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Abstract: Behavior recognition has applications in automatic crime monitoring, automatic sports
video analysis, and context awareness of so-called silver robots. In this study, we employ deep
learning to recognize behavior based on body and hand–object interaction regions of interest (ROIs).
We propose an ROI-based four-stream ensemble convolutional neural network (CNN). Behavior
recognition data are mainly composed of images and skeletons. The first stream uses a pre-trained
2D-CNN by converting the 3D skeleton sequence into pose evolution images (PEIs). The second
stream inputs the RGB video into the 3D-CNN to extract temporal and spatial features. The most
important information in behavior recognition is identification of the person performing the action.
Therefore, if the neural network is trained by removing ambient noise and placing the ROI on the
person, feature analysis can be performed by focusing on the behavior itself rather than learning
the entire region. Therefore, the third stream inputs the RGB video limited to the body-ROI into the
3D-CNN. The fourth stream inputs the RGB video limited to ROIs of hand–object interactions into
the 3D-CNN. Finally, because better performance is expected by combining the information of the
models trained with attention to these ROIs, better recognition will be possible through late fusion of
the four stream scores. The Electronics and Telecommunications Research Institute (ETRI)-Activity3D
dataset was used for the experiments. This dataset contains color images, images of skeletons, and
depth images of 55 daily behaviors of 50 elderly and 50 young individuals. The experimental results
showed that the proposed model improved recognition by at least 4.27% and up to 20.97% compared
to other behavior recognition methods.

Keywords: behavior recognition; convolutional neural network; skeleton; RGB video; ensemble

1. Introduction

In modern society, it is possible to preserve health by restoring age-deteriorated bodily
functions to a certain level through technologies including medicine and engineering.
Advances in these technologies have led to an increase in life expectancy and subsequently
a rise in the elderly population. Furthermore, the elderly population ratio is rapidly
increasing, due to the lower number of newborns resulting from the decline in the birth
rate, and because, over time, young people continue to move into the elderly generation
group. The burden on the earning population and the government is expected to increase
if the number of young individuals is significantly reduced compared to the number of
elderly individuals. The accompanying structural change renders an increasing elderly
population a problem in modern society [1–3].

In the past, most people had occupations in which physical labor was important,
such as agriculture, commerce, and fishing. Most of the time was spent in securing food,
clothing, and shelter. Extended families became a social unit due to these economic
activities. The extended family system is characterized by the sharing among various
family members of the care of elderly people, whose health deteriorates and who become
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incapable of economic activity as they age. However, in modern society, the dependence
on the extended family system has declined compared to the past due to the abundance
of food, clothing, and shelter, and the diversification of occupational groups. Care for
the elderly is changing into a social role as family members are scattered due to the rise
of nuclear families [4,5]. Because caring for the elderly is repetitive labor and difficult
depending on the situation, society and the government have been working on research
and development for home service “silver robots” to replace humans in this work. Because
the environment these robots face is complex, unlike the simple movement of factory
manufacturing robots, silver robots require advanced artificial intelligence technology to
respond appropriately to the aged [6–10].

Behavior recognition technology automatically recognizes the behavior of an actor by
analyzing input data from cameras and inertial sensors. The environment that a person
is in can be understood and responded to appropriately by recognizing the behavior of
the person through behavior recognition. For example, elderly care can be automated if
the home service silver robot is able to determine or recognize sudden fainting and other
ill health symptoms of the elderly, and perform appropriate actions while attending the
elderly, who are alone [11,12].

Due to the recent progress of deep learning, a framework has been established for
computers to automatically process existing complex problems. Deep learning involves
building hidden layers deeply in existing neural networks and training them using a back-
propagation algorithm, which efficiently solves nonlinear problems. Studies have applied
such deep learning technology to behavior recognition [13,14]. However, the results of
down sampling of an image are poor, because detailed information from an image is lost,
and the inference time increases if a high-resolution image is used without modification.
Therefore, Karpathy [15] proposed the fusion of two streams running in parallel for video
classification. Two encoders running in parallel were made smaller to simplify the parame-
ters. One encoder was a low-resolution encoder, and the other processed high-resolution
images; the results of both were merged in the last fully connected layer. Although the
fusion approach works well for short videos, it is challenging to classify long videos, as
many frames must be computed and many aspects must be memorized. Ng [16] proposed
two methods to classify long videos. The first uses maxpooling for the time axis of the
convolutional features, and the second concatenates the convolutional features with long
short-term memory (LSTM) to process videos of various lengths. In a video, the motion of
an object yields good information about the action it performs; this motion can be measured
using optical flow. Simonyan [17] proposed a behavior recognition method using two
streams from the image and optical flow. One stream inputs individual frames, whereas
the other calculates the optical flow using several frames. Subsequently, the scores of the
two are combined at the end by inputting each of them to a convolutional neural network
(CNN). The two-dimensional (2D) convolution takes 2D data and outputs a 2D result,
whereas three-dimensional (3D) convolution can output a 3D result by inputting 3D data
because it performs a convolution operation in three directions. Tran [18] proposed a 3D
convolutional neural network structure based on 3D convolutional operation for video
behavior recognition. The network has eight convolution layers and two fully connected
layers. Wang [19] used the trajectory of the body part to classify the actions performed. In
that study, the handcrafted features of Fisher vectors and the deep-learned features based
on CNN were combined in the last layer after the trajectory was extracted from the video.
Yang [20] proposed a multimodal combination with four models for video classification.
These four models are the 3D convolution feature, 2D optical flow, 3D optical flow, and
2D convolution feature. A boosting mechanism was used for the fusion method. Another
scheme used for behavior recognition, the attention mechanism, gives more weight to a
specific area than other areas as a method of paying attention to the area for recognition
activity. These weights are learned from data and are generally divided into soft and hard
methods. The soft is a decisive method, and the hard is probabilistic. Shama [21] applied
an attention mechanism for video classification. The position probability was obtained by
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inputting the convolution feature map and the position weight serially to three LSTMs.
This attention not only improved accuracy, but also provided a way to visualize predictions.

