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ABSTRACT As the powerful performance of deep learning has been proven, many computer vision
researchers have applied deep learning methods to their works as a breakthrough that could not be
achieved with conventional computer vision algorithms. Particularly in pathological image analysis, deep
learning plays an important role because some diagnosis requires a considerable cost or much time. In a
recent, convolutional neural network (CNN)-based deep learning models have shown meaningful results
in pathological image analysis, reducing time and cost. However, existing CNN-based segmentation models
perform the same convolution operation for all channels of a feature map. It could be an inefficient operation
according to information theory. We propose (Shannon) entropy-based convolutional module (ECM) for
efficient convolutional operation in terms of a communication system. The fundamental coding manner
of a communication system based on information theory is to allocate fewer bits for data showing the
high probability of occurrence, and vice versa. Following up this coding manner, a feature is divided into
dominant and recessive features according to the channel importance calculated from the channel attention
module, and a heavy operation is conducted on the recessive feature and a light operation is conducted on
the dominant feature. This operating manner can make a network perform efficient calculations and improve
its performance. Furthermore, our proposed module is a portable unit, thus it can be a replacement of any
convolution without modification of the whole architecture. To the best of our knowledge, our proposed
module is the first trial to mimic the coding manner of information theory. The models equipped with our
proposed module outperform the original models achieving 0.855 of F1 score and 0.832 of Jaccard score on
colorectal cancer (CRC) image data-set.

INDEX TERMS Segmentation, deep learning, information theory, Shannon entropy, colorectal cancer
image.

I. INTRODUCTION
Automatic algorithms for pathological image classification
and segmentation occupy a large part of computer-aided diag-
nosis (CAD). CAD is the use of an output generated by a
computer as an assisting tool for a clinician. This clinician
makes the final diagnosis to make an accurate decision. But
CAD can be a great tool to help clinician find candidates
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for affected areas. From the earliest, many researchers have
tried numerous image segmentation or classification taskwith
statistical approaches for sophisticated CAD [1]–[4].

Over the past few years, however, deep learning meth-
ods have shown outstanding performance and yielded novel
image segmentation models. Deep learning models can solve
many image understanding problems highly complicated to
analyze by training deep neural layers. This is because a
neural architecture provides suitable constraints for a data-set
by iterative training process. This excellence of deep learning
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mademany researchers shift their study field to deep learning,
and clinicians and engineers have begun to collaborate to
analyze medical images.

We develop a histological image segmentation and classi-
fication model to work on the CRC image data-set to con-
tribute above works (CRC is an alarming threat to health in
cancer-related deaths in many countries).

To determine if a patient responds to immunotherapy,
a microsatellite instability (MSI) index is diagnosed based on
a medical expert’s experience. The MSI status classes have
MSI-High (MSI-H) and MSI-Low (MSI-L) or MSI-Stable
(MSS). Figure 1 shows samples of CRC images and masks.
White spaces of masks are mapped to the tumor regions,
classified as MSI-H or MSI-L (MSI-L and MSS are the same
class). Non-masked regions contain no MSI status, which
means they are all normal tissues.

FIGURE 1. Samples of the CRC data-set. (a) CRC images (b) corresponding
masks.

The pathological reporting of MSI status is strongly rec-
ommended for all surgically resected CRC cases. A general
diagnosis procedure is conducted by examining Hematoxylin
and Eosin (H&E) stained CRC tissue and manually checking
abnormalities in microscopic images. However, this proce-
dure is tedious and sometimes prone to error. Pathological
image-based automatic diagnosis methods with deep learning
approaches could reduce the fatigue of pathologists.

However, deep learning still has poor functionality when
it comes to being considered as one of the communication
systems that transmit data. Figure 2 shows brief diagrams of
a communication system and a typical segmentation model.
In a communication system, information is to be transmitted.

FIGURE 2. Brief diagrams of a communication system and a typical
segmentation model. Two systems have similar concept in terms of data
transmission.

Signals of information are the single-valued function of time
that carries the information, and it is converted into an elec-
trical form for transmission.

