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Abstract

A reliable forecasting model is required for photovoltaic (PV) power output because solar
energy is highly volatile. Another driver for the need of a reliable forecasting model is con-
cept drift, which means that the statistical properties of the data change over time. In this
paper, an online forecasting method to handle concept drift is proposed. First, the prob-
lem of forecasting in batch learning is transformed into a forecasting in online learning
setting. Then, an online learning algorithm is applied, which is good for handling concept
drift. Through experiments using the real-world data, it is shown that the method notice-
ably improves performance compared to the case where a trained model is used. Under
various concept drift scenarios, the method improves performance by up to 87.3%. It is
also shown that the re-training method (a representative existing method) has several lim-
itations. This method requires several issues to be solved, such as selection of a proper
window size, and this is evident through results showing different performance under dif-
ferent settings. In contrast, the method shows a reliable and desirable performance under
various concept drift scenarios and thus outperforms the re-training method. The method
improves performance by up to 79%.

1 INTRODUCTION

A reliable forecasting model is necessary to enable highly
volatile solar energy to be utilised. A reliable forecasting allows
distribution system operators and transmission system oper-
ators to cope with the highly volatile nature of photovoltaic
(PV) systems and thus to enhance the grid stability and reduce
the cost of ancillary services [1]. In pursuing grid stability and
unit commitment, the market regulations of several countries
require day-ahead forecasting [2–4]. Another exemplary case is
a microgrid that utilises PV systems as a generating source and
is equipped with an energy storage system (ESS). In that micro-
grid, a reliable forecasting system is required to increase PV self-
consumption, decrease curtailment losses and improve ESS rev-
enues [5].

Considering that forecasting is a vital part of utilising solar
energy, a forecasting model needs to be reliable, even under
unexpected cases. From perspective of a forecasting model,
which is typically a statistical model, unexpected cases indicate
concept drift. Concept drift means statistical properties of data
change over time in unforeseen ways. The relationship between
inputs and desired outputs changes when concept drift happens
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which obviously impacts on the ability to forecast. Therefore, a
forecasting model, trained with data before concept drift, loses
its effectiveness when concept drift happens.

Concept drift can happen due to several reasons. PV faults
can cause concept drift. In most cases, PV power output is heav-
ily affected by weather conditions and so a forecasting model is
typically trained including weather conditions. However, even
with similar weather conditions, PV faults (e.g. hot-spotted PV
string [7], partial shading [8], dust [9], and line-line faults [10])
likely cause concept drift by degrading PV power output [6].
Some features that are unknown to the forecasting model can
also cause concept drift. In building a forecasting model, we use
known features, which are allowed in terms of cost and techni-
cal aspect. However, unknown features heavily affect PV power
output in some cases. For example, in Korea, which has four
distinct seasons, it is common to install PV plants with typical
meteorological sensors (e.g. temperature, irradiance, humidity,
and wind speed). As a result, a forecasting model is unlikely to
produce reliable forecast results when PV panels are covered by
snow, while sky is clear.

A possible approach to deal with concept drift is to train a
model with newly acquired data. Re-training a forecasting model
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can be done periodically with recent data [13, 14] or when a fore-
casting error exceeds a pre-defined threshold [15–17]. However,
this re-training approach often fails when similar inputs and dif-
ferent outputs are given (i.e. data before and after concept drift
are mixed) or data after concept drift is limited. Another pos-
sible approach for dealing with concept drift is an ensemble-
based approach. Individual forecasting models are dynamically
combined, according to their forecasting errors [18–20] or a
single forecasting model is selected among candidate mod-
els [21–23]. The ensemble-based approach may cause compu-
tational and memory overhead when using multiple models.
Besides, the performance of an ensemble model is limited by
each individual models’ performance.