Several studies have been conducted on skeleton-based behavior recognition. Re-
current neural networks (RNNs) exhibit gradient vanishing and exploding problems;
moreover, they have difficulties in learning and long-term patterns. To this end, LSTM
and gated recurrent units (GRU) were developed; however, the use of hyperbolic tangent
and sigmoid functions resulted in gradient decay over layers. Therefore, Li [22] proposed
indRNN, wherein neurons in the same layer are independent of each other and are con-
nected across layers. This network can be stacked deeper than conventional RNNs and
can process longer sequences. Skeleton-based behavior recognition was performed on
this network using the Nanyang Technological University (NTU) RGB+D (red-green-blue
+depth) dataset. However, skeleton-based behavior recognition has limitations in large
datasets due to its limited ability to represent features; recent RNNs have been developed
with a focus on changes in body joints over time, without considering geometric relation-
ships. Wang [23] introduced joints, edges, and surfaces to reflect the geometric relationship
between joints for behavior recognition. These three geometric aspects were used as inputs
to a general RNN, using a viewpoint transformation layer and a temporal dropout layer.
Moreover, the multi-scale sliding window algorithm was used by classifying the behavior
by frame for behavior detection. Most recent behavior recognition methods using skeletons
are based on RNN. Li [24] proposed a novel CNN for behavior recognition and behavior
detection. Raw skeleton coordinates and skeleton motion are fed into the CNN. A new
skeleton transformer module was designed to rearrange and select important skeleton
joints automatically. A window proposal network that extracts temporal segment proposals
for behavior detection was developed. The dynamics of the human body skeleton convey
significant information for behavior recognition. Conventional approaches for modeling
skeletons relied on handcrafted parts, thus resulting in limited ability to represent the skele-
ton and difficulties of generalization. Therefore, Yan [25] extracted the skeleton information
for each frame from the image and presented the information in a skeleton graph with a
temporal dimension, thereby classifying it using a spatio-temporal graph convolutional
network (ST-GCN).

Several studies have been conducted on attention-based behavior recognition. It is
important to extract discriminative spatio-temporal features to model the evolutions of
different behaviors. Song [26] proposed a spatio-temporal attention model to explore and
detect discriminative spatio-temporal features for behavior recognition from skeletons. An
RNN-based model was designed with LSTM units. The trained model was capable of
selectively focusing on the discriminative joints of the skeleton in each input frame and
paying different levels of attention to the output of different frames. For efficient training, a
regularized cross-entropy loss and joint training strategy were proposed. Further, a method
of generating behavior temporal proposals for behavior detection was developed based on
temporal attention. Behavior recognition with a three-dimensional skeleton sequence has
gained a reputation for speed and robustness. The recently proposed CNN-based method
also showed good performance in learning spatio-temporal features. Nevertheless, there are
two problems that potentially limit performance. First, previous skeleton representations
are generated by chaining joints in a fixed order. The corresponding semantic meaning is
unclear, and structural information is lost among the joints. Second, previous models do
not have the ability to focus on informative joints. The attention mechanism is important
in skeleton-based behavior recognition because other joints contribute non-uniformly to
accurate recognition. Yang [27] redesigned the skeleton representation with a depth-first
tree order to enhance the semantic meaning of the skeleton image and better preserve the
associated structural information. Further, a general two-branch attention architecture
was proposed that automatically focuses on spatio-temporal key stages and filters out
unreliable joint prediction. Based on the proposed general structure, a global long sequence
attention network with an improved branch structure was designed. A sub-sequence
attention network (SSAN) was proposed that takes a sub-image sequence as an input to
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adjust the kernel’s spatio-temporal aspect ratio and better extract long-term dependence.
The two-branch attention structure was further improved by combining it with SSAN.

Behavior recognition research using object information has also been conducted.
Moore [28] introduced a framework for recognizing behavior and objects by measuring
image-based, object-based, and behavior-based information from videos. Hidden Markov
models were combined with object context to classify hand actions. Furthermore, the
Bayesian method was used to differentiate the class of unknown objects by evaluating
detected behaviors along with low-level, extracted object features. Most of the proposed
methods recognize behaviors and objects separately. However, it is important to recognize
that behaviors and objects are complementary to each other, as behaviors of, for example, a
hand, are related to the objects they grasp. Saitou [29] represented the relationship between
behavior and object in a hierarchical model and tracked the movement of the head and hand
through vision. The features of behaviors, such as location and direction, were extracted
and input to the dynamic Bayesian network to classify behaviors approximately. Then, the
behaviors and related objects were refined using a conceptual model. Gu [30] proposed a
hierarchical probability model-based framework, which not only models the dynamics of
the behaviors, but also the contextual constraints in terms of object/behavior correlation
and behavior sequential constraints to improve behavior recognition performance. By
considering the behavior/object correlation, even behaviors that are difficult to detect
or recognize can be recognized using motion features only. By contrast, the behavior
sequential constraints can further improve the recognition accuracy. In the proposed
method, first, the dynamics of a behavior was modeled using the hidden Markov model;
a Bayesian network was adopted to model the object constraints for low-level behavior
recognition. Consequently, a high-level HMM (hidden Markov model) was created to
model the sequential constraints, which refine the decision from the Bayesian model.