In reality, however, many things have to be considered
for transmission: Signal should be amplified to keep signal
strength and modulated to be transmitted over a large dis-
tance. Further, to satisfy the theoretical condition, hardware
design must be sophisticated. Of course, a deep learning
architecture is not related to those real problems, it can be
thought of as a communication system because the informa-
tion is conveyed through hidden layers.

The important commonality between a communication
system and a deep learning model is encoding process.
Although in a communication system, encoding is not nec-
essary, it can provide significant efficiency for transmission.
Likewise, in a deep learning model, it is not easy to make
efficient predictions without encoding. Figure 3 shows the
compression coding manners of a communication system
and a neural network. For the 6 symbols to convey, general
code allocates 3 bits for the expression of the symbols. For
more efficient data transmission, however, the compressed
code (Shannon-Fano coding [5]) allocates various lengths
of bits (the expected bit length of the general code is 3,
the compressed code is 2.44). This coding manner is based
on information theory which has been initially proposed by
Shannon [6]. The main principle of information theory is that
the lower probability of occurrence, the more information
data have. Thus, few bits are needed to transmit data that has a
higher probability, many bits are needed to transmit data that
has a lower probability.

This paper proposes the ECM based on information theory
to mimic the coding manner of a communication system. For
the features which have a higher probability, the ECM will
apply a small amount of convolutional operations, for the
features which have a lower probability, the ECM will apply
a large amount of convolutional operations.
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FIGURE 3. The motivation of the proposed ECM. Our module mimics the
concept of a communication system. According to channel
probability(intensity), different convolutional operations are applied.
Specifically, for channels that have a large probability, small amount of
convolutional operations are applied because the channels have small
amount of information to be extracted.

In summary, themain contributions of this paper lie in three
aspects:
• Our proposed ECM can be a replacement for a vanilla
convolution. Therefore, the ECM can be used for any
type of structure that contains CNN modules.

• To the best of our knowledge, our proposed ECM is the
first trial to mimic the coding manner of information
theory.

• Our proposed ECM improves the performance of
well-known architectures without modifications of the
model architectures. We achieve 0.855 of F1 score and
0.832 of Jaccard score on the CRC image data-set.

The remainder of this paper is organized as follows.
Section II describes a brief overview of the background and
related works in semantic segmentation based on deep learn-
ing. Section III presents the proposed ECM. The experimental
process and results are described in section IV, and section V
describes the conclusion.

II. RELATED WORKS
Before the deep learning boom, many researchers have
tried to perform image segmentation tasks with conventional
approaches. Soo-Hee Han et al. proposed memory-efficient
approaches for the segmentation of airborne laser point
clouds [7]. Though it works with mathematical and geometric
approaches, the model is not enough to cover the diver-
sity of target shapes because it does not have enough non-
linearity. However, as deep learning-based methods emerged,
the problem began to be solved. As time goes by, deep
learning skills have become more refined, and many models
have proven their excellence. Among many deep learning
models, some models play an important role as cornerstones.

From the underlying contribution, many approaches for
pathological image analysis have also been proposed. In this
section, prominent deep learning-based segmentation models
are introduced.

A. FULLY CONVOLUTIONAL NETWORK
Since Long et al. [8] proposed a fully convolutional net-
work (FCN), there has been a remarkable improvement in
segmentation performance, which removes fully connected
layers to preserve local information. FCN includes only con-
volution layers, making it possible to take an arbitrary size
of the image. FCN is based on CNN architectures such as
VGG16 [9] and GoogLeNet [10], but others can replace such
backbones for better feature extraction. Further, the output
map can be adjusted to any size because there are no fully
connected layers.

FCN uses skip connections in which feature maps from the
final layers are up-sampled and fused with feature maps of
earlier layers to capture multi-scale information. The flex-
ible and refined architecture enables the model to produce
a detailed segmentation map. FCN is a great cornerstone in
image segmentation, providing end-to-end training for seg-
mentation on the random-sized image.

