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Abstract: The emergence of an aging society is inevitable due to the continued increases in life
expectancy and decreases in birth rate. These social changes require new smart healthcare services for
use in daily life, and covid-19 has also led to a contactless trend necessitating more non-face-to-face
health services. Due to the improvements that have been achieved in healthcare technologies, an
increasing number of studies have attempted to predict and analyze certain diseases in advance.
Research on stroke diseases is actively underway, particularly with the aging population. Stroke,
which is fatal to the elderly, is a disease that requires continuous medical observation and monitoring,
as its recurrence rate and mortality rate are very high. Most studies examining stroke disease to date
have used MRI or CT images for simple classification. This clinical approach (imaging) is expensive
and time-consuming while requiring bulky equipment. Recently, there has been increasing interest in
using non-invasive measurable EEGs to compensate for these shortcomings. However, the prediction
algorithms and processing procedures are both time-consuming because the raw data needs to be
separated before the specific attributes can be obtained. Therefore, in this paper, we propose a new
methodology that allows for the immediate application of deep learning models on raw EEG data
without using the frequency properties of EEG. This proposed deep learning-based stroke disease
prediction model was developed and trained with data collected from real-time EEG sensors. We
implemented and compared different deep-learning models (LSTM, Bidirectional LSTM, CNN-LSTM,
and CNN-Bidirectional LSTM) that are specialized in time series data classification and prediction.
The experimental results confirmed that the raw EEG data, when wielded by the CNN-bidirectional
LSTM model, can predict stroke with 94.0% accuracy with low FPR (6.0%) and FNR (5.7%), thus
showing high confidence in our system. These experimental results demonstrate the feasibility
of non-invasive methods that can easily measure brain waves alone to predict and monitor stroke
diseases in real time during daily life. These findings are expected to lead to significant improvements
for early stroke detection with reduced cost and discomfort compared to other measuring techniques.

Keywords: electroencephalography (EEG); stroke prediction; stroke disease analysis; deep learning;
long short-term memory (LSTM); convolutional neural network (CNN); bidirectional; ensemble

1. Introduction

Stroke is a condition involving abnormalities in the brain blood vessels that result
in dysfunction in certain brain locations [1]. According to a 2016 report by the World
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Health Organization (WHO), stroke is the second most common global cause of death
in the world and the third most common global cause of disability [2]. The incidence of
stroke in developing countries has more than doubled over the past 40 years [3]. Since a
suitable treatment for stroke has yet to be found, early detection is paramount. CT and
MRI techniques are the most common detection methods for stroke disease. However, CT
and MRI are expensive and may not be suitable for developing countries or low-income
earners. With stroke disease emerging as an important disease worldwide, particularly
among low-income and elderly people, healthcare services desperately need a solution to
help them accurately and quickly detect stroke diseases at a low cost.

Studies on the early detection and prediction of stroke are actively underway. The
2019 Global Burden Disease (GBD) study estimated cardiovascular disease incidence and
patient mortality from 204 countries and regions from 1990 to 2019 [4]. According to that
report, the number of deaths from cardiovascular disease in 2019 accounted for one-third
of all deaths. While the death toll according to cardiovascular index rose from 11.1 million
in 1990 to 18.6 million in 2019, many of the causes from cardiovascular disease were
attributed to ischemic stroke. Hier et al. also reported that ischemic stroke had a very
high recurrence rate of 14.1% within two years [5]. Further, recent studies have shown
a link between covid-19 and stroke, which is expected to increase the number of stroke
deaths [6,7]. Kummer et al. [6] informs us that patients admitted with covid-19 who had
a stroke history were much more likely to die than those without a stroke history, while
Zhang et al. [7] reported that patients with a stroke prognosis had a higher incidence of
severe pneumonia and subsequent mortality according to Cox regression. Aside from these
prior studies, there is still a significant lack of understanding between experimental data
and data collected in real-time for stroke.

Stroke disease can be identified using blood tests; brain imaging such as CT, MRI, and
X-ray; ECG and EEG; and neurological physiological methods such as induced potential
tests [8]. Among these techniques, CT and MRI are most often used to determine stroke,
but these involve risks such as exposure to radiation or potential allergic reactions to
the contrast agents used. These tools can also be inconvenient as they involve confined
spaces and require constant monitoring while also incurring separate medical costs for each
examination, all of which increase the difficulty of diagnosis. New wearable electrodes
provide an opportunity to measure EEG in the comfort of a participant’s home. These
electrodes are attached to the head and measure the activity of brain nerve cells in a more
natural setting. Brain signals are also recorded during the different sleep states, thereby
allowing for pain-free and rapid examination. EEG data can be contaminated by the
patient’s movement as well as environmental noises. However, it is possible to collect
and test EEG data in real time and in a low-cost manner with fewer side effects than the
aforementioned imaging techniques. Due to these advantages, 24-h EEG measurements are
considered a useful, low-cost method for monitoring stroke disease with high recurrence
rates in daily life.