Ensemble-related studies with various inputs were conducted. It is difficult to classify
behaviors related to objects with similar motions for skeleton-based behavior recognition
from depth cameras. Other available video streams (RGB, infrared, depth) provide addi-
tional clues. Boissiere [31] proposed a modular network combining skeleton and infrared
data. The pre-trained 2D CNN was used as a pose module to extract features from the
skeleton data. The pre-trained 3D CNN was used as an infrared module to extract visual
features from videos. Both feature vectors were concatenated using a multilayer perceptron.
The two-dimensional skeleton coordinates were used to crop the region of interest (ROI)
around the subject in the infrared video. Infrared video is less sensitive to illumination and
more usable in the dark. Liu [32] considered behavior recognition based on multimodal
fusion between 3D skeleton and RGB images. A neural network was designed that uses a
3D skeleton sequence and a single middle frame as input. The self-attention module and
skeleton attention module were used. Further, temporal features were extracted from the
skeleton sequence via a Bi-directional long short term memory (Bi-LSTM). Moreover, the
spatial and temporal features were combined via a feature fusion network.

Although most of the information for behavior recognition is concentrated in the
human domain, redundant information is obtained because multiple images overlap in the
RGB video. To solve this problem and increase the recognition rate, a model that diversifies
features and finally ensembles the results was proposed by designing a model that focuses
on the human part that is important for behavior, and the hand–object interaction, which
represents the main information of the behavior. The first stream uses the pre-trained
2D-CNN by converting the 3D skeleton sequence into pose evolution images (PEIs), and
the second stream uses the RGB video input to the 3D-CNN to extract temporal and
spatial features from RGB. The important information in behavior recognition is the person
performing the action. The features can be analyzed by focusing on the action itself rather
than when trained with the entire region if the neural network is trained after removing the
surrounding noise and placing the ROI on the person. Therefore, in the third stream, the
RGB video is limited to the body ROI and input to the 3D-CNN for use. Because humans
use tools to perform actions, unlike animals, training a neural network by placing an ROI



Sensors 2021, 21, 1838 5 of 23

on the hand–object interaction enables feature analysis by focusing on tool information.
Therefore, in the fourth stream, the RGB video is limited to hand–object interaction ROI
and input to the 3D-CNN for use. Finally, because better performance can be expected by
combining the information of the models trained by focusing on these regions of interest,
better recognition can be performed through late fusion of the four stream scores.

The Electronics and Telecommunications Research Institute (ETRI)-Activity3D database,
which has color images, images of skeletons, and depth images of 55 daily behaviors of
50 elderly and 50 young people, was used as the database for the experiment. This dataset
is the second largest behavior recognition database, consisting of a total of 112,620 samples.
The data were acquired using up to eight multi-directional Kinect v2s in an actual residen-
tial environment. Further, the sensors were 70 and 120 cm in height and acquired data at a
distance within 1.5 to 3.5 m, assumed to replicate the environment of the silver robot.

As an experimental result of the proposed method, the accuracy of the 3D-CNN of
body ROI input and the 3D-CNN of hand–object interaction ROI input was 76.85% and
73.11%, respectively. The accuracy of the proposed ROI ensemble (Type6) in which 3D-
CNN, BodyROI-3D-CNN, and HandObject-3D-CNN (single models of RGB video input),
and PEI-T3-2D-CNN (single model of skeleton input), are ensembled, was 94.87%, thereby
showing that the accuracy was improved by a minimum of 8.78% and a maximum of
21.76% compared to the single model. Further, the accuracy of the proposed ROI ensemble
(Type6) was improved by a minimum of 4.27% and a maximum of 20.97% compared with
the methods of other studies. The contributions of this paper are the diversification of
features and the improvement of accuracy through an ensemble by paying more attention
to the key information of behavior recognition after removing unnecessary information
and applying the ROI to the hand–object interaction.

The contribution of this study can be described as follows. First, by focusing on the
hand–object and the human body from the skeleton information, the proposed method
showed superior recognition performance in comparison to the previous works. Next,
we built the ETRI-Activity3D database consisting of a total of 112,620 video samples for
behavior recognition. This database is composed of 55 daily behaviors of only elderly and
young people in a home environment. Finally, the proposed method can be applied to
human–robot interaction in home service robot and silver robot environments.

This study conducted body and hand–object interaction ROI-based behavior recogni-
tion using deep learning. The conventional technologies used as sub-technologies of the
proposed model are introduced in Section 2. The proposed behavior recognition method
is described in Section 3. The experiments conducted to evaluate the performance of the
proposed model and their results are described in Section 4, followed by the conclusion in
Section 5.