B. ENCODER-DECODER ARCHITECTURES
After the FCN, many architectures based on encoder-decoder
architecture are introduced. Noh et al. [11] proposed decon-
volution network for semantic segmentation. The deconvo-
lution network’s decoder is composed of an un-pooling layer
and deconvolution, which predict segmentationmasks. Badri-
narayanan et al. [12] proposed the SegNet which is similar
to deconvolution network. The key idea of the SegNet is
the up-sampling way of the decoder. It uses pooling indices
already computed in encoding stage, enabling the model to
perform non-linear up-sampling.

The HRNet [13], a high-resolution network, maintains
high-resolution features by using connections between high
and low resolution feature maps in parallel. This HRNet has
strength for understanding multi-scale objects in images.

The DeepLab series proposed by Liang-Chieh Chen et al.
also can cover the variable size of objects by using
atrous convolution. Liang-Chieh Chen et al. first proposed
DeepLabV1 [14] and DeepLabV2 [15]. Both architectures
adopt atrous convolution and a fully connected conditional
random field (CRF) which helps the decoder make a refined
segmentation mask. DeepLabV2 has one more module
named atrous spatial pyramid pooling (ASPP). ASPP is an
atrous version of SPP, which is introduced in SPP-Net [16].
In ASPP, atrous convolutions with different rates are applied
to the feature map and fused. DeepLabV3 [17], which out-
performs PSPNet [18], handles the problem of segment-
ing objects at multiple scales and its extended version is
DeepLabV3+ [19]. DeepLabV3+ has a useful decoder mod-
ule to refine the segmentation mask, resulting in a fast and
robust encoder-decoder network. Soo-Hee Han et al. applied
those general architectures and developed them.
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C. MEDICAL IMAGE SEGMENTATION
For broader and faster diagnosis of medical images, engi-
neers have tried to adapt deep learning models to medical
image analysis [20], [21]. The U-Net [22], which consists
of contracting and expanding paths, has shown outstanding
biomedical image segmentation performance. The contract-
ing path which can be called encoder reduces the spatial
dimension to save operating cost while the expanding path
which can be called decoder recovers dimension and detail for
generating output segmentation mask. Moreover, the U-Net
uses skip-connection between encoder and decoder to pre-
vent spatial information’s disappearance during the encoding
stage.

For more robust architecture, Zongwei Zhou et al. pro-
posed the UNet++ [23], which has a nested and dense
connection between encoder and decoder. In the U-Net, skip
connection is just a concatenation of the encoder feature and
decoder feature, but the UNet++ changes this connection
to the convolution module. This architecture achieves higher
accuracy than the original U-Net because the nested convo-
lution path can preserve better feature localization.

Bo Wang et al. proposed the dual encoding U-Net [24],
which has two encoders: spatial path and context path. They
help networks preserve spatial information and semantic
information. However, the model parameter number is too
big. Thus it demands a large amount of computing power.

Ricardo et al. proposed cascaded architecture [25] using
variational auto-encoder [26] which is cascaded after the
segmentation network to improve the topological coher-
ence. Pengshuai Yin et al. proposed PM-Net [27], based
on Mask-RCNN [28]. PM-Net has a segmentation-based
region proposal network and pyramid RoIAlign module to
aggregate the multi-level information to better feature rep-
resentation. Yicheng Wu et al. proposed Vessel-Net [29]
for retinal vessel segmentation. It is designed with an effi-
cient inception-residual convolutional block to combine the
inception and residual modules’ advantages. Kehan Qi et al.
proposed X-Net [30] to address the problem that model
performances are limited due to the insufficient training
of a large number of parameters, which sometimes fail
in capturing long-range dependencies. X-Net is based on
depth-wise separable convolution, allowing to reduce the net-
work size. Yalong Liu et al. proposed Refined Segmentation
R-CNN [31], which is a lightweight segmentation network
for biomedical image segmentation. The network embeds a
heuristic region proposal network that can utilize surrounding
information for heuristic segmentation.

