on mobile devices hence, we cannot directly use their method for performance
comparison. Therefore, we implemented the existing methods using our framework and
these were referred to as the step-wise process selection method. Figure 8 shows the
processor path selected by step-wise and layer-wise PSM with a batch of 32. The selected
processor by step-wise and layer-wise PSM differs by 4 in the BP steps and by 10 in the UP
steps. The processor path selected by the step-wise PSM requires 16 data transfers between
steps and 28 data transfers between layers. On the other hand, the processor path selected
by the layer-wise PSM only requires 11 data transfers per step. The total amount of data
transfer of step-wise PSM is 44, and the total data transfer of layer-wise PSM is 11, which is
four times more than that of step-wise PSM. We confirm that the processor path selected
by the layer-wise PSM is more consistent and effective than the step-wise PSM. Since the
data transfer time is one of the main factors affecting the deep learning training time, we
can expect that the proposed method of selecting the processor path by considering the
data transfer can yield better performance.

Sensors 2021, 21, 2364 11 of 19

0 0.2 0.4 0.6

31 SOFTMAX
30 CONNECTED
29 AVGPOOL
28 SHORTCUT
27 CONV
26 CONV
25 MAXPOOL
24 SHORTCUT
23 CONV
22 CONV
21 SHORTCUT
20 CONV
19 CONV
18 MAXPOOL
17 SHORTCUT
16 CONV
15 CONV
14 SHORTCUT
13 CONV
12 CONV
11 MAXPOOL
10 SHORTCUT
9 CONV
8 CONV
7 SHORTCUT
6 CONV
5 CONV
4 SHORTCUT
3 CONV
2 CONV
1 MAXPOOL
0 CONV

Latency [sec]

CPU GPU

(a) FP

0 0.2 0.4 0.6 0.8 1 1.2
Latency [sec]

CPU GPU

(b) BP

0 0.01 0.02
Latency [sec]

CPU GPU

(c) UP

Figure 6. The result of profiling the latency performed by the CPU and GPU of each step. Forward
propagation (FP); backpropagation (BP); and weights update (UP).

FP-data copy
BP-data copy
UP-data copy

CCC GGG GGC GCG GCC CCG CGC CGG
0

0.2

0.4

0.6

0.8

1

1.2

La
te

nc
y

[s
ec

]

FP-mapping overhead
BP-mapping overhead
UP-mapping overhead

Figure 7. Results of profiling eight cases for data transfer. The three words represent the processor of
the FP step, the processor of the BP step, and the processor of the UP step in order. In this study, C
means CPU, G means GPU.

Sensors 2021, 21, 2364 12 of 19

Figure 8. The results of the processor path being selected by step-wise PSM and layer-wise PSM per
step, and the difference of selected processor between by step-wise PSM and by layer-wise PSM.

Table 1 shows the latency resulting from the proposed method for deep learning
training along with that of single processing and the latency reduction rate. The step-wise
and layer-wise PSM without shared memory reduced the latency by 19.68% and 22.78%,
whereas the step-wise and layer-wise PSM with shared memory reduced the latency by
22.57% and 27.80%, compared to using the CPU alone. The step-wise and layer-wise
PSMs with shared memory have lower latency than those of the two methods not using
shared memory. We confirm that the use of unified memory is important in mobile devices.
Additionally, the layer-wise PSM is better than the step-wise PSM in both the method
with shared memory and without shared memory. Even if it is not a condition of unified
memory, a performance improvement can be noted by using the layer-wise PSM on the
mobile devices. Analyzing these results, layer-wise PSM with shared memory has the
lowest latency.

Table 1. The experiments of training the neural network model with a batch of 32 including latency
executed by step-wise PSM and layer-wise PSM and latency reduction rate compared to CPU.

Latency [s] Reduction Ratio [%]

CPU 11.43 -

GPU 10.57 8.14

Step-wise PSM
without shared memory 9.55 19.68

Step-wise PSM
with shared memory 9.25 23.57

Layer-wise PSM
without shared memory 9.31 22.78

Layer-wise PSM
with shared memory 8.94 27.80

Sensors 2021, 21, 2364 13 of 19

In the proposed method of profiling latency and data transfer time, the layer-wise
PSM is more efficient and consistent than the step-wise PSM. In the maxpool layer, shortcut
layer, and weight update, the execution time is smaller than that of the convolutional layer,
but by selecting a similar processor in a layer-wise PSM, the locality of the processor is
increased. It is effective to consider both the latency and data transfer time of the CPU and
GPU. In batch 32, the layer-wise processor algorithm with shared memory reduced the
latency by 27.80%, compared to the CPU and by 18.25%, compared to the GPU.