2. Techniques for Behavior Recognition

Behavior recognition research has been conducted not only from the perspective of
developing artificial intelligence, but also on ways to convert data into behavior recogni-
tion efficiently. In this section, the conventional technologies, used as sub-technologies
of the proposed model, are introduced. The PEI (pose evolution image) represents a
method of converting the coordinate data of a skeleton into image data, and 3D-CNN
is a method capable of simultaneously analyzing spatial and temporal features using a
three-dimensional filter.

2.1. Pose Evolution Image (PEI)

The skeleton is a data format that efficiently stores the movements of a person of
interest; it is a reconstruction of the human body skeleton into coordinate points based
on sensor data. A chronological sequence of skeletons of several moments is created in
the form of a video and used for behavior recognition because a skeleton of a moment
in image format cannot contain all the behavior information of a person. Transformation
methods have been studied to extract the appropriate information effectively, because
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not only spatial information, but also temporal information, is important to analyze these
sequence data effectively. PEI represents a method that converts a skeleton sequence into
a single color image. First, because a typical person has limited joints with a central axis
at which the body can be folded, the human skeleton can be represented with few data.
Kinect v1 represents the human skeleton with 20 joints, whereas Kinect v2 represents the
human skeleton with 25 joints. Although detailed changes in the skeleton of a person can
be detected when the skeleton is represented by many joints, a skeleton may be incorrectly
detected when there are unnecessarily many joints because the human body limitations
cannot be considered. A skeleton is a group of these joints, and a 3D skeleton represents
the joints of a human body skeleton in 3D coordinates. The skeleton must be detected at
every moment as the behavior changes according to the human skeleton as a person moves
over time. The resulting skeleton sequence generated for a behavior has a 3D data format.
These 3D data are converted to a 2D image by directly projecting the 3D coordinates into
RGB space. A schematic diagram of the imaging process of a skeleton sequence is shown in
Figure 1. When the skeleton sequence is expressed in (J × D × T) as 3D data, J denotes the
number of joints representing the human skeleton; D denotes the number of dimensions of
the coordinates representing the joint; and T denotes the number of skeleton frames over
time in the temporal dimension. The dimension (D) of the joint coordinates is permutated
with the temporal dimension (T) to convert the skeleton sequence into an image. If the
number of dimensions (D) of the joint coordinates is three, it results in a single color image
(J × T × 3) after the permutation process. A skeleton image is created by regularizing
this color image for each channel and linearly converting the image size. Because the
pre-trained 2D-CNN is designed to be input with three channels of RGB mainly for image
recognition, it can be used directly in the pre-trained 2D-CNN by converting the skeleton
sequence to PEI. Further, all of the spatio-temporal features can be considered with only a
2D filter by converting the skeleton sequence to PEI. The feature extraction before and after
PEI is compared in Figure 2, and the regularization equation for each channel is as shown
in Equation (1). This imaging method is defined as Type 1 [33].

x′ = x−min(x)
max(x)−min(x)

(1)
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The aforementioned method of imaging the skeleton sequence can also obtain various
images by changing the skeleton data. The rotated coordinates of the rotated skeleton
are obtained by rotating the original 3D skeleton coordinates based on the pelvic line; the
coordinates are used to perform imaging with the aforementioned method. This imaging
method is defined as Type 2. A schematic diagram of the rotation of the skeleton is shown
in Figure 3.
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Imaging is performed using the aforementioned method by inserting new joints
between two neighboring coordinates from the original 3D skeleton coordinates. This
imaging method is defined as Type 3. A schematic diagram of the joint insertion in a
skeleton is as shown in Figure 4.
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Finally, imaging is performed using the aforementioned method by applying both
rotation and insertion from the original skeleton coordinates in 3D, which is defined as
Type 4 [33].

2.2. D Convolutional Neural Network

In machine learning, a neural network is a method of recognizing digital data by
mimicking the structure and operation of the human brain, where logic is created by
computers instead of being directly designed by humans. Neurons are nerve cells, which
are the structural and functional units of the nervous system; they produce electrical
signals and transmit these signals from one part of the body to another as the basic unit
of information transmission. Neurons are composed of dendrites, cell bodies, and axons.
The dendrites receive external signals and transmit signals to the next neuron through the
cell body and axons. In this process, the input signal is transmitted to the next neuron
only when the threshold value is exceeded. Neural networks model these functions of
the neurons on a computer and use them in artificial intelligence technology. In a neural
network, a neuron is defined as a node, and a threshold value is defined as an activation
function. Among the numerous neurons, some are strongly tied to each other and some are
not tied; this is defined as the weight between nodes. Early neural networks had a shallow
structure of layers composed of only nodes. Although this simple structure works for
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simple problems, learning cannot be performed when the problem is complex. Now, neural
network models that can learn complex problems have been developed by deeply stacking
layers and adding layers of various functions. There are several basic neural networks
depending on the characteristics of the neural network. The CNN [34] is advantageous for
image analysis, the RNN is advantageous for sequence data analysis [35], and the graph
neural network (GNN) is advantageous for hierarchical data analysis [36].

The conventional image processing method implements a signal processing method
for feature extraction based on expert knowledge and classifies the extracted features with
a classifier, whereas CNN is an algorithm that extracts and classifies features from data. It
consists of a convolutional layer applied with a convolutional filter that passes through
a 2D space, a subsampling layer that is stable against changes in movement and size,
and a fully connected layer and a SoftMax layer for classification to extract features of an
image effectively.

