
Autonomous trail-following unmanned aerial
vehicle system based on resource partitioning of
single hardware platform

Yoojin Lim, Kyungil Kim, Jinah Shin,
and Chaedeok Lim
Electronics and Telecommunications Research Institute, Daejeon, South
Korea

As deep neural networks are spreading to almost all fields, flight
systems in the unmanned aerial vehicle (UAV) domain are undergoing
various transitions to intelligent systems. Among these transitions—in
a bid to reduce flight risk—is the active research domain of autonomous
navigation for intelligent UAVs. The autonomous trail-following flight
system that this letter introduces can safely consolidate flight control
and mission control within the latest commercial hardware platform.
The resource usage and degradation of pass-through delay in vision-
based convolutional neural network workloads show that virtualisation
overhead is not significantly negative, and the overall performance
of the introduced system is acceptable. Real-time cooperation is also
verified as achievable—in that the workloads incur minimal com-
munication delay—between the controls. Finally, the actual field test
analysis demonstrates the applicability of our autonomous UAV system,
whereby our system controls the UAV to follow the centre of a set trail.

Introduction: Recently, deep neural network (DNN) technologies have
been actively studied and applied in order to raise the bar regarding in-
telligence in system control domains, such as unmanned aerial vehicles
(UAVs). Prior works [1, 2] focus on enhancing the performance of spe-
cific missions such as tracking or monitoring within a UAV platform.
Other research projects [3, 4] focus on improving UAV-related features,
such as flight control or safety. With a focus on reducing flight risk or en-
hancing flight precision, autonomous navigation for UAVs is one of these
actively studied domains. Research in [5] proposed a UAV guiding sys-
tem based on image processing plans to include an artificial intelligence
module for more accurate flight control in future work. Unlike prior re-
search projects, which used a commercial flight controller (FC) device
or did not use DNN-based missions, our work demonstrates a consoli-
dated autonomous flight system that runs the partitioned controllers on
one hardware platform.

The main functions of an autonomous trail-following flight system—
the system that forms the focus of this study—are flight control and mis-
sion control. The FC manages a UAV’s attitude and flight routes based on
data gathered from its sensor and the external pilot, whereas the mission
controller manages the purpose of the flight while also performing non-
flight functions. The autonomous flight system that this work proposes
has a cooperating and integrating architecture, in which a convolutional
neural network (CNN)-based mission controller (MC) assists an FC, us-
ing the results gathered from processing real-time image data.

System structure for autonomous trail-following UAV: The proposed
UAV system should be able to support the real-time cooperation be-
tween the FC and the MC on a single embedded hardware platform.
The system should also be able to follow a trail in real-time to achieve
autonomous flight while simultaneously adjusting its route to stay near
the centre of the trail and avoid the trail edge. As demonstrated in Fig-
ure 1, to satisfy these requirements, the autonomous UAV, implemented
on a partitioning hypervisor, performs CNN-based missions in the MC.
Based on the results, it delivers the movement commands to the FC. Ap-
plying hypervisor technology to a consolidated flight system [6] is both
reasonable and attractive because a hypervisor can both handle and inde-
pendently operate the software and hardware features required for each
system without conflicts. The MC uses micro air vehicle robot operating
system (MAVROS), one of the robot operating system (OS) packages,
for MC–FC communication through which it monitors the current status
of the UAV and provides trail-following commands.

Trail navigation and position recognition algorithms are used for
CNN-based missions, similar to the head direction and lateral offset of

Fig 1 Conceptual data flow overview for the autonomous unmanned aerial
vehicle (UAV) with vision-based trail-following flight

a vision-based bike trail-following approach [3, 4]. These algorithms
control a UAV to follow a given trail while maintaining a position at
near-centre of the trail. To explain in more detail, the trail navigation—a
monocular vision system—is a CNN-based algorithm used to detect and
track the trail according to clear distinctions. This algorithm allows the
UAV to detect the direction in which a trail is located or whether a trail
even exists, helping it to decide the direction to travel in. The MC per-
forms the mission algorithm, detecting and tracking trails in real-time
based on images obtained from the camera. The position recognition al-
gorithm recognises the location of the UAV above the trail and guides its
movement along the centre of the trail. These two CNN-based mission
algorithms are performed both independently and in parallel through
TensorFlow. The direction commands received from each mission are
integrated into a MAVROS setpoint and delivered to the FC.