4.4. Evalution Experiments
4.4.1. Batch Size

The batch size is an important parameter for deep learning training [52]. As for the
inference, one data comes in with a batch of 1, but in training, more memory is required
corresponding to the batch size. Thus, in on-device learning, it is important to set the
model size and batch size to fit the memory of the device. To see how the batch size affects
the deep learning training speed, we investigated the neural network model training time
according to the batch size.

Figure 9 presents the experimental results of model training latency with PSMs ac-
cording to batch size. As the batch is doubled, the amount of calculation and calculation
time similarly double. So, the difference in processor execution time of each layer becomes
larger. The layer-wise PSM with shared memory has significantly reduced the latency by
28.4% using a batch size of 128 and by 24.42% using a batch size of 16, compared to the
CPU. As the batch size increases, the latency reduction ratio increases. The layer-wise PSM
with shared memory becomes more effective as the batch size is increased.

However, in the case of mobile devices, there is a limit to how much the batch size
can be increased owing to limited memory. When training a model, we have to adjust
the maximum batch size to fit the model size and memory. Therefore, the ratio of latency
reduction according to the batch is important when setting the batch size. In Figure 10, we
can see that both our method and the conventional method increases the reduction rate
as the batch size increases relative to the GPU. However, the latency reduction rate of the
proposed method is higher as the batch size is reduced compared to the step-wise PSM
without shared memory. Therefore, our method, layer-wise PSM with shared memory,
works better with smaller batches than step-wise PSM without shared memory.

16 32 64 128
0

10

20

30

40

50

Batch Size

La
te

nc
y

[s
ec

]

CPU GPU

step-wise PSM without shared memory step-wise PSM with shared memory

layer-wise PSM without shared memory layer-wise PSM with shared memory

Figure 9. The experiments about latency of PSMs according to the batch size.

Sensors 2021, 21, 2364 14 of 19

step-wise PSM
without shared memory

layer-wise
with shared memory

diffrence of ratio
0

5

10

15

20

25

La
te

nc
y

R
ed

uc
ti

on
R

at
io

[%
]

batch16 batch32 batch64 batch128

Figure 10. The result of latency reduction ratio of step-wise PSM on method without shared memory
and layer-wise PSM with shared memory compared to GPU.

4.4.2. Average Power Consumption

Power is an important factor in mobile systems [53]. We measured the average power
consumption according to PSM and batch size. In Figure 11, the step-wise PSM without
shared memory is the method with the smallest reduction rate, and the layer-wise PSM
with shared memory is the method with the largest reduction rate, but the average power
consumption is similar. The results of profiling the average power consumption for the
two methods while changing the batch size are also similar. The latencies of CPU and
GPU differ considerably with the average power consumption. The CPU was selected
27 times, and the GPU was selected 55 times by layer-wise PSM with shared memory,
as depicted in Figure 8. These results indicate that the batch size and the proposed method
do not affect the average power consumption, but they affect the usage cost of the CPU and
GPU. Therefore, the average power consumption is similar, but the larger the batch size,
the greater the performance improvement thus, it is better to use a case with a larger batch
size. However, on mobile devices, the batch size cannot be increased indefinitely according
to the memory and model size. Therefore, considering the average power consumption,
our method is better than training the network model using a single processor, regardless
of batch size.

16 32 64 128
0

2

4

6

8

10

12

Batch Size

A
ve

ra
ge

Po
w

er
C

on
su

m
pt

io
n

[W
]

CPU GPU

step-wise PSM without shared memory step-wise PSM with shared memory

layer-wise PSM without shared memory layer-wise PSM with shared memory

Figure 11. The experiments about average power of PSMs for training per batch size.

Sensors 2021, 21, 2364 15 of 19

4.4.3. Deep Learning Inference

We performed experiments with inference to demonstrate the efficiency of our method.
We measured latency and average power consumption according to batch size. Figure 12
shows the result of latency and reduction ratio according to batch size. We confirmed
that inference takes more time on the GPU than on the CPU when the batch size is large.
Inference has almost no data copy overhead because data transfer only needs to transfer
the results between steps. Therefore, the difference in performance was not significant
between the method with and without the use of shared memory. Nevertheless, the ratio
of reduction varied from 2% to 5%. The reduction rate is not proportional to the batch size.
In Figure 12, the reduction rate was greatest for batch 32, and decreased with increasing
batch size, unlike in training. Our method reduced latency by at most 23.74% with batch
32 and by at least 18.47% with batch 16.