To create a reliable forecasting model, even with concept
drift, and to overcome the limitations of existing approaches,
we propose a model-agnostic online forecasting method. The
basis of our method is to adjust the output of a single forecast-
ing model in an online learning setting rather than through re-
training or updating a trained model. Therefore, our approach
is applicable to any forecasting models. We first transform the
problem of forecasting with multivariate time series, in batch
learning, into forecasting with univariate time series, in an online
learning setting, to effectively adjust outputs of the forecasting
model. The domain transformation is conducted through sim-
ple data transformation. Then, we apply an online learning algo-
rithm, which is good for handling concept drift. We maintain
and update a simple online model, while not changing the basis
of the forecasting model.

To examine the feasibility of our model-agnostic online fore-
casting (i.e. MAOF), we conduct a series of experiments, using
real-world data (i.e. 17,516 30-min interval data of 1-year down-
loaded from national renewable energy laboratory (NREL) [28,
29]). We use a light gradient boosting machine (LightGBM) [26]
(as one of the popular machine learning models) and long short-
term memory (LSTM) [27] (as one of the popular deep learning
models) as the base forecasting models. We examine MAOF and
existing methods under various concept drift scenarios.

We first examine how much MAOF improves performance
compared to the case where a trained model is used as it is (i.e.
Naive). Under no concept drift, Naive and MAOF show sim-
ilar performances. In contrast, regardless of a base forecasting
model, MAOF noticeably improves performance compared to
the Naive model in concept drift scenarios. As the degree of
concept drift increases, the degree of improvement increases.
For example, with LightGBM, in a sudden concept drift sce-
nario, the improvement in percentage increases from 27.2% to
86.7% as the ratio of degradation (used for realising concept
drift) increases from 0.1 to 0.5.

We also compare MAOF with the re-training method (i.e.
Retrain) as a representative of an existing method. MAOF
shows reliable and desirable performance under various concept
drift scenarios, regardless of the base model. MAOF shows the
best performance in most cases. For example, MAOF improves
performance by up to 79% and 78.5%, compared to Retrain
with LightGBM and LSTM, respectively. In contrast, Retrain
shows unreliable performance. In other words, Retrain requires
different window sizes (i.e. the number of data used for re-

FIGURE 1 Types of concept drift

training) to achieve its best performance under different con-
cept drift scenarios. Therefore, several issues are required to be
solved, including selection of a suitable window size to effec-
tively utilise Retrain. Even with those solutions, Retrain shows
fundamental limitations in some concept drift scenario. This is
due to the fact that data likely includes cases before and after
concept drift and that the mixed data results in poor perfor-
mance. As a result, Retrain noticeably decreases in performance
as the degradation ratio increases in those concept drift scenar-
ios.

The rest of this paper is organised as follows. Section 2
describes backgrounds. Section 3 introduces model-agnostic
online forecasting and Section 4 verifies its feasibility. Finally,
Section 5 concludes this paper.

2 BACKGROUND

2.1 Concept drift

Training a model with training data creates a model that under-
stands specific features or distributions of the training data.
Therefore, as long as distributions of the training data and test
data are the same, a trained model likely shows good perfor-
mance during the test phase. However, when distributions of
test data changes (i.e. concept drift), effectiveness of a trained
model is lost. Figure 1 shows how concept drift may happen
in time series. For simplicity, as shown in Figure 1, the dis-
tribution of data is represented by the mean. When concept
drift happens, we may need to update or re-train a model or
do something to sustain the effectiveness of a model for new
data distributions.

Regarding PV power output forecasting, concept drift may
happen when the desired outputs of a model for similar inputs
(e.g. weather conditions) change. In other words, the relation-
ship between inputs and desired outputs (learned by a model)
is broken when concept drift happens. Various PV faults may
cause concept drift. A forecasting model is typically trained
with weather conditions because PV power output is heav-
ily affected by weather conditions. However, various PV faults
(e.g. hot-spotted PV strings [7], partial shading [8], dust [9],
and line-line faults [10]) degrade PV power output [6]. In
other words, PV faults likely result in degraded PV power out-
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TABLE 1 Notations

Symbol Notation

yt Forecasting target

ŷt Forecasting output

Ft Set of features for a forecasting model

h𝜃 Forecasting model with trainable weights 𝜃

lt Loss caused by the difference between yt and ŷt

puts for similar weather conditions. Also, environmental fac-
tors that are not used for training a model may affect PV
power output. For example, snow cover noticeably degrades PV
power output, but it is not easy to use that information when
training a model because there are costs associated. In other
words, environmental factors that are unknown to a model
may degrade PV power outputs for similar features known to
a model.