According to the literature review, a number of studies have analyzed diseases such
as seizure, Alzheimer’s, and stroke using EEG, while other studies have also correlated
the level of sleep and emotions using EEG testing [9–13]. However, most of these studies
focused on simple classifications or used preset frequency features extracted for experi-
mentation. Thus, additional time and cost are needed to separate raw data into frequency
domains, meaning that real-time health monitoring is not currently feasible with the tech-
nology that has been reported to date. A recent study was able to classify seizure patients
using raw EEG data alone, representing a promising step toward real-time health monitor-
ing using EEG [14,15]. Therefore, in this paper, we propose a real-time stroke monitoring
system to predict the degree of risk of stroke in real time by collecting raw EEG data.

Using real-time EEG data, our system can predict stroke diseases in elderly Koreans.
To test this system, we developed a walking protocol that reflects the everyday life of
an elderly Korean. The EEG data used in this work were measured and collected from
Korean seniors aged 65 or older. To compare between deep learning models and machine
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learning models, the collected EEG data were separated into raw data and frequency
domain-extracted data, respectively. Each set of raw EEG data from six channels (Fz, T7,
C1, C2, T8, and Oz) undergoes a fast Fourier transform (FFT), and 66 values in total were
extracted and used in the experiment. The initial results show that the raw data alone could
be used to predict stroke disease with high accuracy. To determine which deep learning
model is the most suitable for real-time EEG data, a comparison of the predictive accuracies
of LSTM, bidirectional LSTM, CNN-LSTM, and CNN-bidirectional LSTM models was
conducted. These algorithms were chosen because they are known to be suitable for real-
time data learning based on the characteristics of EEG data. Our experiments showed 94.0%
accuracy for CNN-Bidirectional LSTM models with very low false negative rate (FNR) and
false positive rate (FPR) at 5.7% and 6.0%, respectively, confirming high confidence in the
results. Meanwhile, using power value, we showed 81.4% accuracy along with 18.5% FPR
and 17.3% FNR in CNN-bidirectional LSTM models. Further, experiments using relative
value showed 89.2% accuracy as well as FPR and FNR of 12.5% and 8.4%, respectively,
in CNN-LSTM models. These experimental results indicate that raw EEG data alone can
be used to accurately detect and predict stroke diseases without separating the frequency
attribute values. We also confirmed that the system proposed in this paper accurately
predicts the precursor symptoms of stroke disease with very high mortality and recurrence
rates in real time, and thus represents a low-cost method that enables health monitoring
during the daily lives of the elderly.

The paper is organized as follows. Section 2 examines prior research involved in
EEG features in stroke patients as well as computer engineering studies related to stroke
prediction. Section 3 explores deep learning-based stroke disease prediction systems with
real-time brainwave data proposed in the paper, and also discusses prediction method-
ologies using raw data and frequency properties of brainwaves. Section 4 discusses the
real-time stroke disease prediction experiments conducted in this study and the analysis
results with deep learning models specialized in time series signal data prediction, while
Chapter 5 concludes and proposes future study directions.

2. Related Works
2.1. Related Work on Stroke EEG

Wijaya et al. [16] proposed a method for detecting ischemic stroke disease through
various signal process and machine learning techniques. They were able to accurately
classify 40 stroke patients and 40 normal people using EEG data from six channels. The
data underwent various types of signal processing such as fast Fourier transform (FFT),
wavelet transform (WT), short-time Fourier transform (SFFT), and power spectral density
(PSD) techniques before multiple frequency domains data were subjected to a multi-
layer perceptron (MLP) and decision tree techniques for the detection of ischemic stroke.
The proposed system had a test accuracy of 95%. Rahma et al. [17] used an extreme
Llearning machine (ELM) to automatically classify Athens Insomnia Scale (AIS) severity
based on EEG signals through digital signal processing such as feedforward and WT
structures. Their algorithm confirms the usefulness of EEG in signal-based AIS classification
with more than 72% test accuracy, sensitivity, and specificity according to the National
Institutes of Health Stroke Scale (NIHSS). Li et al. [18] et al. introduced various machine
learning methodologies for stroke risk level classification in Chinese stroke screening and
presented the experimental results. In particular, the experimental results were analyzed
with more than 8 machine learning algorithms, including the logistic regression model.
In the experiment using boosting decision tree, the results of recall and precision were
99.94% and 97.33%, respectively. Li et al. suggested an improvement plan for the screening
method program that is actually used up to now. ELM was also used by Adhi et al. [19] via
detrended fluctuation analysis (DFA) for the automatic detection of ischemic stroke and
normal controls. Signal processing was performed on 18 channels, and the subject’s scale
index was used as an input to the ELM to classify ischemic stroke. These experiments used
120 hidden neurons and sines as an activation function of EML and obtained 84% accuracy,