Unlike the models described above, conditional random
field and graph-based neural network have been utilized
for medical image processing in other researches [32]–[35].
To analyze complex images, the spatial relationship between
image locations is extracted by conditional random field
or graph-based neural network. Dan Xue et al. proposed
a novel ensembled transfer learning technique [36]. In this
technique, the features from various extractors are processed
by weighted voting for ensemble learning. This technique

can aggregate the feature extraction capabilities of multi-
ple extractors. Jun Xu et al. first reported on the develop-
ment of computerized spermatogenesis staging (CSS) based
on quantitative image analysis that outperforms a human
histologist [37].

In this paper, we suggest an improvement that all the mod-
els described above did not consider. We propose the ECM to
mimic the fundamental coding manner of information theory,
carrying out an efficient feature extraction.

III. METHOD
In this section, the analysis strategy for the CRC image
data-set is described. We propose ECM, which is based on
Shannon entropy. The ECM can be used as a plug-and-play
module without modifying the entire model, increasing
model performance.

A. QUANTITIES OF INFORMATION
This paper mainly deals with a deep learning methodology
in terms of information theory. Information theory concerns
measures of information of the distributions associated with
random variables. The quantities of information in a random
variable are calculated as eq. (1) to deal with information.

I (x) = −log2P(x) (1)

The quantities of information are based on the probability
of random variable (probability of random variable P(x) is
distributed between 0 and 1). The higher the probability of
occurrence, the lower the amount of information. Based on
the probability mass function, the Shannon entropy is given
by eq. (2).

H = −
n∑
i

pilog2(pi), (2)

where pi is the probability of occurrence of the i-th value, n
is the number of samples.

B. ENTROPY-BASED CONVOLUTIONAL MODULE
To mimic information theory in terms of data transmis-
sion, we propose an ECM-based image segmentation model.
Figure 4 shows the architecture of the ECM. First, a channel
sorting module (CSM) which is described in Algorithm 1 is
applied to the input feature map. CSM aims to sort feature
maps according to the intensity of the channel attention vec-
tor. The channel attention vector is generated by the channel
attention module introduced in [38]. Figure 5 shows the chan-
nel attention module. The module utilizes both max-pooling
outputs and average-pooling outputs with a shared network.
And then two vectors are summed and pass through an
activation function, creating a channel-wise attention vector.
This channel attention vector implicitly means the intensity
of each channel. The intensity has the same meaning as the
probability in Figure 3. The intensity value of a channel
attention vector tends to be large when a feature has impor-
tant information of an image, meaning that the feature often
appears, hence it can be thought of as a probability.
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FIGURE 4. The proposed ECM. The ECM follows the coding manner of a communication system. For the channels which have large intensity, a small
amount of convolutional operations are applied, and vice versa. Specifically, channels of input feature map are sorted according to their intensities
calculated by the channel attention module shown in Figure 5. After that, channels are split according to the threshold as shown in Figure 6. These split
features represent a dominant and recessive feature, and each feature has a different amount of information. And then the dominant feature becomes
1/3 ∗m channel, the recessive feature becomes 2/3 ∗m channel, where m is output channel. The two feature maps are concatenated, and batch
normalization and depthwise convolution are applied.

FIGURE 5. The channel attention module. The generated channel
attention vector presents the probability values of each channel and has
the same length with the channel of the feature map [38].

Algorithm 1 CSM(Channel Sorting Module)
1: input ← feature map
2: index ← channel attention vector of input
3: Sort the input channel according to index
4: return channel sorted feature

After generating the channel attention vector, channels are
sorted according to the channel attention vector’s value (the
sorted feature is easier to be utilized at the next operation).
The rearranged feature map is called the channel sorted fea-
ture (CSF) in this paper.

After the CSM operation, CSF goes through the domi-
nant/recessive split module (DRSM) which is described in
Algorithm 2. Figure 6 shows the DRSM that separates the
feature map into the dominant/recessive feature according to

FIGURE 6. Dominant/recessive split module. From the CSF, channels
which have smaller RQ go into D, and vice versa.

the threshold. To set the threshold, we first define the relative
quantity (RQ) as in eq. (3).