16 32 64 128
0

2

4

6

8

10

12

14

Batch Size

La
te

nc
y

[s
ec

]

CPU GPU

Layer-wise PSM without shared memory Layer-wise PSM with shared memory

0

5

10

15

20

25

30

R
at

io
[%

]

Reduction Ratio

Figure 12. The result of latency executed our method on inference according to batch size. The reduc-
tion rate compared our method to the CPU.

We measured average power consumption to compare layer-wise PSM on inference
and training. In Figure 13, the layer-wise PSM with shared memory reduced average power
consumption by 36% compared to CPU, and results of layer-wise PSM is similar to that
of GPU. This is because the CPU, which consumes a considerable amount of power, is
selected for some layers of the FP. The difference in average power consumption between
the proposed method and the GPU is smaller in the inference than in the training method.
Therefore, the layer-wise PSM is more efficient in inference than in training.

Table 2 shows that although the proposed method improves in inference, it generally
shows better performance in training. The maximum reduction in inference is 23.74% with
a batch size of 32, and in training, the maximum reduction is 28.40% with a batch size of
128. Even in batch 32, we observed a better performance by 27.80% in training than in
inference. The average power consumption compared to the CPU of inference and training
decreased by 36.42% and 35.34% on average, respectively. Average power consumption
compared to CPU is similar for both inference and training. However, because the inference
performance is affected by the processor, the inference is better compared to GPU.

Sensors 2021, 21, 2364 16 of 19

16 32 64 128
0

2

4

6

8

10

12

Batch Size

A
ve

ra
ge

Po
w

er
C

on
su

m
pt

io
n

[W
]

CPU GPU

step-wise PSM without shared memory step-wise PSM with shared memory

Figure 13. The experiments about average power consumption of PSMs per batch size.

Table 2. The reduction ratio of the latency and average power consumption performed by the
proposed method compared to by the CPU.

Latency
Reduction Ratio [%]

Average Power Consumption
Reduction Ratio [%]

Inference Training Inference Training

Batch 16 18.47 24.23 36.06 37.83
Batch 32 23.74 27.80 36.98 33.89
Batch 64 22.88 28.22 37.01 34.32

Batch 128 22.17 28.40 35.66 35.33

5. Conclusions and Discussion

Herein, we proposed layer-wise PSM on unified memory to maximize the usability
of the available resources of mobile devices such as the CPU, GPU, and unified memory.
By using unified memory on a mobile device, we could prevent memory duplication
and eliminate the data copy time during model training. The layer-wise PSM selects a
combination of processors suitable for deep learning training using the result of overhead
profiling. To verify the effectiveness of on-device learning on mobile devices, we applied
the proposed method to ASC, and conducted the experiments in both inference and
training. Specifically, we performed an experiment to determine whether the proposed
method exhibited a performance improvement if various factors that could affect the on-
device learning were changed, including batch size and average power consumption. We
performed experiments by varying the batch size and time and average power consumption
at the inference to compare whether our method was effective in the inference as well.

Experimental results for training indicated that the layer-wise PSM reduced the latency
for model training by 21.84% using a batch size of 128 and 13.83% using a batch size of
16, compared to those measured on the GPU. In addition, the latency reduction rate of
layer-wise PSM, compared to the step-wise PSM without shared memory, was 10.75%
using a batch size of 16 but 4.6% using a batch size of 128. Based on our results, owing
to the limitation of mobile devices to increase the batch size, we can conclude that the
proposed layer-wise PSM method with shared memory was more effective than step-wise
PSM without shared memory. From the perspective of average power consumption, we
confirmed that the batch size and the proposed method did not affect the average power
consumption, but they affected the usage of the CPU and GPU. Therefore, on mobile
devices, our method was more efficient than step-wise PSM without shared memory,
regardless of the batch size. In inference, layer-wise method without shared memory

Sensors 2021, 21, 2364 17 of 19

reduced latency by 23.74% compared to CPU. The layer-wise method with shared memory
reduced latency by 22.50% compared to GPU. The layer-wise method was effective for both
inference and training. The average power consumption for inference was comparable to
that of the GPU. In an inference where most of the time-consuming layers were performed
on the GPU, the average power consumption compared to the GPU was more efficient
than training.