The objective of this paper is to sustain the effectiveness of
a trained model when concept drift happens in the field of PV
power output forecasting.

2.2 Online learning

Online learning considers cases in which data becomes available
in a sequential order and is used to train or update a model at
each step. Conversely, batch learning trains a model by using the
entire data set at once. Online learning can be used in two differ-
ent ways. First, online learning is used when it is not feasible to
train a model over the entire dataset, because of limits in mem-
ory or computation power. Second, online learning is used in
cases in which a model needs to dynamically adapt to new pat-
terns in the data, or when the data is given sequentially. In this
aspect, online learning is a good candidate for solving the issue
of concept drift. In this paper, we adopt the method of online
learning to achieve our objective.

More specifically, we consider the following online learning
settings in this paper. First, a forecasting model is trained with
training data in advance. Then, during a test phase, a trained
model predicts ŷt using Ft−N∶t−1 and yt−N∶t−1, and the true
yt is disclosed. Then, the forecasting model suffers a loss lt =

L(yt , ŷt ). Using lt or lt−(M−1)∶t , a forecasting model is updated.
Updated forecasting model is used for prediction at next step.
The above procedures are repeated during the test phase. For
an explanation of the notation used within this paper, please
refer to Table 1. Da∶b indicates data D from time steps a to b,
{Da,Da+1, … ,Db}.

2.3 Related work

Most existing approaches for dealing with concept drift can
be divided into two groups: re-training-based approach and
ensemble-based approach.

2.3.1 Re-training-based

Rationale of re-training-based approach is to adjust a model
to dynamic environment by providing data of new environ-
ment. A simple and widely used approach for re-training is
to re-train a model periodically with newly acquired data. In
[11], the authors use adaptive linear time series models. The
adjustment of a forecasting model is achieved by fitting the
forecasting model with k-step recursive least squares with for-
getting. The coefficients of the forecasting model are updated
regularly, and newer values are weighted higher than old val-
ues, hence the models adapt over time to changing condi-
tions. In [12], the authors propose a nonlinear autoregres-
sive, with external input (NARX), network-based forecasting
model. The forecasting model utilises clear-sky radiation, calcu-
lated from Hottel’s radiation model and weather forecast data
from public websites. They adjust the weights of the NARX
network according to the forecast error. In [13], the authors
utilise the knowledge-based library to provide the best training
datasets for coming target days. By re-training a model using the
best training datasets, they attempt to increase forecast accu-
racy. In [14], the authors propose an adaptive back-propagation
neural network model that is re-trained periodically using the
updated training data by scrolling time window (i.e. recent data).
They also study how to find an optimised time window to
guarantee forecast accuracy. Another method adopted for re-
training a model is to re-train only when a forecasting error
exceeds a pre-defined threshold [15–17]. In [15], a forecast-
ing model is updated using a back-propagation neural network.
In [17], the authors realise error-driven re-training through
reinforcement learning.

Re-training approach has the following issues. First issue is
that data relating to the new environment is likely to be mini-
mal when concept drift just happens. Please note that any sta-
tistical model prefers to have sufficient data. This means that
they need a longer period of time to adapt to a new environ-
ment. The second issue is that the re-training approach is likely
to fail when the data of previous and new environment are
mixed (e.g. similar inputs, but different outputs). Please note
that a model learns a relationship between the inputs and the
desired outputs. Thus, in this case, the model has a low proba-
bility of producing the desired outputs after concept drift. In
contrast, we adjust a forecasting output without re-training a
forecasting model.