Sensors 2021, 21, 4269 4 of 17

87% specificity, and 82% sensitivity. Djamal et al. [20] proposed a method for identifying
stroke patients after the occurrence of stroke using a convolutional neural network (CNN).
They used wavelets to extract brainwave signal information for use as a feature in machine
learning that reflects the patient’s condition after stroke. The extracted features are alpha,
beta, theta, delta, and mu waves of brain waves, and the accuracy of the test data was 90%
with amplitude and beta features while it was 70% without them.

Studies that analyze EEG characteristics in stroke patients have shown that there
are distinct characteristics in three frequency ranges: alpha wave (8~13 Hz), theta wave
(4~8 Hz), and delta wave (1~4 Hz). Schneider et al. [21] analyzed brain wave frequency and
brain wave topography in 20 mild stroke patients. Their results confirmed a meaningful
decrease in alpha wave and increase in delta wave activity in 17 mild stroke patients. In
another study, Finnigan et al. [22] reported that abnormal waveforms in the alpha and delta
wave were found in stroke patients. Specifically, in stroke patients, the delta wave showed
abnormal and slower characteristics than that in normal people, while the alpha wave
showed reduced normal and fast activity. This information can be used to detect brain
waves in stroke patients using the values of delta, delta and alpha power ratio (DAR), and
power ratio index (PRI). Varelas et al. [23] reported that a rhythmic and large amplitude
sum of theta and delta power values appeared in stroke patients with additional epilepsy.
Ip et al. [24] confirmed the occurrence of changes in theta/delta values in stroke patients,
as well as a sharp increase in the values of delta (δ), alpha (α), beta (β) (14~30 Hz), and
high gamma (γ) (over 30 Hz) in the right brain hemisphere after stroke. Kim et al. [25]
conducted a follow-up and made behavioral observations for three minutes in 12 stroke
patients and a normal control group.

2.2. Related Work on AI-based Stroke Classification

Currently, many deep learning-based studies use CT or MRI images to detect
stroke [26–32]. For example, in a study classifying hemorrhagic stroke and ischemic stroke
using brain CT images, Gautam et al. [26] achieved a classifier performance of up to 98.77%.
Kalchbrenner et al. demonstrated that their proposed 13-layer CNN [27] model showed
better performance in comparative experiments with AlexNet [28] and ResNET50 [29].
Chin et al. [30] applied data augmentation to CT images of ischemic stroke patients to
expand the number of patch images, used them as input to CNN models to detect ischemic
stroke, and obtained more than 90% accuracy. Liu et al. [31] proposed a Res-CNN model
that automatically classifies acute ischemic stroke in MRIs. The Res-CNN model solved the
performance degradation problem using the residual unit, and it improved the model per-
formance through data expansion. Dourado et al. [32] presented a CT image classification
IoT framework applied with a CNN to classify ischemic stroke and hemorrhagic stroke.
In that same framework, they further experimented with machine learning methods like
Bayesian [33], MLP [34], k-nearest neighbor [35], random forest [36], and support vector
machines (SVM) [37] by applying the various machine learning concept [38], and they
validated the model with 100% accuracy. They reported that training and testing times of
0.015 s and 0.001 s, respectively, when using the Bayesian Classifier, can be classified as
ischemic stroke and hemorrhagic stroke with high accuracy in a short time.

Beyond images, various biological signals have also been used to predict stroke
diseases. For example, Yu et al. [39] proposed a pre-detection and prediction method
for machine learning and deep learning-based stroke diseases that measure the electrical
activities of thighs and calves with EMG biological signal sensors, which can easily be
used to acquire data during daily activities. They experimentally verified an accuracy
of more than 90% using real-time collected data. Through these experiments, that study
demonstrated a novel method that can verify stroke disease with high accuracy based on
the pre-symptoms of stroke, body falling, and the degrees of both leg muscles. In another
study, Xie et al. [40] proposed CNN-based DenseNet for stroke disease classification and
prediction based on ECG data collected using 12 leads, and they obtained 99.99% training
accuracy and 85.82% testing accuracy using fine-tuned models for the correlation between
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stroke and ECG. However, they used other biological signals that are not closely related to
the brain. Thus, there is a need for studies using brain waves with AI.