Although the proposed method showed the possibility of accelerating model training
for on-device learning, the evaluation was conducted using a limited selection of devices.
Therefore, it is necessary to measure the performance by applying it to various devices
with different computing resources. In addition, the proposed method has limitations in
improving the accuracy of the model by applying simple pruning to the network model.
However, we expect that additional performance improvements are possible if the model
is made more lightweight by using methods such as knowledge distillation. Currently,
ResNet-18 has been applied with pruning, but until now, the model size and the amount
of computation have been excessively large for on-device learning. With knowledge
distillation, which applies large-sized models to small-sized models, efficient real-time
deep learning training on mobile devices can be expected.

Author Contributions: Conceptualization, D.H., M.K. and C.Y.J.; methodology, D.H., M.K. and
C.Y.J.; software, D.H.; validation, D.H., M.K. and C.Y.J.; formal analysis, D.H.; resources, M.K. and
C.Y.J.; writing—original draft preparation, D.H.; writing—review and editing, D.H., M.K. and C.Y.J.;
supervision, M.K. and K.M.; project administration, M.K. and K.M.; All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by Electronics and Telecommunications Research Institute
(ETRI) grant funded by the Korean government. 21ZS1200, Fundamental Technology Research for
Human-Centric Autonomous Intelligent Systems.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.

In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17, Toronto, ON, Canada, 24–28 June 2017; Association for Computing Machinery: New York, NY,
USA, 2017; pp. 1–12. [CrossRef]

2. Buetti-Dinh, A.; Galli, V.; Bellenberg, S.; Ilie, O.; Herold, M.; Christel, S.; Boretska, M.; Pivkin, I.V.; Wilmes, P.; Sand, W.; et al. Deep
neural networks outperform human expert’s capacity in characterizing bioleaching bacterial biofilm composition. Biotechnol. Rep.
2019, 22, e00321. [CrossRef] [PubMed]

3. Mesaros, A.; Heittola, T.; Virtanen, T. Assessment of human and machine performance in acoustic scene classification: DCASE
2016 case study. In Proceedings of the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), New Paltz, NY, USA, 15–18 October 2017; pp. 319–323. [CrossRef]

4. Kim, K.; Jeong, I.; Cho, J. Design and Implementation of a Video/Voice Process System for Recognizing Vehicle Parts Based on
Artificial Intelligence. Sensors 2020, 20, 7339. [CrossRef] [PubMed]

5. Noh, K.J.; Jeong, C.Y.; Lim, J.; Chung, S.; Kim, G.; Lim, J.M.; Jeong, H. Multi-Path and Group-Loss-Based Network for Speech
Emotion Recognition in Multi-Domain Datasets. Sensors 2021, 21, 1579. [CrossRef]

6. Jeong, C.; Yang, H.S.; Moon, K. A novel approach for detecting the horizon using a convolutional neural network and multi-scale
edge detection. Multidimens. Syst. Signal Process. 2019, 30, 1187–1204. [CrossRef]

7. Chen, Y.; Zheng, B.; Zhang, Z.; Wang, Q.; Shen, C.; Zhang, Q. Deep Learning on Mobile and Embedded Devices: State-of-the-art,
Challenges, and Future Directions. ACM Comput. Surv. (CSUR) 2020, 53, 1–37. [CrossRef]

8. Ota, K.; Dao, M.S.; Mezaris, V.; Natale, F.G.B.D. Deep Learning for Mobile Multimedia: A Survey. ACM Trans. Multimed. Comput.
Commun. Appl. 2017, 13. [CrossRef]

9. Wang, J.; Cao, B.; Yu, P.; Sun, L.; Bao, W.; Zhu, X. Deep Learning towards Mobile Applications. In Proceedings of the 2018
IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–5 July 2018; pp. 1385–1393.
[CrossRef]

http://doi.org/10.1145/3079856.3080246
http://dx.doi.org/10.1016/j.btre.2019.e00321
http://www.ncbi.nlm.nih.gov/pubmed/30949441
http://dx.doi.org/10.1109/WASPAA.2017.8170047
http://dx.doi.org/10.3390/s20247339
http://www.ncbi.nlm.nih.gov/pubmed/33371291
http://dx.doi.org/10.3390/s21051579
http://dx.doi.org/10.1007/s11045-018-0602-4
http://dx.doi.org/10.1145/3398209
http://dx.doi.org/10.1145/3092831
http://dx.doi.org/10.1109/ICDCS.2018.00139