A 2D CNN can only extract spatial features of an image; however, a 3D CNN effectively
extracts not only temporal, but also spatial features. Unlike a single image that only has
2D spatial information, it is difficult to extract sufficient features from a video only with
2D convolution because a video has spatial and temporal information as 3D data, where
several images are overlapped. The 3D convolution is efficient for 3D data such as video; it
can extract both spatial and temporal features because the filter is 3D. In a 3D CNN, the
convolution and pooling operations are performed with a 3D filter; the general structure
is however the same as that of a 2D CNN. A 3D convolutional equation is shown in
Equation (2).

(f ∗ g)(i, j, k) =
h−1

∑
x=0

w−1

∑
y=0

t−1

∑
z=0

f (x, y, z)g(i− x, j− y, k− z) (2)

Pre-trained models include C3D [18], GoogLeNet-based I3D [37], and ResNet-based
R3D [38]. ResNet applies a skip connection that reuses the input features of the previous
layer to solve the problems of significant decrease or increase in the slope as the layer
deepens, and the resulting degradation of performance. It creates five blocks, where one is
used as an input, and the others are stacked in order [39]. Figure 5 shows the schematic
structure of R3D-18.
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3. Proposed Behavior Recognition Method

Behavior recognition data may consist only of RGB video, but generally they also
include skeleton sequences in many cases. RGB video is data obtained by photographing
several consecutive RGB images at regular intervals. A video is a series of consecutively-
photographed images, shown at speeds to make it appear as if the photographed scenario
is observed in real time. Skeletons represent human skeleton information extracted from
sensor data; they are composed of joint coordinates such as head, shoulders, hands, and
feet, and are defined at every frame to form a skeleton sequence. Although the RGB video
has a significant difference in data size depending on the resolution of an image, and
generally has a file size several tens of times larger than other data, it contains various
information including surrounding objects and contexts. By contrast, the skeleton data
are small and have only human skeleton structure information because the skeleton data
only has joint coordinate information. Although the important information for behavior
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recognition is the movement in the human skeleton, there are cases where it is necessary to
determine the behavior based on the surrounding situations because skeletal information
alone is insufficient in the case of similar behaviors. Because the characteristics of these two
types of data are different, a better synergy effect is created through adequate assembling
of these two data.

The RGB video has a 3D structure; as 2D images are stacked along the time axis, a
3D-CNN rather than a 2D-CNN must be used. Because the 3D CNN has a 3D filter, all
spatio-temporal information is considered, even if it does not correspond to the sequence.
The convolution operation and subsampling have a 3D filter; other configurations are
the same as in a 2D-CNN. A pre-trained model can achieve good performance by being
designed in the same way as a 2D-CNN.

The schematic diagram of the 3D-CNN of the RGB video input is shown in Figure 6.
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Figure 6. Schematic diagram of the three-dimensional convolutional neural network (3D-CNN) for
RGB video input.

Because human joints move in a rotational axis, humans can be modeled with skeleton
data if the joints are well designed. For example, Kinect v2, which is widely used to acquire
skeleton data, models a human with 25 joints. Kinect v2 acquires joint points with 3D
coordinates; the defined joints are shown in Figure 7 [40].
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These skeleton data also have a 3D data format with the addition of the time axis when
25 joints are defined by the 3D coordinates of the skeleton data. The joints are converted
into a 2D image when these 3D skeleton data are converted using the PEI method. This 2D
image can be classified by training a 2D-CNN. A 2D-CNN can use a pre-trained model,
such as GoogLeNet, as a feature extractor and classifier. A schematic diagram of the
2D-CNN of the PEI input is shown in Figure 8. As mentioned earlier, four types of PEI
are generated by changing the original skeleton data, and four 2D-CNN models can be
obtained by training models for each type.
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Humans view a scene and recognize objects through the light entering their eyes.
They do not observe everything in the scene simultaneously, and recognize objects by
focusing on each part of interest. This reduces mistakes and increases accuracy by ignoring
unnecessary information and focusing more on the target of interest for the target process.
In the RGB video data for behavior recognition, there may not only be the landscape of the
place where the action is performed by a person, and the tools used, but also numerous
objects. Because the person who performs the action has the key information rather than the
surrounding landscape and surrounding objects, better behavior recognition performance
is achieved if unnecessary information is removed, and analysis is performed by focusing
only on the human body part. Setting the human body part as an ROI is referred to as the
body ROI in this study. Further, the human hand area provides important information for
behavior recognition because people use tools to perform actions. Setting the hand part as
the ROI is referred to as the hand–object ROI in this paper.

The position of interest must be specified by recognizing a person in the RGB image
to extract the body ROI from an RGB video. The joint coordinates are obtained using
OpenPose, which extracts skeleton information from deep learning-based RGB images [41].
OpenPose is open software that recognizes human skeletons from RGB images and returns
2D joint coordinates.