Fawaz et al. [41] conducted a study to expand data using techniques such as con-
ditional general adversarial network (CGAN) [42] to address the lack of data in stroke
patients, and to classify EEG in stroke patients through the LSTM encoding process and
the frequency mapping phase for loss functions. The proposed model uses frequency prop-
erties, and its performance is compared with those of the typical deep learning models of
feed forward [43], CNN [27,28], bidirectional LSTM [44], and CNN-bidirectional LSTM [45]
as baseline models. The model proposed in that study achieved a high accuracy of 90.5%
for classifying stroke patients. In a different study, Guntari et al. [46] classified poststroke
EEG signals using RNN and genetic algorithms (GA). The stroke data used in Zhang et al.
were extracted using wavelet [47], and the initial 215,040 data points were reduced to
29,160 on 14 channels containing power values; this reduced the figures time from 80 s
to 50 s, and an experimental accuracy of 90.0% was obtained. Giri et al. [48] conducted a
stroke identification study based on EEG signals and electrooculography (EOG) signals
using 1D CNN and batch normalization. The collected data consisted of the relative values,
correlation aspects, variance, spectral mean, entropy, kurtosis, and fractal indices of brain
waves through feature extraction steps, and an F-Score of 86.1% was ultimately obtained.

3. Deep Learning-Based Stroke Disease Prediction System Using EEG

We propose a novel system for predicting stroke based on deep learning using the
raw and attribute values of EEG collected in real time, as presented in Figure 1. The
proposed system is composed of (1) a module that collects data in real time; (2) a module
that transmits the real-time generated biological signals to the server; (3) a module that
analyzes the stored biological data, then extracts and manages frequency attributes; (4) a
deep learning-based learning and prediction module; and (5) a biological-signal-based
stroke prediction analysis. Next, the initial system extracts and stores a set of pretreatment
processes and features based on various biological signal data, such as EEG data and ECG
data collected from elderly people. Finally, the stored bio-signal data is used as input for
deep learning models to predict and analyze stroke anomalies in older adults in real time.
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3.1. Sensor Device and Data Collection Module

We measured and collected various bio-signal data, such as electroencephalography
(EEG), electrocardiography (ECG), electromyography (EMG), motion, etc., for the classifica-
tion and prediction of stroke diseases using bio-signals. Although all bio-signal data were
collected in real time, we only used the EEG data to validate the stroke disease prediction
and analysis. There are two main methods of measuring brain wave data. In the first
method, scalp EEG can be measured painlessly by attaching electrodes to the outside of
the skull, i.e., to the scalp. In the second method, electrodes can be surgically inserted into
the subject’s cerebral cortex. This method provides a relatively neat signal, but it is highly
invasive and involves the risk of incision into the skull. In this paper, the data are acquired
using non-invasive scalp EEGs to allow for easier data collection during daily activities
and verification accuracy for stroke prediction.

3.2. Data Preprocessing Module

Once the device is set, the EEG data are collected at a sampling rate of 1000 Hz from
six channels, and the frequency attribute values are extracted from the raw. The extracted
frequency attribute values are categorized into two major values: (1) the power value
indicating the extent to which each frequency component has appeared and (2) the relative
value indicating the relative proportion of each component in the frequency domain for
the entire region. Basic EEG biological tests use power values, which may give different
amplitude sizes of EEG waveforms due to individual differences in scalp and skull thick-
ness as well as the contact with the electrode and skin. Therefore, for experiments with
multiple subjects, it is desirable to use the relative value of each region for analysis due
to the large individual deviation of the power value. The relative values of the frequency
domain are extracted for comparison with the results of the experiments using raw data.
The frequency attribute value extraction extracts values such as alpha, beta, etc. of the
power value by applying FFT to raw EEG data. Additional functions were performed to
disaggregate the frequency range based on the extracted values, or a ratio of each value
was applied to extract a total of 66 attribute values. In addition, based on the power value,
we further extract the relative value representing the relative ratio and design it for use
in experiments.

The lines on the graph represent the raw values collected from the six channels shown
in Figure 2, while the vertical axis represents frequency in Hz and the horizontal axis
represents time. For time, periods of at least five seconds were used to differentiate the
walking data. Overall, using only raw EEG data from stroke patients and normal controls
to distinguish and determine stroke disease can be difficult for medical professionals. In
addition, medical professionals need time to make a proper diagnosis of stroke. In this
study, we conduct experiments and validations with the goal of providing meaningful
information and ultimately designing and implementing systems that can help medical
staff make judgments more quickly, rather than simply attempt to develop a system that
can predict stroke early. Figure 3 shows examples of the raw EEG data in (a) stroke patients
and (b) normal controls.