RQ(x) =
I (x)
H

(3)

The feature map is divided into the D feature (dominant
feature) and the R feature (recessive feature) by the crite-
rion decided by the minimum value of RQ, entropy H and
hyperparameter k . Channels whose RQ value is smaller than
(1 + H/k) times the value of minimum RQ go into D fea-
ture, other channels go into R feature (See Figure 6). Then
each feature is downsized with depthwise average pooling
shown in Figure 7. Depthwise average pooling produces
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Algorithm 2 DRSM(Domain/Recessive Split Module)
threshold ← (1+ H/k) ∗ RQmin

2: CSF ← Channel sorted feature
for i = 1, 2, . . . , channel length do

4: if Channel intensity > (1+ H/k) ∗ RQmin then
Append CSF[i] to R

6: else
Append CSF[i] to D

8: end if
D← depthwiseAvergePooling(D)

10: R← depthwiseAvergePooling(R)
end for

12: return D,R

one channel feature map from an arbitrary number of chan-
nels, enabling the model to train the DRSM. Because the
entropies are changed for every iteration, the fixed kernel
cannot be adapted to generate one channel feature for every
batch. On the contrary, depthwise average pooling enables the
model to be trained by making the channel’s arbitrary number
into one channel.

FIGURE 7. Brief diagram of depthwise average pooling. Unlike normal
average pooling, it calculates the average value of channels.

The D and R are then added to CSF as shown in Figure 4.
After that, convolutions are applied to each D and R feature
map. For the D, the output channel becomes m/3, and for R,
the output channel becomes 2 ∗ m/3, where m is the number
of the final output channel. This is because the D has less
information than the R (more convolutional non-linearity is
needed to extract information from the R feature). Note that
this is the coding scheme of the ECM.

Then, the two feature maps are concatenated, resulting in
anm channel feature map. Finally, the depthwise convolution
shown in Figure 8 is applied to extract latent features from the
previous feature map at a low cost. The process of the ECM
is described in Algorithm 3.

The advantage of our proposed module is that users can
replace a convolution with our module very easily, increas-
ing performance. Our module can extract features efficiently
by applying different amounts of convolutional operations.
However, our module needs to set the hyperparameters, and
optimal hyperparameters for a data-set should be found by
empirical tests.

Algorithm 3 ECM
m← output channel
CSF ← CSM (input)

3: D,R← DRSM (CSF)
DCSF ← Convolution(CSF + D)
{DCSF has 1/3 ∗ m channels}
RCSF ← Convolution(CSF + R)
{RCSF has 2/3 ∗ m channels}

6: concat_ f ← concat(DCSF,RCSF)
output ← DepthwiseConvolution(BN (concat_ f ))
return output

FIGURE 8. Brief diagram of depthwise convolution. It extracts spatial
information from each channel.

C. ECM-EQUIPPED NETWORKS
Our proposed ECM can be used in any architecture including
convolution layers. We use ResNet50 [39], which is still
recognized for its outstanding performance as the backbone.
Figure 9 shows diagrams of the original residual bottle-
neck block and the ECM-equipped residual bottleneck block.
The ECM-ResNet, used in the experiment, is designed by

FIGURE 9. A comparison of two residual blocks. (a) The original residual
bottleneck block (b) The ECM-equipped residual bottleneck block.
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replacing the residual bottleneck block with the ECM-
equipped residual bottleneck block.

Figure 10 shows the architecture of the ECM-equipped
DeepLabV3+ used in the experiment. The backbone network
is the ECM-ResNet, and the last convolution layer is replaced
with the ECM in the decoder. ASPP is not replaced with the
ECM to keep its functionality to capture multi-scale feature
information with atrous convolution.

FIGURE 10. The architecture of the ECM-equipped DeepLabV3+. The
backbone is the ECM-ResNet, and the convolution before the last
up-sampling is replaced by the ECM.