To designate only the body ROI in the RGB video, only the human part is left using the
skeleton data and setting other pixel values to zero. To leave only the body part, a certain
size box section on the left and right centered on the joint coordinates are copied and pasted
in the same coordinates on the blank image of the same size. Only the human body part
is copied to the blank image, as this process is performed for all joints. Body ROI data
are prepared by removing the background for every frame and converting the data into
video again. The hand–object ROI data are prepared by performing the aforementioned
process only for the human hand. The process of extracting the body ROI of RGB video
using a skeleton is shown in Figure 9. The data prepared in this way are an RGB video
in which the background of the ROI is removed, which represents 3D data where images
are stacked along the time axis. The 3D-CNN is used as a method of classification. A
schematic diagram of the 3D-CNN of the RGB video input with the body ROI is shown
in Figure 10. Likewise, the process of extracting the hand–object ROI from an RGB video
using the skeleton is shown in Figure 11. The data prepared in this way are 3D data from
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an RGB video in which the background of the ROI is removed, where images are stacked
along the time axis. The 3D-CNN was used as a method of classification. The schematic
diagram of the 3D-CNN of the RGB video input with the hand–object ROI is shown in
Figure 12.
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An ensemble of neural networks is a method to derive better results by combining
the results of several individually trained models with one goal. Individual models fo-
cus on their respective features without distraction from different input data. Further,
individual models can diversify data analysis strategies through different neural network
structures. A better synergy effect is created through ensembled models of these vari-
ous inputs and analysis strategies. A diagram of the ROI-based four-stream ensemble
model for behavior recognition is shown in Figure 13. We used the commonly known
addition and multiplication for the scores obtained from each stream in the ensemble
deep learning model. The addition and multiplication of the output score are defined by
Equations (3) and (4), respectively.

Outputaddition = max




p11
p12

...
p1m

+


p21
p22

...
p2m

+ · · ·+


pl1
pl2
...

plm


 (3)

Outputmultiplication = max
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 ×
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...
p2m

 × · · · ×


pl1
pl2
...

plm


 (4)

where l and m indicate the number of classification models and the number of classes, respectively.
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4. Experimental Result

This section describes the details of the ETRI-Activity3D dataset used for the experi-
ment, the evaluation protocol of cross-subject and cross-age, and details of experimental
results, including single models, several combinations of ensemble, and models of previ-
ous works.

4.1. Dataset

The Electronics and Telecommunications Research Institute (ETRI)-Activity3D dataset
was used to evaluate the behavior recognition performance of the proposed method. This
is the second largest dataset with a total of 112,620 samples obtained from 50 elderly
and 50 young individuals. The elderly individuals comprised 17 men and 33 women,
averaging 77.1 years, with an age range from 64 to 88 years. The young individuals group
consisted of 25 men and 25 women, averaging 23.6 years old, from 21 to 29 years old.
Fifty-five actions were performed in daily life in the living room, kitchen, and bedroom in a
residential apartment environment; they were acquired using Kinect v2. These actions were
defined by observing actions that were performed frequently by elderly people in their
daily life. Four Kinect sensors at heights of 70 and 120 cm were used to obtained data from
eight directions, assuming a home service situation. The camera acquired photographs
at a distance from 1.5 to 3.5 m from the subject. The format of the acquired data was
1920 × 1080 pixels for a color image and 512 × 424 pixels for a depth image, and the
skeleton information included 25 joint positions in a 3D space. The frame rate of data was
20. The behavior types of ETRI-Activity 3D data are shown in Table 1, and the examples of
ETRI-Activity3D data are as shown in Figure 14. For the diversity of data, actions that were
performed 2–3 times by a person in different locations in the house (living room, bedroom,
kitchen, etc.) or in different directions were acquired simultaneously by four or eight units
from 100 individuals depending on the spatial conditions. There was an average of about
2050 datapoints for each action, and each person has an average of 20.5 datapoints [42].
Because the total size of the data was too large, the resolution was downsized by 1/5 to a
resolution of 384 × 216.

Table 1. Behavior type of Electronics and Telecommunications Research Institute (ETRI)-Activity3D data.

1 eating food with a fork 29 hanging laundry

2 pouring water into a cup 30 looking around for something

3 taking medicine 31 using a remote control

4 drinking water 32 reading a book

5 putting (taking) food in (from) the fridge 33 reading a newspaper

6 trimming vegetables 34 writing

7 peeling fruit 35 talking on the phone

8 using a gas stove 36 playing with a mobile phone

9 cutting vegetable on the cutting board 37 using a computer

10 brushing teeth 38 smoking

11 washing hands 39 clapping

12 washing face 40 rubbing face with hands

13 wiping face with a towel 41 doing freehand exercise

14 putting on cosmetics 42 doing neck roll exercise

15 putting on lipstick 43 massaging a shoulder oneself

16 brushing hair 44 taking a bow

17 blow drying hair 45 talking to each other
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Table 1. Cont.

18 putting on a jacket 46 handshaking

19 taking off a jacket 47 hugging each other

20 putting (taking) on (off) shoes 48 fighting each other

21 putting (taking) on (off) glasses 49 waving a hand

22 washing the dishes 50 flapping a hand up and down

23 vacuuming the floor 51 pointing with a finger

24 scrubbing the floor with a rag 52 opening the door and walking in

25 wiping off the dining table 53 falling on the floor

26 rubbing up furniture 54 sitting (standing) up

27 spreading (folding) bedding 55 lying down

28 washing a towel by hand

4.2. Evaluation Methods

The organization of the data in training and testing followed the same manner as the
previous experimental environments [42]. Thus, the dataset was divided into training and
testing data for cross-subject and cross-age, respectively. After the hyperparameter was set,
the training data was used to tune the parameters of the deep learning model. The testing
data was used to check the performance only once after all tuning of the deep learning
model was completed. This overall method has been tested under equivalent conditions
based on a previously published base paper [42].