3.3. Stroke Prediction Module

The stroke prediction module for the elderly using deep learning-based real-time EEG
data proposed in this paper consists of two units, as illustrated in Figure 4. For the offline
processing unit, the EEG data are extracted from a database storing the data on various
biological signals such as EEG, ECG, and EMG, and a series of processes are followed to
learn and tune the parameters based on deep learning. The online processing unit analyzes
brainwave data collected in real time based on features learned from the offline processing
unit and delivers information about stroke prediction to medical staff in real time. This
information can then be communicated to help medical staff predict stroke faster and make
accurate diagnoses.
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EEG data are time series data that consist of sequential values over time, and it is
necessary to consider time information in the learning process. Therefore, in our stroke
prediction module we transform and optimize the structure of a deep learning model to
obtain a model that can address the characteristics of time series data well and use it in
experiments. The deep learning models that were analyzed were CNN [27,28], LSTM [49],
bidirectional LSTM [44], etc. CNNs can reduce computation volume through the use
of basically shared parameters, and they have the advantage of mitigating overfitting.
Moreover, CNNs are increasingly being used to research and develop models by extracting
the optimal properties to improve classification and prediction performance. The LSTM
model can predict the next stage of time series data by considering both future and historical
information of time series data, which can solve the long-term dependency problem. Finally,
Bidirectional LSTM is a structure that can overcome the structural limitations of LSTM,
where the results of the latter tend to converge based on the last-minute pattern by adding
a reverse processing layer to the existing LSTM layer. In this work, we selected four models
to fit the time series data classification using the advantages of each model, which are
illustrated in Figure 5.

3.3.1. Long-Short Term Memory (LSTM)

The existing RNN is a kind of ANN wherein information persists inside the neural
network, and it has been used for image caption generation, automatic translation, etc. [50].
However, RNN has the disadvantage of its learning ability gradually decreasing due to the
reduction in its slope when the distance between information grows, i.e., when the length
of the input sequence increases. To address these problems, we use the LSTM [49] model,
which adds a cell-state to the hidden-state of the RNN. LSTM consists of a forget gate, an
input gate, and an output gate. The forget gate ft is a gate for forgetting past information
inside a neural network, which preserves the information entirely if the formula result is 1
and discards the information if it is 0.

ft = σ
(

W f ·[ht, xt] + b f

)
(1)
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The input gate it is a gate for remembering the current information inside a neu-
ral network, which determines which new information is stored in the cell state. First,
Equation (2) determines which value to update, then prepares to add the new candidate
values, the C̃t vector, to the cell state through Equation (3). The state can be said to be
prepared by combining the two sets of information from Equations (2) and (3).

it = σ(Wi·[ht−1, xt] + bi) (2)

C̃t = tan h(WC·[ht−1, xt] + bC) (3)

It then updates the past state, Ct−1, to create a new cell state, Ct. As shown in
Equation (4), the previous state is multiplied by ft, while forgetting what one has chosen
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to forget at the very first step and adding it ∗ C̃t. it ∗ C̃t is a value that has been increased or
decreased by how much the value was supposed to be updated.

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

Finally, the output gate ot determines how much of the information is represented
inside the neural network, where output is filtered based on the cell state. The cell state is
input into the tanh layer to receive a value between −1 and 1. This value is multiplied by
the output of the previously calculated sigmoid gate, which allows only the desired part to
be expressed as output. This process is as shown in Equations (5) and (6).

ot = σ(Wo[ht−1, xt] + bo (5)

ht = ot∗ tan h(Ct) (6)

3.3.2. Bidirectional LSTM

Bidirectional RNN (BRNN) is a model used when time series data exhibit significant
results in forward inference from the past to the future, as well as reverse inference from
future to past [51], i.e., it is used to predict labels for current data through past sequences
and future sequences. For this model, there are hidden layers with information on the
forward states and hidden layers with information on the backwards states, and these two
layers are not interconnected. However, the input value is passed to both hidden layers,
and the output layer also receives the value from the two hidden layers to calculate the
final output. This is equivalent to Equations (7)–(9), which calculate the activation output
→
ht of the forward hidden layer, the activation output

←
ht of the background hidden layer,

and the output yt of the output layer at time t.

→
ht = σ(W

x
→
h

xt + W→
h
→
h

→
h t−1 + b→

h
(7)

←
ht,= σ(W

x
←
h

xt + W←
h
←
h

←
h t+1 + b←

h
(8)

yt = W→
h y

→
h t + W←

h y

←
h t + by (9)

We use bidirectional LSTM (BiLSTM) [44] for the experiments in this paper by applying
the LSTM network instead of RNN in bidirectional RNN.