2.3.2 Ensemble-based

An ensemble-based approach is one available option for
adapting to dynamic environments. One approach of the
ensemble-based approach is to dynamically adjust the combina-
tion weight of individual models. In [18], the authors propose
a meta-learning layer that arbitrates individual competing fore-
casting models used for global horizontal irradiance forecasting.
Using the meta-learning layers, they aim to dynamically com-
bine ensemble models, according to their aptitude in the input
data. In [19, 20], the authors propose a dynamic ensemble of
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ALGORITHM 1 Re-training a model

neural networks. Through the dynamic ensembles, they keep
track of the recent forecast accuracy of each model and adap-
tively weight the contribution of the ensemble models. Another
approach of the ensemble method is to pick the best single
model. In [21], the authors propose a way to intelligently switch
between different types of base models, in an ensemble, to
increase the predictive performance of online learning. In [22],
the authors propose MetaStream, which conducts periodic algo-
rithm selection in time-changing environments. MetaStream
maps the features extracted, from the past and the current
data, to the performance of forecasting models so as to choose
between single learning algorithms or their combination. In
[23], using meta-learning, the authors attempted to find evi-
dence for features to be used for guiding the choice of whether
to pick a single model or a combination of models while still
focusing on which model to select. They exploit decision trees
to find evidence for the existence of a link between time series
features and the forecast accuracy of forecasting models

The ensemble method-based approach may cause compu-
tational and memory overhead when using multiple models.
Besides, the performance of an ensemble model is limited by
individual models’ performance. On the other hand, we use a
single forecasting model together with a simple online model.
We deal with concept drift by adjusting forecasting outputs
through an online model.

3 MODEL-AGNOSTIC ONLINE
FORECASTING

In achieving objective of this paper, we adjust the outputs of a
forecasting model rather than updating the model itself. There-
fore, our approach is applicable to any forecasting model (i.e.
model-agnostic). Figure 2 compares a typical re-training-based
approach and our proposed model-agnostic approach.

Our approach consists of two steps. We first transform the
problem of forecasting, with multivariate time series in batch

learning, into a forecasting with univariate time series in online
learning. Then, we utilise an online autoregressive integrated
moving average (ARIMA) [24] to handle the univariate time-
series prediction. The detailed descriptions of each step will be
given in the following subsections.

3.1 Domain transformation

We realise the domain transformation (i.e. from batch learn-
ing to online learning) through simple data transformation. We
assume a forecasting model that uses multivariate time series
(i.e. weather conditions and PV power output history) as inputs
and produces an expected PV power output of next time step.
In adjusting the forecasting output to handle the issue of con-
cept drift, we utilise online ARIMA (described in Section 3.2
in detail). Online ARIMA conducts prediction, using univariate
time series, and is good at adapting to dynamic environments.
To utilise online ARIMA, we conduct the following transfor-
mation.

zt−N∶t−1 = yt−N∶t−1 − ŷt−N∶t−1. (1)

Once we predict ẑt correctly (i.e. close to zt ) using online
ARIMA with zt−N∶t−1, we can adjust ŷt (i.e. output of a fore-
casting model) through the following data de-transformation,

ŷ
′

t = ẑt + ŷt . (2)

ŷ
′

t is used as a final forecasting output.
In contrast, most existing approaches try to update 𝜃 of h𝜃

using lt or lt−(M−1)∶t . Figure 2(b) and Algorithm 1 describe this.

3.2 Online ARIMA

In realising MAOF, we utilise online ARIMA. We first explain
why we choose online ARIMA. Our idea for dealing with con-
cept drift is to use an additional model for adjusting an out-
put of a target model. The additional model should be simple
and lightweight not to cause noticeable overhead. Moreover, the
additional model should also be good at handling concept drift.
In searching for a model that satisfies the two requirements
above, we found that online ARIMA is suitable for our purpose.
Online ARIMA is very simple to implement. Less than 10 lines
are required to implement online ARIMA in Python language.
Attractive features and performance of online ARIMA are

FIGURE 2 High-level illustration of methods
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ALGORITHM 2 Model-agnostic Online Forecasting: Basic

studied in mathematical and experimental ways [24]. Regarding
the other simple and lightweight classic time series prediction
models, we could not find online versions of them. That is why
we use online ARIMA for our purpose.