Sensors 2021, 21, 2364 18 of 19

10. Zhang, C.; Patras, P.; Haddadi, H. Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Commun. Surv. Tutor.
2019, 21, 2224–2287. [CrossRef]

11. Jeong, C.Y.; Kim, M. An Energy-Efficient Method for Human Activity Recognition with Segment-Level Change Detection and
Deep Learning. Sensors 2019, 19, 3688. [CrossRef]

12. Changmin, K.; Soonshin, S.; Ji-Hwan, K. Multi-Channel Feature Using Inter-Class and Inter-Device Standard Deviations for Acoustic
Scene Classification; Technical Report, DCASE 2020; IEEE Signal Processing Society: New York, NY, USA, 2020.

13. Fanioudakis, E.; Vafeiadis, A. Investigating Temporal and Spectral Sequences Combining GRU-Rnns for Acoustic Scene Classification;
Technical Report, DCASE 2020; IEEE Signal Processing Society: New York, NY, USA, 2020.

14. Hu, H.; Yang, C.H.H.; Xia, X.; Bai, X.; Tang, X.; Wang, Y.; Niu, S.; Chai, L.; Li, J.; Zhu, H.; et al. Device-Robust Acoustic Scene
Classification Based on Two-Stage Categorization and Data Augmentation; Technical Report, DCASE 2020; IEEE Signal Processing
Society: New York, NY, USA, 2020.

15. Wang, P.; Cheng, Z.; Xu, X. Acoustic Scene Classification with Device Mismatch Using Data Augmentation by Spectrum Correction;
Technical Report, DCASE 2020; IEEE Signal Processing Society: New York, NY, USA, 2020.

16. Xu, G.; Li, H.; Ren, H.; Yang, K.; Deng, R.H. Data Security Issues in Deep Learning: Attacks, Countermeasures, and Opportunities.
IEEE Commun. Mag. 2019, 57, 116–122. [CrossRef]

17. Kholod, I.; Yanaki, E.; Fomichev, D.; Shalugin, E.; Novikova, E.; Filippov, E.; Nordlund, M. Open-Source Federated Learning
Frameworks for IoT: A Comparative Review and Analysis. Sensors 2021, 21, 167. [CrossRef]

18. Motamedi, M.; Fong, D.; Ghiasi, S. Cappuccino: Efficient CNN Inference Software Synthesis for Mobile System-on-Chips. IEEE
Embed. Syst. Lett. 2019, 11, 9–12. [CrossRef]

19. Latifi Oskouei, S.S.; Golestani, H.; Hashemi, M.; Ghiasi, S. CNNdroid: GPU-Accelerated Execution of Trained Deep Convolutional
Neural Networks on Android. In Proceedings of the 24th ACM International Conference on Multimedia, MM ’16, Amsterdam,
The Netherlands, 15–19 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1201–1205.
[CrossRef]

20. Nguyen Huynh, L.; Lee, Y.; Balan, R. DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision
Applications. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, Niagara
Falls, NY, USA, 19–23 June 2017; pp. 82–95. [CrossRef]

21. Lane, N.D.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C.; Jiao, L.; Qendro, L.; Kawsar, F. DeepX: A Software Accelerator for
Low-Power Deep Learning Inference on Mobile Devices. In Proceedings of the 2016 15th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), Vienna, Austria, 11–14 April 2016; pp. 1–12. [CrossRef]

22. Kim, Y.; Kim, J.; Chae, D.; Kim, D.; Kim, J. µlayer: Low Latency On-Device Inference Using Cooperative Single-Layer Acceleration
and Processor-Friendly Quantization. In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19, Dresden, Germany,
25–28 March 2019; Association for Computing Machinery: New York, NY, USA, 2019. [CrossRef]

23. Valery, O.; Liu, P.; Wu, J.J. A collaborative CPU-GPU approach for deep learning on mobile devices. Concurr. Comput. Pract. Exp.
2019, 31, e5225. [CrossRef]

24. Ha, D. Improving Speed of Deep learning Assigning Tasks from Processing Units on Embedded Device. Master’s Thesis,
Chungnam National University, Daejeon, Korea, 2020.