Implementation of consolidated UAV system: The details regarding the
FC, the MC, and the partitioning hypervisor are as follows: Qplus-AIR
is an avionic 64-bit real-time OS that supports temporal and spatial par-
titioning based on ARINC653 interfaces. It is DO-178B Level A cer-
tified and has been successfully tested for unmanned aircraft system
flying [7]. Linux for Tegra (L4T) is an Ubuntu-based 64-bit general-
purpose OS and NVIDIA’s officially distributed board support package
for the NVIDIA Jetson board—the kernel version is 4.4.8. The research
prototype of a proprietary hypervisor (named EARTH) is a type 1 full-
virtualisation technique based on architecture (ARM) virtualisation ex-
tensions. EARTH is designed to support the reusability of a guest OS and
minimise the overhead for hardware resource virtualisation. It isolates
various resources such as the central processing unit (CPU) core, mem-
ory region, and peripheral input/output devices while booting the sys-
tem and allocates them to guest OSs statically. Furthermore, it provides
the functionality for shared memory-based communication among guest
OSs. Additionally, EARTH is certifiable with Radio Technical Commis-
sion for Aeronauts DO-178C Level A, such as PikeOS and VxWorks.

The hardware platform used for the target UAV system is NVIDIA
Tegra X2 (TX2), which is a common embedded platform for artificial
intelligence-based applications. TX2 has six cores in two ARM-based
CPU clusters. It provides a physical memory of 8 GB and a graphics
processing unit (GPU) of 256 Compute Unified Device Architecture
cores. It also includes communication buses, such as universal asyn-
chronous receiver/transmitters (UART) and serial peripheral interfaces
(SPI), through a connected developer kit. For the sensor board, which
is essential to the flight operation of UAVs, Emlid’s NAVIO2 is used.
This device has sensors for an inertial measurement unit, global posi-
tioning system, and barometer, and it provides pulse-width modulation
outputs and extension ports independently. The camera for the vision-
based CNN workloads is a Microsoft HD-3000, and the video frame
is 720p at 30 fps. Also, the UAV consists of a Tarot X6 hexacopter
frame, Hobbywing XRotor Pro 50A electronic speed controllers, Tarot
5010 300KV motors, an OrangeRx R620X V3 6Ch receiver, a Holybro
telemetry radio 915 Mhz transceiver, and the implemented TX2.

In the architecture of the autonomous UAV system, EARTH vir-
tualises and partitions the hardware resources of TX2 as shown in

ELECTRONICS LETTERS March 2021 Vol. 57 No. 6 wileyonlinelibrary.com/iet-el 245

https://orcid.org/0000-0002-8107-2553
http://wileyonlinelibrary.com/iet-el


Fig 2 Implemented system architecture for autonomous UAV

Figure 2. EARTH allocates partitioned resources and manages access
to support the independent execution of guests, including the FC and
the MC. It also provides inter-virtual machine communication (IVC) to
allow for inter-guest communication. For the FC, Qplus-AIR was used
with one core and 256 MB. It creates a partition, operating the well-
known FC application PX4, version 1.5.4. The Qplus-AIR kernel pro-
vides a special-purpose function that allows an application kernel-level
access to memory. This means that PX4 can directly access the shared
memory and perform IVC with the MC. EARTH allocates SPI buses for
NAVIO2 to the FC, and the FC uses these to acquire sensing data and
control the motors. For the MC to locate the UAV position and run the
trail navigation, NVIDIA’s L4T was used with four cores and 7 GB al-
located. In the L4T, TensorFlow is installed to execute the CNN-based
mission algorithms, and the MAVROS package and IVC driver provided
by EARTH are installed to send generated setpoint commands to the
PX4 of the FC through IVC. EARTH allocates most of the device re-
sources such as USB and communication ports to the MC, and the MC
uses these to obtain vision data from the camera and communicates with
the ground control station. In the remaining domain, a 32-bit shell guest
is enabled that supports UART communication and is used for moni-
toring statistical measurement and functional tests to develop the UAV
system.