One of the simplest types of time series model is ARMA
(autoregressive moving average). Let yt and 𝜖t denote the obser-
vation and the zero-mean random noise term at time t , respec-
tively. Then, ARMA(k, q) that combines AR(k) (autoregressive)
and MA(q) (moving average) can be expressed as follows:

yt =

q∑
i=1

𝛽i𝜖t−i +

k∑
i=1

𝛼i yt−i + 𝜖t , (3)

where 𝛼 and 𝛽 are coefficients for AR and MA, respectively.
Most time series are not stationary. However, ARMA is lim-

ited to stationary processes. ARIMA handles non-stationary
time series using a differential method. For example, the first
order differences of yt is∇yt = yt - yt−1, and the dth order differ-
ences of yt is ∇d yt =∇d−1yt - ∇d−1yt−1. A time series y satisfies
ARIMA(k, d , q) if ∇d y satisfies ARMA(k, q). ARIMA(k, d , q)
can be expressed as follows:

∇d yt =

q∑
i=1

𝛽i𝜖t−i +

k∑
i=1

𝛼i∇
d yt−i + 𝜖t . (4)

ARIMA(k, d , q) conducts prediction through a reversion of
differential process. The prediction value from Equation (4) is

ŷt = ∇d ŷt +

d−1∑
i=0

∇i yt−i . (5)

ALGORITHM 3 Model-agnostic online forecasting: Enhanced

Given the basic description of ARIMA(k, d , q) above, we
focus on online learning setting. At time t , the ARIMA(k, d , q)
predicts ŷt , and then the true yt is disclosed. As a result, a
loss lt = L(yt , ŷt ) is given. Using Equations (4) and (5), the loss
lt = L(yt , ŷt ) can be expressed as follows:

lt = L(yt , ŷt )

= L(yt , ∇
d ŷt +

d−1∑
i=0

∇i yt−i )

= L(yt ,
q∑

i=1
𝛽i𝜖t−i +

k∑
i=1

𝛼i∇
d yt−i +

d−1∑
i=0

∇i yt−i ).

(6)

The goal of online ARIMA is to minimise Equation (6). One
solution for this is an improper learning principle [25]. The
idea is to approximate the original ARIMA(k, d , q) model with
another ARIMA(k + m, d , 0) model. m ∈ N is a properly cho-
sen constant, such that the new ARIMA model with 𝛾 ∈ Rm+k

is enough to approximate the original prediction as follows:

ŷt =

k+m∑
i=1

𝛾i∇
d yt−i +

d−1∑
i=0

∇i yt−i . (7)

Then, the loss function described in Equation (6) can be rewrit-
ten as follows:

lt = L(yt , ŷt ) = L(yt ,

k+m∑
i=1

𝛾i∇
d yt−i +

d−1∑
i=0

∇i yt−i ). (8)
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3.3 Online forecasting

Now, we are ready to explain our method of utilising online
ARIMA for our purposes. For clear presentation of our
approach, we first introduce the basic version of MAOF (Algo-
rithm 2). We assume that k, d , and m for the ARIMA(k +
m, d , 0) model and learning rate 𝜂 are given as input. The
first step is to conduct data transformation as described in
Section 3.1. Then, we conduct prediction with the modified
ARIMA algorithm. Given the prediction of online ARIMA
(ẑt ) and prediction of a forecasting model (ŷt ), we calculate an
adjusted forecasting output (ŷ

′

t ) through data transformation. ŷ
′

t

is used as the final forecasting output at time step t. Finally, we
update ARIMA model using an OGD (online gradient descent)
algorithm, which is an online convex optimisation solver. The
above procedures are repeated during test phase. In Algorithm
2, K is a set of candidate (m+k)-dimensional coefficient vec-
tors, that is, K = (𝛾 ∈ Rm+k, |𝛾 j | ≤ 1, j = 1, ..., m).