25. Han, M.; Hyun, J.; Park, S.; Park, J.; Baek, W. MOSAIC: Heterogeneity-, Communication-, and Constraint-Aware Model Slicing
and Execution for Accurate and Efficient Inference. In Proceedings of the 2019 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Seattle, WA, USA, 23–26 September 2019; pp. 165–177. [CrossRef]

26. Lane, N.D.; Georgiev, P.; Qendro, L. DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments
Using Deep Learning. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’15, Umeda, Osaka, Japan, 7–11 September 2015; Association for Computing Machinery: New York, NY, USA, 2015;
pp. 283–294. [CrossRef]

27. Valery, O.; Liu, P.; Wu, J. CPU/GPU Collaboration Techniques for Transfer Learning on Mobile Devices. In Proceedings of the
2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), Shenzhen, China, 15–17 December 2017;
pp. 477–484. [CrossRef]

28. Capra, M.; Bussolino, B.; Marchisio, A.; Shafique, M.; Masera, G.; Martina, M. An Updated Survey of Efficient Hardware
Architectures for Accelerating Deep Convolutional Neural Networks. Future Internet 2020, 12, 113. [CrossRef]

29. Wang, T.; Wang, C.; Zhou, X.; Chen, H. An Overview of FPGA Based Deep Learning Accelerators: Challenges and Opportunities.
In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
Zhangjiajie, China, 10–12 August 2019; pp. 1674–1681. [CrossRef]

30. Kim, H.; Lyuh, C.G.; Kwon, Y. Automated optimization for memory-efficient high-performance deep neural network accelerators.
ETRI J. 2020, 42, 505–517. [CrossRef]

31. Chen, Y.; Chen, T.; Xu, Z.; Sun, N.; Temam, O. DianNao Family: Energy-Efficient Hardware Accelerators for Machine Learning.
Commun. ACM 2016, 59, 105–112. [CrossRef]

32. Sophiya, E.; Jothilakshmi, S. Deep Learning Based Audio Scene Classification. In Proceedings of the International Conference on
Computational Intelligence, Cyber Security, and Computational Models, Coimbatore, India, 14–16 December 2017; pp. 98–109._9.
[CrossRef]

http://dx.doi.org/10.1109/COMST.2019.2904897
http://dx.doi.org/10.3390/s19173688
http://dx.doi.org/10.1109/MCOM.001.1900091
http://dx.doi.org/10.3390/s21010167
http://dx.doi.org/10.1109/LES.2018.2815954
http://dx.doi.org/10.1145/2964284.2973801
http://dx.doi.org/10.1145/3081333.3081360
http://dx.doi.org/10.1109/IPSN.2016.7460664
http://dx.doi.org/10.1145/3302424.3303950
http://dx.doi.org/10.1002/cpe.5225
http://dx.doi.org/10.1109/PACT.2019.00021
http://dx.doi.org/10.1145/2750858.2804262
http://dx.doi.org/10.1109/ICPADS.2017.00069
http://dx.doi.org/10.3390/fi12070113
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2019.00229
http://dx.doi.org/10.4218/etrij.2020-0125
http://dx.doi.org/10.1145/2996864
http://dx.doi.org/10.1007/978-981-13-0716-4_9

Sensors 2021, 21, 2364 19 of 19

33. Piczak, K.J. Environmental sound classification with convolutional neural networks. In Proceedings of the 2015 IEEE 25th
International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA, USA, 17–20 September 2015; pp. 1–6.
[CrossRef]

34. Abeßer, J. A Review of Deep Learning Based Methods for Acoustic Scene Classification. Appl. Sci. 2020, 10, 2020. [CrossRef]
35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
36. Suh, S.; Park, S.; Jeong, Y.; Lee, T. Designing Acoustic Scene Classification Models with CNN Variants; Technical Report, DCASE 2020;

IEEE Signal Processing Society: New York, NY, USA, 2020.
37. Koutini, K.; Eghbal-zadeh, H.; Widmer, G.; Kepler, J. CP-JKU Submissions to DCASE’19: Acoustic Scene Classification and Audio

Tagging with REceptive-Field-Regularized CNNs. In Proceedings of the Detection and Classification of Acoustic Scenes and
Events 2019 Workshop (DCASE2019), New York, NY, USA, 25–26 October 2019; pp. 25–26.