Measuring overhead from CNN workloads: The results of this test are
based on a performance analysis of the MC with regards to operating
mission algorithms simultaneously. The results indicate that the virtual-

Fig 3 Central processing unit, graphics processing unit (GPU), and memory
usage of native Linux for Tegra (L4T) and L4T on EARTH during convolu-
tional neural network workloads run; in GPU cases, the median value was
used to simplify the fluctuating usage line (a) resource usage of native L4T,
(b) resource usage of L4T on EARTH

isation overhead of EARTH does not have a significant negative effect
on the overall system performance.

While running the CNN workloads with trail navigation and position
recognition algorithms, the resource usage of CPU, GPU, and memory
in the native L4T and EARTH-based L4T environments were checked
to evaluate the performance overhead of EARTH. Both algorithms used
either six or 12 layers, and four combinations for the CNN workload
cases were used. In this test, to measure the overhead of EARTH for
the CNN workloads, hardware resources were allocated to a guest L4T,
similar to the native L4T. Thus, four CPU cores and 7.75 GB memory
were allocated to the guest L4T, except for in the regions used by the
test features of EARTH. To check the usage of memory, CPU, and GPU,
the NVIDIA utility tegrastats was used, and each item was measured at
10 Hz.

Figure 3 shows the usages of CPU, GPU, and memory when perform-
ing the CNN workloads in native L4T and L4T on EARTH. It was found
that the usages of the two cases were extremely similar in all combina-
tions of layers. Once the CNN workloads were executed, the resource
usages of GPU and memory rapidly increased for 35 s, as the neural
network expanded, after which the usages stabilised. Table 1 shows the
average and standard deviation of each resource usage in the peak sec-
tion of the CNN workloads between 35 and 100 s. CPU and GPU re-
source usages in the EARTH environment were slightly lower than those
in the native environment, primarily due to the overhead of hardware re-
source virtualisation. Another reason is the difference in allocated phys-
ical memory size. The memory resource usage of L4T on EARTH was
approximately 1.7% higher on average, but the amount of available data
per unit time was relatively small. This is why the CPU and GPU usages
were relatively low.

Even if each resource generates only a small overhead, it is the com-
bined overhead of all resources that affects the workload execution
time. Table 2 shows the neural network pass-through time in relation

Table 1. Average hardware resource usage of native Linux for Tegra (L4T) and L4T on EARTH during the peak period of convolutional neural
network workloads

Central processing unit usage Graphics processing unit usage Memory usage

Mission
controller TN+PR layer AVG STD AVG STD AVG STD Size

Native L4T 6+6 40.32 5.77 88.48 27.26 79.64 0.02 6252

6+12 40.93 5.62 87.83 28.14 79.27 0.02 6223

12+6 39.28 5.71 87.63 28.16 79.34 0.02 6228

12+12 41.26 5.51 88.40 27.02 77.41 0.02 6075

L4T on EARTH 6+6 40.10 6.43 87.61 27.85 81.85 0.05 5999

6+12 39.36 6.39 86.65 29.27 81.43 0.13 5975

12+6 39.30 6.31 87.46 28.10 79.77 0.05 5854

12+12 39.29 6.21 87.31 27.96 79.46 0.02 5831

Notes: Unit: percent and megabyte.
TN: trail navigation; PR: position recognition; AVG: average; STD: standard deviation.

246 ELECTRONICS LETTERS March 2021 Vol. 57 No. 6 wileyonlinelibrary.com/iet-el

http://wileyonlinelibrary.com/iet-el


Table 2. Average pass-through time per layer under CNN workloads
of native L4T and L4T on EARTH

Native L4T L4T on EARTH

TN+PR layer TN PR TN PR

6+6 10,381 10,089 11,190 10,576

6+12 10,237 10,724 11,191 11,774

12+6 10,871 10,328 11,515 11,082

12+12 10,599 10,413 11,264 10,880

Notes: Unit: microsecond.
TN: trail navigation; PR: position recognition.