Based on ETRI-Activity3D, numbers excluding the multiples of one to three were
separated as training data; the multiples of one to three were separated as test data from
1 to 50 for 50 elderly individuals and from 51 to 100 for 50 young individuals in terms of
cross-subject (CS). The training data consisted of 67 people with a mixture of young and
elderly individuals; the test data consisted of 33 individuals with a mixture of young and
the elderly. cross-age (CA) consisted of the elderly and young separated as elderly training,
elderly test, young training, and young test. As in CS, in terms of CA, when 50 elderly
people were from 1 to 50 and young people were from 51 to 100, the numbers excluding
the multiples of one to three were separated as training data. The multiples of one to three
were separated as test data, whereas the domains were separated at the boundary between
the elderly and young people between 50 and 51 [42]. Further, numbers excluding the
multiples of two to three were separated as training data and the multiples of two to three
were separated as test data when 50 elderly people were from 1 to 50, and 50 young people
were from 51 to 100, for CS cross-validation. The cross-validation was performed once
due to the large amount of data. The composition of CS of ETRI-Activity3 is shown in
Figure 15, and the composition of CA of ETRI-Activity3D is shown in Figure 16.
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4.3. Experimental Results

The improvement of the accuracy compared to the conventional method was ex-
amined by classifying 55 behaviors of ETRI-Activity3D with the proposed method. The
configuration of the device used in the experiment was as follows: Intel(R) Xeon(R) Gold
5120 2.2 GHz CPU (Central Processing Unit); NVIDIA Tesla V100-SXM2-32GB for GPU
(graphics processing unit); 180 GB RAM (random access memory) capacity; and 64bit-based
Window Server 2016 OS (operating system). The behavior recognition dataset is usually
composed of RGB images, depth images, and skeletons. These can be recorded simultane-
ously because sensors that acquire these data are built into a single device. Information
from various sensors can help improve accuracy because it provides more information
in data analysis. Therefore, the characteristics of data can be optimally harmonized by
designing recognizers that use the RGB video image and the skeleton sequence separately,
and through ensemble of the scores of each recognizer at the end. First, a recognizer that
uses RGB video was considered and then a recognizer that uses the skeleton sequence.
The RGB video recognizer was designed using the 3D-CNN, and the skeleton sequence
recognizer was designed using the PEI-2D-CNN method.

The PEI-T1-2D-CNN method, which converts a 3D skeleton sequence into an image
through the PEI method, and then classifies the image after inputting it into the 2D-CNN,
is denoted as T1–T4 for the PEI types 1–4. The converted image is 224 × 224 × 3 RGB.
The 2D-CNN uses ResNet101, which is a pre-trained model. The optimization method is
Adam, the mini-batch size is 30, the initial learning rate is 0.0001, and the epoch is 20. An
example of PEI-T3 conversion from a skeleton is shown in Figure 17; the skeleton-based
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behavior recognition accuracy (CS) is shown in Table 2. A graph of the learning process of
PEI-T3-2D-CNN is shown in Figure 18.
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Figure 17. Example of PEI-T3 conversion from a skeleton.

Table 2. Skeleton-based behavior recognition accuracy (CS).

Method Accuracy (%)

Skeleton (PEI-T1-2D-CNN) 84.95
Skeleton (PEI-T2-2D-CNN) 85.88
Skeleton (PEI-T3-2D-CNN) 86.09
Skeleton (PEI-T4-2D-CNN) 85.20
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Behavior recognition based on the ROI performs recognition by leaving only the
ROI among the entire image region before analyzing the RGB video. The body ROI is
a method of focusing on the object of interest by leaving only the person in the image.
The hand–object ROI considers only the hand region to focus on the tools used by the
human from the entire image. Two-dimensional joint coordinates were first obtained using
OpenPose. A certain range around the coordinates was cropped and pasted into the same
coordinates of a blank image of the same size without a background to leave only the
human part. Only the human part was left, and the rest appears black once this process
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was completed for all joints. In the case of hand objects, it was performed only for the
hand joints instead of all joints. Once this process was completed for all RGB videos, the
ROI-based behavior recognition was performed. The prepared data were input into the
3D-CNN for recognition and training.

The 3D-CNN method is a CNN, where input data are 3D, and filters designed inside
for feature extraction are 3D. The 3D convolution operation can learn better than the 2D-
CNN on sequence data, because features are computed not only in the spatial domain,
but also in the time domain. The 3D-CNN uses the pre-learning model of R3D-18 as a
feature extractor and classifier of 3D data. The epoch is 50, the learning rate is 0.001, the
optimization method is Adam, the weight decay is 0.00005, and the mini-batch size is 100.
Accuracy is used as the performance evaluation metric of the behavior recognition model.
An example of a body ROI video with only the body left and the background removed is
shown in Figure 19, and an example of a hand–object ROI video with only the hand–object
left and the background removed is shown in Figure 20. The accuracy (CS) of ROI-based
behavior recognition is shown in Table 3 and a graph of the body ROI-based 3D-CNN
learning process is shown in Figure 21.
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Table 3. ROI-based behavior recognition accuracy (CS).