Like the ECM-equipped DeepLabV3+, other segmenta-
tionmodels can equip the ECM. In this paper, PSPNet, U-Net,
UNet++ are modified and tested. Figures 16 to 18 in the
appendix illustrate the modified models.

IV. EXPERIMENTS
A. DATA DESCRIPTION
Typically, biomedical images are collected as a whole slide
image (WSI) with an enormous size of pixels. The WSIs are
originally provided with SVS format and each has about 3GB
of capacity corresponding to 90,000∼ 120,000 pixel-size. All
WSIs were scanned at 40× magnification.
In this experiment, a WSI is divided into small tile

images in which size is [3,512,512] (3 RGB channels)
because of the computing source’s limitation. After tiling,
we gain 5,000 training images. Among those, 1,000 images
are used for validation and the test data-set consists
of 1,746 tile images. Output segmentation mask size is the
same as input image size.

Figure 11 shows a tile image and segmentation mask. The
white space is a tumor area that can be classified as MSI-H
or non-MSI-H. There are no cases in that one image has two
classes. If a tile image is annotated as MSI-H, all white space
in the image is MSI-H tumor area.

FIGURE 11. A sample of tile image. (a) a tile image (b) segmentation
mask.

B. EVALUATION METRICS
CRC images are collected to predict MSI status and check the
tumor area of the affected part. There are two evaluations:
1) MSI status classification task. 2) the segmentation task.
The classification task is evaluated by F1 score calculated by
eq. (4).

F1 = 2 ∗
precision ∗ recall
precision+ recall

(4)

Precision is calculated by TP/(TP + FP) and recall is cal-
culated by TP/(TP + FN), and TP, TN, FP, FN are described
in Table 1. For example, if a prediction and a ground truth
are the same and positive, then the prediction is true positive.
The F1 score is calculated based on MSI-H. MSI-L or MSS
are treated as background.

TABLE 1. Confusion matrix of MSI-H prediction.

The segmentation task is assessed by Jaccard-score cal-
culated by eq. (5). It is the same as IoU(Intersection over
Union) that quantifies the percent overlap between target and
prediction. |X ∩ Y | means an intersection between target and
prediction, |X ∪ Y | means a union. Thus, it is a method of
measuring how well two areas overlap.

J (X ,Y ) = |X ∩ Y |/|X ∪ Y | (5)

C. CLASSIFICATION TASK
There is no classification branch in our models. Thus classi-
fication result comes from the segmentation result map. For
example, if MSI-H class is dominant in a segmentation map,
then the image is classified as MSI-H, and vice versa.

D. TRAINING DETAIL
In this experiment, all models are trained from scratch
with Adam optimizer [40]. The learning rate is 0.0001 and
the cosine annealing scheduler is adopted to find several
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FIGURE 12. Samples of stained images and stain normalized images.
(a) H&E stained images (b) stain normalized images.

optimization points iteratively. And the loss function is
cross-entropy function, which is calculated by eq. (6).

CE(p, q) = −
∑
i

p(i) log q(i) (6)

The maximum training epoch is set by 200, but every
training was converged under 100 epochs. All kernels in the
models are initialized with He initialization [41]. The training
and testing are conducted on NVIDIA GeForce GTX TITAN
XP GPU with 12GB memory.

E. H&E STAINING NORMALIZATION
Histological sections should be stained because most cells are
transparent. Among staining skills, the most commonly used
thing is H&E staining. However, images can be over-stained
or weakly stained, causing wrong stained pixels.

In this experiment, we adapt three normalization meth-
ods introduced in [42]–[44] to reduce the variability of
images. Among the normalizationmethods, wemainly utilize
the method of [42] considering that the method is simple
and widely used. Further, there is not much difference in
performance compared to the other methods. The results
for [43], [44] will be described in ablation study section.

FIGURE 13. A comparison of the features according to k . (a) original
images (b) dominant features (c) recessive features.

Figure 12 shows the H&E stained images (left column) and
staining normalized images (right column) by adapting the
method of [42]. In this experiment, H&E staining normaliza-
tion increases accuracy slightly.