∏
K

(f)
indicates the Euclidean projection onto K , that is,

∏
K

(f) =
argminx∈K || f − x||2.

To enhance the effectiveness of adjusting an output of a
forecasting model, we first conduct a simple adjustment to
an output of a forecasting model before online ARIMA is
applied. Please note that our goal is to produce ŷ

′

t close to
yt . Therefore, using 𝜙 (i.e. the mean of

yt−N∶t−1

ŷt−N∶t−1
), we adjust

ŷt as ŷt𝜙. Algorithm 3 shows an enhanced version of our
method. Compared to Algorithm 2, lines in bold indicate newly
added operations.

4 EXPERIMENTS

4.1 Settings

To examine the feasibility of MAOF, we conduct a series of
experiments using the following settings.

4.1.1 Model

To show a general applicability of MAOF, we use LightGBM (as
one of the popular machine learning models) and LSTM (as one
of the popular deep learning models) as base forecasting mod-
els. We use Python library (lightgbm 2.3.3) for LightGBM and
Tensorflow (2.0.0-beta1) for LSTM. We apply the basic version
of MAOF (MAOF_Basic for short), the enhanced version of
MAOF (MAOF_Enhanced for short), and existing methods to
these two models.

4.1.2 Data

As inputs to a forecasting model, we use historical weather
data and PV power output data. We use NREL weather data
(acquired from the national solar radiation database (NSRDB)
data viewer [28]. The weather data is 30-min interval data. The

FIGURE 3 Train and test data (power output only)

weather data includes global horizontal irradiance (GHI), dew
point, wind speed, relative humidity, and temperature. We use
PV power output data (acquired from NREL Solar Power Data
for Integration Studies [29]) of Texas, USA. More specifically,
we use NREL data of the PV plant whose latitude is 33.45 and
longitude is −94.35. Its capacity is 27 MW. The PV power out-
put data is 5-min interval data. Thus, we transform 5-min inter-
val data into 30-min interval data by cumulating corresponding
values. The data from NREL are 1-year data (i.e. 2006). Number
of data points is 17,516. We used 12,332 data points for train-
ing the model and 5,184 data points for testing. Figure 3 shows
the data.

4.1.3 Test scenarios

Ideally, it is best to conduct experiments using datasets with
real-world drifts. But, we could not find those datasets. Thus,
our best option is to build test scenarios that mimic various PV
faults. For this, we examine papers about performance degra-
dation by PV faults while focusing on PV faults that com-
monly happen. As a result, we build 7 test scenarios, described
in Table 2. The test scenarios may not represent all possible
concept drifts that are caused by various PV faults. But, we
believe that the test scenarios are enough for examining the
feasibility of our method. Figure 4 shows some examples of
test scenarios.

4.1.4 Performance metrics

As performance metrics, we use the root mean square error
(RMSE) and the mean absolute percentage error (MAPE),
which are calculated as follows:

RMSE(y, ŷ) =

√∑n

i=1(yi − ŷi )2

n
. (9)

MAPE(y, ŷ) =
100

n

n∑
i=1

|yi − ŷi |
yi

. (10)

In Equations (9) and (10), n is the number of test data, y is the
true value, and ŷ is the predicted value. The following results are
the average across 10 runs.
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TABLE 2 Test

Concept drift type Relevant PV faults [47, 48] Configurations for test scenarios Test code

Sudden drift No recovery
Manual recovery

(perfect recovery)

Environmental

Bird dropping [30, 31]
Electrical

Ground fault [32, 33]
Line-line fault [32–34]
Open-circuit fault [32, 33]
Physical