Table 3. Micro air vehicle robot operating system (MAVROS)
communication frequency on PIXHAWK2 and PX4 on EARTH

PX4 on EARTH Pixhawk2

MAVROS topic
W/ MC W/o

MC
W/ MC W/o

MC

Mavros/altitude 10 10 10 10

Mavros/imu/data_raw 46 46 50 50

Mavros/imu/mag 46 46 50 50

Mavros/local_position/pose 28 28 30 30

Mavros/local_position/velocity 28 28 30 30

Mavros/state 1 1 1 1

Mavros/target_actuator_control 10 10 10 10

Mavros/setpoint_position/local 7.5 7.5 8 8

Mavros/timesync_status 10 10 10 10

Notes: Unit: hertz.

to the number of CNN layers with or without EARTH. Regardless of
the combination of layers, it took a similar time for all resources to
process sensing data, though there was an average delay of 6.5%. This
delay can be understood as a 6.5% average decrease, compared with the
native MC, in terms of response speed for processing the sensing data of
the EARTH-based UAV. However, this occurs merely on a microsecond
level. Thus, given the requirements and the overall performance of the
target system, it has little impact and is acceptable.

Measuring overhead of data communication: The results of this test
were used to analyse the effect of EARTH’s FC–MC communication
frequency and workloads on IVC function. The communication fre-
quency of Pixhawk2—a commercial FC board—was measured to com-
pare and analyse the communication frequency of PX4, the target FC.
The version of PX4 on EARTH is 1.5.4, while the version of PX4 on
Pixhawk 2 is 1.8.2. The MAVROS topic frequency was measured for
each case according to the presence or absence of the CNN workload
operation on the MC. According to the results displayed in Table 3,
the MAVROS topic frequency of PX2 installed on the MC was either
equivalent to the MAVROS frequency of Pixahawk2 or degraded by 8%
or less, with the degradation being adjustable. The consistent commu-
nication frequency of the MAVROS topic, regardless of whether the
MC operated, indicates that the CNN workloads operating on the MC
do not affect FC–MC IVC. Additionally, this consistency demonstrates
that the application of IVC for the cooperation of the MC and the FC
does not lead to negative impacts caused by the CNN missions, such as
latency.

Field test of FC-MC cooperated autonomous flight: The final test re-
sults demonstrate that the guest FC on EARTH can facilitate UAV
flight by adjusting the flight route through trail navigation and posi-
tion recognition with the MC of other guests. Such cooperation sig-

Fig 4 Flight route and yaw graph of two assembled autonomous UAVs
(a) field test result from Pixhawk2 connected to native L4T, (b) field test result
from flight system with PX4 and L4T on EARTH

nifies that the two isolated FC and MC systems can perform their
mission independently while also sharing the results of the mission
in real-time through IVC. In other words, the results demonstrate
the proper functionality and applicability of the autonomous flight
system.

The assembled UAVs flew a one-way distance of approximately 70 m
at the speed of human walking. Flight data was recorded using ulog—a
log file officially supported by PX4—to visualise the flight route ad-
justments of the two flight systems, the consolidated FC-MC system on
EARTH and a commercial Pixhawk2 connected to MC. The created logs
included data transmitted as uORB messages and flight motion. In ad-
dition, PX4 provides a tool to analyse the log at https://logs.px4.io, and
the route maps and graphs in Figures 4(a) and (b) were obtained via this
online tool. In the satellite maps, the black quadcopter icon indicates the
location of the source, and the yellow line shows the flight route to the
destination. Neither flight route was a straight line between the source
and the destination. As shown on the maps, the UAV flew within the trail
and adjusted its route so as not to deviate from the trail when it reached
the trail boundaries.