F. PERFORMANCES
We conduct CRC image segmentation and classification
with the PSPNet, U-Net, UNet++, and DeepLabV3+.
Table 2 shows the result comparison between original net-
works and ECM-equipped networks. We implement three
types of experiments, setting different k . For all the models in
this experiment, the best performance is shown when k = 4.
Among the models, the ECM-equipped DeepLabV3+

shows the best performance with 0.855 of F1 score, 0.832 of
Jaccard score. Figure 14 shows the segmentation results of
the ECM-equipped DeepLabV3+ on the CRC images.

G. ABLATION STUDY
This section describes ablation studies to confirm how
to set the hyperparameters and conduct experiments on
another data-set. All experiments in this section use the
ECM-equipped DeepLabV3+ that shows the best perfor-
mance on the previous tests, and hyperparameter k is set to 4.

1) REVERSE-ECM
To confirm the effectiveness of the proposed ECM, we con-
duct an ablation study.We test the reverse version of the ECM
in which dominant features go into 2 ∗ m/3 channels, and
recessive features go into m/3 channels contrary to the ECM
shown in Figure 4. Table 2 shows the results of the reverse-
ECM. As shown in the Table, the reverse-ECM models show
little higher or little lower performance than originals. This is
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TABLE 2. Results of original models and ECM-equipped models. The ECM-equipped models outperform the originals entirely except recall score of
U-Net++.

TABLE 3. Results for the other criterions. We test three other criterions,
but they all show lower performance than the previous defined criterion.

TABLE 4. Results for the other components. Among the components,
the normalization method of [44] shows better performance than the
previous method, but it is very minimal. Thus, we utilize the previous
method considering its simplicity.

because the reverse-ECM does not follow the coding manner
of information theory.

2) HYPERPARAMETER k
Figure 13 shows dominant features and recessive features
along with k . The dominant feature at k = 4 is the clearest,
and the feature at k = 2 is the most blurry. Models at k =
4 best follow our intention to split dominant and recessive
features and show the highest performances.

Further, we conduct a modified version of the ECM
in which the inequality in Figure 6 is changed as shown
in Table 3. Simply multiplying k does not work, because
entropy values of feature maps are different for each
batch. Simply adding k works better but still not meaningful.
When H/k is multiplied to RQmin, it shows better perfor-
mance than justmultiplying k . This is becauseH/k represents
the relative value of entropy for every batch. However, ifH/k
is under 1, there is no dominant feature, and this causes
performance degradation. This is why we set 1 + H/k for
the criterion. Finally, we conduct the experiments with setting
k = 1 or k = 5, but they show worse performance than the
original models.

TABLE 5. Results for the other channel dimensions. m is channel of
output feature (see Figure 4). Among the tested channels, m/4 and
m ∗ 3/4 channel shows close performance to m/3 and m ∗ 2/3 channel.
With these empirical tests, we can guess the optimal setting is near m/3
and m ∗ 2/3.

3) EXPERIMENTS FOR OTHER COMPONENTS
We analyze for other color model, image size, and stain nor-
malization methods. First, we resize the images to 256×256,
but it shows lower performance than the previous experiment
(512× 512).

Second, we change the color model to HSV (Hue, Sat-
uration, Value). It also shows lower performance than the
previous experiment (RGB).

Third, we change the stain normalization method. We uti-
lize the stain normalization methods proposed by Rein-
hard et al. [43] and Vahadane et al. [44]. As result, the method
proposed by Vahadane et al. shows a higher performance,
but it is very minimal. Moreover, the staining normalization
method of [42] is easier to be utilized and simple, hence
our main experiments are performed using the method [42]
shown in figure 12. Figure 19 in the appendix shows the
images normalized by the other methods.

The experiments are conducted with the ECM-equipped
DeepLabV3+ that shows the best performance on the pre-
vious experiment. The results are shown in Table 4.