3.3.3. CNN–LSTM

CNN [27,28] is capable of implementing complex nonlinear models, and it is special-
ized in image and speech recognition. While LSTM models perform well on sophisticated
time series data that follow a particular trend, for data that do not exhibit a particular trend
and that show severe changes, the prediction value converges upon a specific constant
value, thus resulting in poor accuracy. To solve this problem, we combine CNNs that have
the advantage of extracting the characteristics of time series data and LSTM models that
predict the time series data for the next step by considering both historical and future
information regarding time series data [52]. The time series data entered can be more
accurately classified and predicted because it extracts the properties of the data through the
CNN layer, then passes through the LSTM layer that exploits past and future information.

3.3.4. CNN-Bidirectional LSTM

As mentioned earlier, we combine CNN models at the front of the LSTM model to
compensate for the shortcomings of LSTM [49]. We also combine a bidirectional LSTM
model with a CNN that can simultaneously make reverse predictions from the future to
the past direction and with the underlying forward LSTM model that makes predictions
from the past to the future [45].
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4. Experiments and Result Analysis
4.1. Data Collection and Description

As explained in Section 3.1, from the various biological signals collected, the exper-
iments were conducted using only EEG data. The measurement and collection of EEG
data were conducted at the emergency medical center of Chungnam National University
Hospital for senior citizens aged 65 or older from 2017 to 2018. The selected subjects
were patients who had received rehabilitation treatment for stroke and who had been
diagnosed with stroke within the first month. The experiment involved 48 stroke patients
and 75 normal patients from 2017, as well as 13 stroke patients and 137 normal patients
from 2018. To achieve an equal comparison, 61 stroke patients and 61 randomly selected
control data were ultimately selected for analysis. Five specific daily activity protocols were
implemented, including walking, chair sitting and standing, standing, moving objects, and
sleeping. After being equipped with the vital-signal collection sensors, all subjects were
trained once before the measurement protocol. The first and last of the five measurement
protocols were excluded from the experimental data, as these data were likely to reflect
the subject’s tension, discomfort, and fatigue. Of the total 273 subjects, 227 cases were
evaluated by the medical staff as the NIHSS value for evaluating the severity of stroke.
There were 117 males, with a mean age of 74.44, a standard deviation of 6.775, a maximum
age of 90, and a minimum age of 65 years. There were 110 females, with an average age of
77.82, a standard deviation of 6.661, a maximum age of 99 years, and a minimum age of
65 years, just like men. Including both males and females, there were 13 elderly patients
with NIHSS scores of 0, 153 patients with a score from 1 to 4, 42 patients with a score
from 5 to 15, and 8 patients with a score from 21 to 42. In this paper, the patients with an
NIHSS score of 5 or higher were specified as stroke patients, and this is a criterion defined
by prior references that was agreed upon by the medical staff at Chungnam National
University Hospital.

The raw data values acquired from the six channels were extracted using FFT tech-
niques, as described in Section 3.2. After redefining the value of the extracted attributes, a
total of 66 power values and relative values were used, as listed in Table 1.

Table 1. Detailed descriptions of newly defined and extracted EEG attributes.

Frequency Band Meaning and Description

Delta Delta power (1~4 Hz)
Theta Theta power (4~8 Hz)
Alpha Alpha power (8~13 Hz)
Beta Beta power (14~30 Hz)

Gamma Gamma power (30 Hz or more)
Low Beta Low beta power (12~25 Hz)
High Beta High beta power (25~30 Hz)

Theta to Beta The value of the beta ratio in theta (extracting abnormal theta waves)
DAR Ratio of mean power (delta/alpha)
IDAR Inverse ratio of DAR (alpha/delta)

PRI Power ratio index (delta+theta to alpha+beta), Low frequency
to high frequency

4.2. Performance Evaluation and Indicators for Experiments

All experiments were performed in the same experimental environment: OS, Ubuntu
18.04.4 LTS; CPU, Intel Core i7-9800X; GPU, 2 X NVIDIA Quadro RTX 8000; and RAM,
256 MB. In this paper, we utilize statistical metrics used for disease screening to evaluate the
performance of our system. The performance evaluation indicators used are defined below.

1© Sensitivity: Percentage of stroke patients who have tested positive.
2© Specificity: Percentage of non-stroke patients who have tested negative.
3© False Positive Rate: Percentage of non-stroke patients who have tested positive.
4© False Negative Rate: Percentage of stroke patients who have tested negative.
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5© Accuracy: Percentage of stroke patients determined as positive and non-patients
as negative.
6© Precision: Percentage of people who are actually stroke patients among those who have

tested positive.
7© Recall: Percentage of stroke patients who have previously tested positive.
8© F1-Score (Harmonic Mean of Precision and Recall): Percentage of stroke patients who

have previously tested positive.