38. McDonnell, M.D.; Gao, W. Acoustic Scene Classification Using Deep Residual Networks with Late Fusion of Separated High and
Low Frequency Paths. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Virtual Conference, 4–8 May 2020; pp. 141–145. [CrossRef]

39. Liu, M.; Wang, W.; Li, Y. The System for Acoustic Scene Classification Using Resnet; Technical Report, DCASE 2019; IEEE Signal
Processing Society: New York, NY, USA, 2019.

40. ODROID XU4. Available online: https://www.hardkernel.com/ (accessed on 2 February 2021).
41. Exynos 5422. Available online: https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/

exynos-5-octa-5422/ (accessed on 2 February 2021).
42. High Voltage Power Monitor. Available online: https://www.msoon.com/high-voltage-power-monitor (accessed on 2

February 2021).
43. Sowa, P.; Izydorczyk, J. Darknet on OpenCL: A Multi-Platform Tool for Object Detection and Classification. 2020.

preprints202007.0506.v1. Available online: https://www.preprints.org/manuscript/202007.0506/v1 (accessed on 2 February
2021).

44. Darknet: Open Source Neural Networks in C. Available online: https://pjreddie.com/darknet/ (accessed on 2 February 2021).
45. NVIDIA; Vingelmann, P.; Fitzek, F.H. CUDA, Release: 10.2.89. 2020. Available online: https://developer.nvidia.com/cuda-toolkit.

(accessed on 2 February 2021).
46. Stone, J.E.; Gohara, D.; Shi, G. OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems. Comput. Sci.

Eng. 2010, 12, 66–73. [CrossRef] [PubMed]
47. Xian-yi, Z.; Qian, W.; Yun-quan, Z. Openblas: A High Performance Blas Library on Loongson 3a cpu. 2011. Available online:

https://www.openblas.net/ (accessed on 2 February 2021).
48. Nugteren, C. CLBlast: A Tuned OpenCL BLAS Library. In Proceedings of the International Workshop on OpenCL, Association

for Computing Machinery, IWOCL ’18, Oxford, UK, 14–16 May 2018. [CrossRef]
49. Mesaros, A.; Heittola, T.; Virtanen, T. A multi-device dataset for urban acoustic scene classification. In Proceedings of the

Detection and Classification of Acoustic Scenes and Events 2018 Workshop (DCASE2018), Surrey, UK, 19–20 November 2018;
pp. 9–13.

50. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
51. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
52. Kandel, I.; Castelli, M. The effect of batch size on the generalizability of the convolutional neural networks on a histopathology

dataset. ICT Express 2020, 6, 312–315. [CrossRef]
53. Pramanik, P.K.D.; Sinhababu, N.; Mukherjee, B.; Padmanaban, S.; Maity, A.; Upadhyaya, B.K.; Holm-Nielsen, J.B.; Choudhury, P.

Power Consumption Analysis, Measurement, Management, and Issues: A State-of-the-Art Review of Smartphone Battery and
Energy Usage. IEEE Access 2019, 7, 182113–182172. [CrossRef]

http://dx.doi.org/10.1109/MLSP.2015.7324337
http://dx.doi.org/10.3390/app10062020
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ICASSP40776.2020.9053274
https://www.hardkernel.com/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.msoon.com/high-voltage-power-monitor
https://www.preprints.org/manuscript/202007.0506/v1
https://pjreddie.com/darknet/
https://developer.nvidia.com/cuda-toolkit.
http://dx.doi.org/10.1109/MCSE.2010.69
http://www.ncbi.nlm.nih.gov/pubmed/21037981
https://www.openblas.net/
http://dx.doi.org/10.1145/3204919.3204924
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1016/j.icte.2020.04.010
http://dx.doi.org/10.1109/ACCESS.2019.2958684

	Introduction
	Related Work
	 Accelerating Inference/Training of Neural Network on Mobile Devices
	Hardware for Accelerating Neural Network
	 Acoustic Scene Classification (ASC)

	Proposed Method
	 Data Transfer on Unified Memory
	Layer-Wise Processor Selection Method (PSM)

	Experiments
	Experimental Setup
	Experiments of Device Heterogeneity in ASC
	Experiments of Proposed Method
	Evalution Experiments
	Batch Size
	Average Power Consumption
	Deep Learning Inference

	Conclusions and Discussion
	References