4) EXPERIMENTS FOR OTHER CHANNEL DIMENSIONS
As shown in Figure 4, our module applies different con-
volutional operations for a dominant and recessive feature.
However, it is hard to find the optimal amount of convo-
lution among infinite number of cases, but we provide a
rough guideline by conducting empirical tests. We addition-
ally conduct for three kinds of convolution that bring out
m/2 and m/2, m/4 and m ∗ 3/4, m/5 and m ∗ 4/5 channels.
Table 5 shows the results, the best score is still from the
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FIGURE 14. Segmentation results of the ECM-equipped DeepLabV3+
which shows the best segmentation performance among the tested
models. (a) input H&E stained images (b) labels (c) predictions.

original experiment in Table 2, but we can observe that a
bigger gap than a certain amount leads to performance degra-
dation. And the same amount of convolution, m/2 and m/2,
is worse than the others. From this experiment, at least for the
CRC data-set, we can guess that the optimal setting is near
m/3 and m ∗ 2/3.

5) EXPERIMENT ON ANOTHER DATA-SET
We conduct an additional experiment on low grade
glioma (LGG) segmentation data-set obtained from The

TABLE 6. Results for LGG data-set. Our proposed module shows
performance improvement for the data-set.

FIGURE 15. Segmentation results of the ECM-equipped DeepLabV3+ on
the LGG images. (a) input images (b) labels (c) predictions.

Cancer Imaging Archive (TCIA) [45]. LGG is a brain
tumor more likely developed when someone is exposed
to radiation. We experiment with the ECM-equipped
DeepLabV3+, which showed the best performance on the
CRC data-set.

An LGG image is [3, 256, 256] shaped (3 RGB channel)
and has 2 classes: tumor exists or not. Thus, if a segmentation
result map pixel is all zero, then it is classified non-tumor, and
vice versa.

We experiment with 3,000 training images and 900 test
images. Training detail is the same as the CRC experiment.
As shown in Table 6, the ECM-equipped DeepLabV3+ per-
forms the best score. Figure 15 shows the segmentation
results on the LGG images.

V. CONCLUSION
We propose a novel entropy-based convolutional mod-
ule that can be adapted to CNN architectures, increasing
performance. The ECM is based on information theory
that gives great reference to build a model for efficient
data transmission. Unlike conventional models, our proposed
module performs differentiated operations by calculating the
amount of information in the feature for each batch. This
modular design enables efficient computation of feature
extraction. Further, our module can be a replacement for
vanilla convolution, and to the best of our knowledge, our
module is the first trial to mimic the coding manner of infor-
mation theory.
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FIGURE 16. The ECM-equipped PSPNet used in the experiment [18].
PSPNet handles multiple scale information with the pyramid pooling
module. In the experiment, we modify this PSPNet by replacing the
backbone before the pyramid pooling module with the ECM-ResNet and
the last convolution layer with the ECM.

FIGURE 17. The ECM-equipped U-Net used in the experiment [22]. U-Net
consists of a contracting path (left-half) to capture context and a
symmetric expanding path (right-half) that enables precise localization.
In the experiment, convolutions in the contracting and expanding path
are replaced by the ECM.

FIGURE 18. The ECM-equipped UNet++ used in the experiment [23].
UNet++ has re-designed skip pathways of U-Net aiming at reducing the
semantic gap. The skip pathways convey the features by utilizing
convolutions. In the experiment, as well as convolutions in contracting
and expanding path, convolutions in skip pathways are also replaced by
the ECM.

However, there are still things to improve in our model.
The ECM still needs hyperparameter k set by a user, and
the intermediate convolutional phase is fixed (convolutions
that bring out 1/3 ∗ m, 2/3 ∗ m channels). But despite the
inconvenience of hyperparameter setting and such an intuitive
module design, the ECMhas shownmeaningful results. Thus,
further studies based on the proposed ECM have room for
more performance improvement.
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FIGURE 19. Stain normalized images for other methods. (a) H&E stained
images (b) stain normalized images applying the method of [43] (c) stain
normalized images applying the method of [44].

APPENDIX
See Figures 16–19.
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