To determine the performance of the classifiers, it is important to have a high accuracy
of the model, but the sensitivity and the specificity must also be high, while the false
positive and false negative ratios should be low (See Table 2 below). If a non-suitable
diagnostic method is used, the sensitivity and the specificity tend to decrease when one
side increases, so both should have a high value to achieve a good diagnostic method.
When the false positive ratio is actually negative and the result is positive, this can lead
to wrong data classification and additional cost. When the false negative ratio is actually
positive and the result is negative, this can have a critical impact on the patient’s life, which
is used as an important performance evaluation indicator when using medical data.

Sensitivity (= Recall) =
TP

TP + FN
(10)

Speci f icity =
TN

FP + TN
(11)

False Positive Rate (FPR) = 1− Speci f icity (12)

False Negative Rate (FNR) = 1− Sensitivity (13)

Accuracy =
TP + TN

TP + FN + FP + TN
(14)

Precision =
TP

TP + FP
(15)

F1− Score = 2× Precision× Recall
Precision + Recall

(16)

Table 2. Confusion matrix for performance evaluation.

Predicted

True
Stroke Normal

Stroke TP 1 FP 2

Normal FN 3 TN 4

1 TP (True Positive): Indicator predicting stroke elderly as stroke elderly. 2 FP (False Positive): Indicator predicting
stroke elderly as general elderly (normal). 3 FN (False Negative): Indicator predicting general elderly (normal) as
stroke elderly. 4 TN (True Negative): Indicator predicting general elderly (normal) as general elderly.

4.3. Experimental Results and Analysis

The deep learning-based EEG data stroke classification experiments in this study
used LSTM, bidirectional LSTM, CNN-LSTM, and CNN-bidirectional LSTM models, as
described in Section 3, and the experiments were conducted by entering three types of data
(raw values, power values, and relative values) into each model. Every experiment was
performed ten times, and the mean value was shown as the final result.

Tables 3–8 list the results of the stroke prediction experiments performed with each
model based on the type of data. The experimental results are presented in terms of
accuracy, F1-Score, precision, sensitivity, specificity, FNR, and FPR using the performance
evaluation metrics described in Section 4.2. Of the total data, 80% were used for learning
in the experiments, and the remaining 20% were used for prediction and validation. In
this experiment, a data set was constructed according to five-fold validation. We used
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the average value of the prediction results as a performance index to discover a more
generalizable stroke disease prediction model.

Table 3. DL models’ accuracy, precision, and F1-score based on raw values.

Data Sets

Evaluation Method
Models Accuracy Precision F1-Score

Raw data

LSTM 70.1 67.9 75.4
Bidirectional LSTM 91.8 85.3 91.7

CNN-LSTM 93.7 96.6 93.7
CNN-Bidirectional LSTM 94.0 94.6 94.1

Table 4. DL models’ sensitivity, specificity, FPR, and FNR based on raw values.

Data Sets

Evaluation Method
Models Sensitivity Specificity FPR 1 FNR 2

Raw data

LSTM 90.2 50.2 49.8 9.9
Bidirectional LSTM 90.4 93.5 6.5 9.6

CNN-LSTM 91.9 96.1 3.9 8.1
CNN-Bidirectional LSTM 94.0 94.3 6.0 5.7

1 FPR (False Positive Rate): Indicator of the percentage of general elderly (normal) expected to be stroke elderly. 2 FNP (False Negative
Rate): Indicator of the percentage of stroke elderly predicted as general elderly (normal).

Table 5. DL models’ accuracy, precision, and F1-score based on power values.

Data Sets

Evaluation Method
Models Accuracy Precision F1-Score

Power value

LSTM 69.5 69.5 68.8
Bidirectional LSTM 79.5 76.4 80.8

CNN-LSTM 74.7 71.4 77.3
CNN-Bidirectional LSTM 81.4 80.8 80.1

Table 6. DL models’ sensitivity, specificity, FPR, and FNR based on power values.

Data Sets

Evaluation Method
Models Sensitivity Specificity FPR FNR

Power value

LSTM 73.8 64.2 35.8 26.2
Bidirectional LSTM 88.3 70.8 29.2 11.7

CNN-LSTM 86.8 65.1 34.9 13.2
CNN-Bidirectional LSTM 82.7 81.5 18.5 17.3

Table 7. DL models’ accuracy, precision, and F1-score based on relative values.