Method Accuracy (%)

RGB (3D-CNN) 79.20
Body ROI RGB (3D-CNN) 76.85

Hand–object ROI RGB (3D-CNN) 73.11
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Because the 3D-CNN was newly trained by focusing on the body ROI, which has the
main information for behavior recognition in RBG video, different features were extracted,
and different analysis was performed than when training with the entire image. Moreover,
different features were extracted, and different analysis was performed than when training
with the entire image because new learning is performed by focusing on the hand–object
ROI, which has the main information for behavior recognition in the RGB video. Although
the performance alone may be slightly degraded, because information is also removed
from RGB in ROI, the performance expected if the information of these various results
of the analysis is ensembled is far beyond the single performance of these methods. The
ensemble result (CS) of the ROI-based model is shown in Table 4. ROIEnsAddNet1 and
ROIEnsMulNet1 of ROI-based ensemble network are models obtained by adding and
multiplying the results of the 3D-CNN of the RGB video input and the 3D-CNN of the body
ROI input, respectively. ROIEnsAddNet2 and ROIEnsMulNet2 of ROI-based ensemble
networks are models obtained by adding and multiplying the results of the 3D-CNN of the
RGB video input, the 3D-CNN of the body ROI input, and the 3D-CNN of the hand–object
ROI input, respectively. ROIEnsAddNet3 and ROIEnsMulNet3 of the ROI-based ensemble
network are models obtained by adding and multiplying the results of the 3D-CNN of
the RGB video input, the 3D-CNN of the body ROI input, the 3D-CNN of the hand–object
ROI input, and the PEI-T3-2D-CNN. ROIEnsAddNet4 and ROIEnsMulNet4 of the ROI-
based ensemble network are models obtained by adding and multiplying the results of the
3D-CNN of the RGB video input, the 3D-CNN of the body ROI input, the 3D-CNN of the
hand–object ROI input, and the PEI-T1–T4-2D-CNN. The ROIEnsMulNet3 exhibits higher
accuracy than the ensemble results of other combinations.
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Table 4. Ensemble results (CS) of the ROI-based model.

Method Accuracy (%)

ROIEnsAddNet1 84.68
ROIEnsAddNet2 86.83
ROIEnsAddNet3 92.79
ROIEnsAddNet4 94.18
ROIEnsMulNet1 85.85
ROIEnsMulNet2 87.98
ROIEnsMulNet3 94.87
ROIEnsMulNet4 94.69

The results (CS) from comparing the conventional behavior recognition methods with
the proposed behavior recognition method are shown in Table 5. Based on the previous
experimental setup [42], we used the same training and testing dataset. Thus, these
experimental results are compared in Tables 4 and 5, respectively. The default value of open
source was used without modification. Adam was used as the optimization method. The
learning rate was randomly set from 1/3 to 3 times at every iteration until weight decay,
and it was lowered by 1/3 from 0.001 to 0.000001 beyond weight decay. Various mini-batch
sizes were trained by randomly setting it from 1 to 1/4 times based on the maximum GPU
memory at each iteration. The performance of the proposed ROIEnsMulNet3 improved by
a minimum of 4.27% and a maximum of 20.97% compared to other conventional methods.
The ensemble result (CA) of the ROI-based model is shown in Table 6. In Table 6, the
elderly training, young training, elderly test, and young test are also shown in Figure 16.

Table 5. Performance comparison with conventional behavior recognition methods (CS).

Method Accuracy (%)

IndRNN [22] 73.90
Beyond Joints [23] 79.10

SK-CNN [24] 83.60
ST-GCN [25] 86.80

Motif ST-GCN [43] 89.90
Ensem-NN [44] 83.00

MANs [45] 82.40
HCN [46] 88.00

FSA-CNN [42] 90.60
ROIEnsMulNet3 94.87

Table 6. Ensemble results (CA) of ROI-based model.

Method
Accuracy (%)

Elderly Test Young Test

FSA-CNN [42]
Elderly Training 87.70 69.00
Young Training 74.90 85.00

ROIEnsAddNet3
Elderly Training 92.53 70.35

Young Training 73.57 89.87

ROIEnsMulNet3
Elderly Training 94.57 75.04

Young Training 79.51 92.54

5. Conclusions

Behavior recognition was conducted using deep learning based on body and hand–
object ROIs. Video-based behavior recognition is a technology that automatically detects
the behavior of a target person through digital data processing. It can be applied to video-
based automatic crime monitoring, automatic sports video analysis, and context awareness
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of a silver robot. In particular, the importance of research on behavior recognition as a
core technology is increasing with the increase in the need for silver robots to solve the
problem of elderly care due to the aging society. Behavior recognition data is mainly
composed of images and skeletons, and better recognition performance can be expected
by combining the analysis of data with different features. The important information
in behavior recognition is the person performing the action. Therefore, feature analysis
can be performed by focusing on the behavior itself rather than when training with the
entire region by training the neural network after removing surrounding noise and placing
the ROI on the person. Moreover, because humans use tools to perform actions, unlike
animals, feature analysis can be performed focusing on tool information when a neural
network is trained by placing an ROI on a hand–object interaction. Better performance
can be expected by combining information from models that have been trained focusing
on these regions of interest. The dataset used for the experiment was ETRI-Activity3D,
which contains color images, images of skeletons, and depth images of 55 daily behaviors
of 50 elderly and 50 young people. As a result of the experiment, the performance of the
proposed ROI-based ensemble model improved by a minimum of 4.27% and a maximum
of 20.97% compared to other behavior recognition methods. For future research, we will
study effective information fusion approaches, comparing them with various methods of
combining recognition results. Moreover, because it is necessary to consider the overfitting
problem of learning including the validation data set, we will perform this experimental
method in the future.
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