While travelling to the destination—according to the results of trail
navigation and position recognition on the MC—if the UAV reached the
edge of the trail, it adjusted its yaw to travel as trained. This is why the
flight route was not straight. This adjustment can also be clearly seen
in the yaw setpoint graphs. The area of the offboard flight mode is the
period in which the FC guest adjusted the route by the MC guest and
where yaw setpoint values were not consistent. Such fluctuating yaw
setpoint values indicate that the MC sent the setpoint message to the
FC to adjust the forwarding angle to prevent deviation. If there were
no MC, the yaw values would remain consistent. Furthermore, though
the two systems have a different FC and hardware structure, the fluc-
tuations of the tendency and degrees on the yaw graphs are similar. It
represents the proper functionality of the demonstrated autonomous
flight system.

Conclusion: This work designed and implemented an autonomous trail-
following flight system that safely consolidates an MC and FC on the
latest single high-performance commercial hardware platform as op-
posed to separate boards. The flight system, which is implemented based
on EARTH, demonstrated its functionality using the CNN-based trail-
following application. When performing the CNN workloads in the im-
plemented system, the degradation of resource usage in the Linux guest
was 1.7% or lower, on average, compared with the usage and the pass-
through time of the native Linux. The pass-through delay in each layer
of the neural network was, on average, 6.5% or less. In addition, real-
time flight control was achieved in an environment in which the speed
of the IVC between the FC and the MC was satisfied, and the workloads
on the MC did not affect the data communication frequency. The flight
test results from the two different flight systems demonstrated cooper-
ation between the FC and the MC, both practically and visually, based

ELECTRONICS LETTERS March 2021 Vol. 57 No. 6 wileyonlinelibrary.com/iet-el 247

http://wileyonlinelibrary.com/iet-el


on the CNN workload and represented the proper functionality of the
demonstrated system.

Acknowledgements: This work was supported by the Institute of
Information and Communications Technology Planning and Eval-
uation (IITP) Grant (No.2017-0-00067, Development of ICT Core
Technologies for Safe Unmanned Vehicles) and the National Research
Foundation of Korea (NRF) Grant (No.NRF-2020M3C1C2A01080819,
DNA+ Drone Technology Development Program) that are
funded by the Ministry of Science and ICT (MSIT), Republic of
Korea.

© 2021 The Authors. Electronics Letters published by John Wiley &
Sons Ltd on behalf of The Institution of Engineering and Technology

This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.
Received: 13 November 2020 Accepted: 12 January 2021
doi: 10.1049/ell2.12099

References

1 Nie, J., Luo, T., Li, H.: Automatic hotspots detection based on UAV in-
frared images for large-scale PV plant. Electron. Lett. 56(19), 993–995
(2020)

2 Han, Y., et al.: Boundary-aware vehicle tracking upon UAV. Electron.
Lett. 56(17), 873–876 (2020)

3 Back, S., et al.: Autonomous UAV trail navigation with obstacle avoid-
ance using deep neural networks. J. Intell. Rob. Syst. 100, 1195–1211
(2020)

4 Smolyanskiy, N., et al.: Toward low-flying autonomous MAV trail navi-
gation using deep neural networks for environmental awareness. In: IROS
IEEE/RSJ 2017, Vancouver, BC, Canada, pp. 4241–4247 (2017)

5 Basso, M., de Freitas, E.P.: A UAV guidance system using crop row detec-
tion and line follower algorithms. J. Intell. Rob. Syst. 97, 605–621 (2020)

6 Gaska, T., Werner, B., Flagg, D.: Applying virtualization to avionics sys-
tems - the integration challenges. In: DASK IEEE/AIAA 29th, Salt Lake
City, UT, USA, pp. 5.E.1-1–5.E.1-19 (2010)

7 Yoon, S., et al.: Timed model-based formal analysis of a scheduler of
Qplus-AIR, an ARINC-653 Compliance RTOS. IEICE Trans. Inf. Syst.
E100.D(10), 2644–2647 (2017)

248 ELECTRONICS LETTERS March 2021 Vol. 57 No. 6 wileyonlinelibrary.com/iet-el

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-el