Data Sets

Evaluation Method
Models Accuracy Precision F1-Score

Relative value

LSTM 81.0 82.8 80.7
Bidirectional LSTM 89.2 86.9 88.8

CNN-LSTM 84.0 82.4 83.7
CNN-Bidirectional LSTM 86.2 87.3 85.8
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Table 8. DL models’ sensitivity, specificity, FPR, and FNR based on relative values.

Data Sets

Evaluation Method
Models Sensitivity Specificity FPR FNR

Relative value

LSTM 79.3 82.5 17.5 20.7
Bidirectional LSTM 91.6 87.5 12.5 8.4

CNN-LSTM 85.2 87.3 12.7 14.8
CNN-Bidirectional LSTM 86.0 83.1 17.0 14.0

The ROC (receiver operating characteristic) curve of the CNN-bidirectional LSTM
models in Table 4 is presented in Figure 6. The ROC curve is an index expressing the
threshold and performance of binary classification prediction of stroke disease, where the
x-axis indicates specificity and the y-axis indicates sensitivity.
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When we conducted predictive experiments applying each deep learning model
using raw values, the experimental results obtained using the CNN-bidirectional LSTM
models were the highest at 94.0%, as presented in Table 3. The low false negative and
false positive ratios mean that the rates of classifying stroke patients as normal and normal
patients as stroke patients are both very low. CNN-bidirectional LSTM showed satisfactory
experimental results for not only accuracy but also performance evaluations such as
precision and F1-Score.

Tables 5 and 6 list the results of the experiments conducted by applying each deep
learning model with power values. In this experiment, we show that the CNN-bidirectional
LSTM model performed best with a stroke disease prediction accuracy of 81.4%. However,
the overall performance was significantly lower than that obtained using raw values. In
particular, the FPR (18.5%) and FNR (17.3%) are both high, which are too low to have any
clinical meaning and for medical staff to use as a stroke disease judgment.

Finally, after conducting experiments by applying each deep learning model using
relative values, we experimentally confirmed that the Bidirectional LSTM model has the
highest predictive accuracy at 89.2%. The performance of the bidirectional LSTM was
slightly higher when using the relative value than when using the power value, but the
overall performance was lower than the experimental results obtained using the raw value.
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To summarize, CNN-bidirectional LSTM models provide the best performance when raw
data values are used. Altogether, the results show that the FPR and FNR alone can predict
stroke with high performance. This means that the time needed to detect stroke disease
can be shortened without needing to go through the frequency attribute extraction process.
For the three data types, the hyper-parameters for each model are listed in Table 9 below.

Table 9. Hyper-parameters of each model.

Data Sets Models Learning Rate Batch Size Epoch Optimizer

Raw

LSTM 0.01 64 50 Adam
Bidirectional LSTM 0.001 128 100 ”

CNN- LSTM 0.01 64 200 ”
CNN-Bidirectional LSTM 0.001 64 500 ”

Power

LSTM 0.0001 64 300 ”
Bidirectional LSTM 0.001 32 300 ”

CNN- LSTM 0.01 128 500 ”
CNN-Bidirectional LSTM 0.001 64 500 ”

Relative

LSTM 0.0001 128 500 ”
Bidirectional LSTM 0.001 32 300 ”

CNN- LSTM 0.001 64 300 ”
CNN-Bidirectional LSTM 0.01 64 300 ”

5. Conclusions

In this paper, we propose a system that enables the early detection and prediction
of stroke disease based on deep learning using EEG raw data, power values, and relative
values. The analysis of the experimental results of raw data, power values, and relative
values showed that using raw data achieved the highest stroke prediction accuracy. In
addition, we confirmed that the specificity and sensitivity of the experimental results using
raw data are lower than those of other data and models, with very low FPR and FNR.
This is an important experimental result indicating that the early detection and onset of
stroke disease can be accurately predicted using raw EEG data alone, without requiring
the cumbersome process of separating frequency domain properties. The system proposed
in this paper can provide useful analytical information for medical staff, patients with
stroke with high recurrence potential, or elderly people with high incidence of stroke. It is
a significant finding that stroke can be predicted at low cost during daily activities such as
walking situations. This study is meaningful, as it can detect the risk of stroke early, before
an individual is taken to the emergency room, thus allowing for access to treatment within
the golden period. However, to improve the predictive accuracy and performance of real-
time predictive models of stroke disease, analysis and predictive models should be studied
by integrating health examination data and CT analysis information in a clinical setting.

In future research, we will study accurate predictions and in-depth interpretations of
stroke disease using various biological signals such as EMG, ECG, and gait motion, as well
as other EEG data. Further, we intend to research and develop systems that provide more
reliable and clinically interpretable stroke prediction results by conducting multimodal
studies that combine electronic medical recording (EMR) data, such as individual health
checkups, with CT or MRI scans and interpretating the information.
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