Degradation fault [32, 35–37]

Start of drop: random btw 500 and 1,000 (of 5,184 test data)
Degree of drop: 10, 20, 30, 40, 50%
For manual recovery

Start of recovery: random btw 3,500 and 4,000

T1_SN
T2_SM

Incremental recovery
(by sun)

Environmental

Snow covering [38–40]
Start of drop: random btw 500 and 1,000
Degree of drop: 50, 60, 70, 80, 90%
Start of recovery: 3 days after the drop
Duration of recovery: 5 days

T3_SI

Incremental drift No recovery
Manual recovery

(perfect recovery)

Environmental

Dust accumulation [41–43]
Physical

Degradation fault [32, 35–37]

Start of drop: random btw 500 and 1,000
Max degree of drop: 10, 20, 30, 40, 50%
Duration of incremental drop: 10 days For manual recovery
Start of recovery: random btw 3,500 and 4,000

T4_IN
T5_IM

Recurring drift Daily repetition Environmental

Partial shading by objects
(tree, cloud etc.) [44–46]

Start of drop: random btw 500 and 1,000 (of 5,184 test data)
Duration of drop in a day: 09:00 - 12:00 (3H)
Degree of drop: 10, 20, 30, 40, 50%

T6_RD

Temporal drop Days of drop events: random btw 500 and 1,000, 1,500 and 2,000,
and 3,000 and 3,500

Duration of drop in a day drop: 3H (random btw 10:00 and 17:00)
Degree of drop: 10, 20, 30, 40, 50%

T7_RT

FIGURE 4 Examples of test scenarios

4.2 Performance study of MAOF

We first examine several aspects of MAOF in detail before we
compare MAOF with existing methods.

4.2.1 Hyper-parameters

MAOF has two main hyper-parameters including the window
size for a forecasting model (i.e. the number of recent data
used for conducting current prediction) and m + k for online
ARIMA. To study the effects of the hyper-parameters, we use
LightGBM as a base forecasting model. T1_SN scenario with
0.3 degradation ratio is used. A learning rate of online ARIMA is
set to 1e-5. Figure 5(a) shows the effects of window size on fore-
casting accuracy. The effect of window size is marginal. There-
fore, we use window size 3 because a small window size causes
low operational overheads. Figure 5(b) shows the effects of
m + k on forecasting accuracy. Forecasting accuracy decreases
as m + k increases, particularly for online ARIMA. Interestingly,
using just one recent data is enough for achieving the best per-
formance in our experimental settings. In summary, in our cur-
rent experimental settings, applying online ARIMA, with one
recent data, to a forecasting model, with three recent data, leads
to the best performance. Therefore, this setting is used for the
following experiments.

4.2.2 Improvements by MAOF

We first examine how much MAOF improves forecasting accu-
racy compared to Naive (i.e. no method for adjusting an
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FIGURE 5 Effects of hyper-parameters

output nor a trained model). For this comparison, we use
MAOF_Basic. Table 3 compares RMSE and MAPE. The first
value and the second value of each table cell indicate RMSE
and MAPE, respectively. When there is no concept drift, Naive

and MAOF_Basic show similar performance. Conversely,
MAOF_Basic shows noticeable improvement compared to
Naive when concept drift happens. The degree of improve-
ment increases as the degradation ratio increases. For example,
in the case of LightGBM with the T1_SN scenario, the improve-
ment percentage in RMSE increases from 15.2% to 72.1% as
the degradation ratio increases from 0.1 to 0.5. This is because
MAOF_Basic sustains the effectiveness of a base model while
Naive does not. T6_RD and T7_RT scenarios are challenging
cases to MAOF_Basic. Unlike the other cases, where the max-
imum improvement percentage in RMSE is over 70%, the max-
imum improvement percentages in RMSE in those cases are
59.7% and 30.9%, respectively. This result shows that adapta-
tion to degradation during a short period (i.e. a drop during 3H
including 6 data points) is not easy. However, MAOF_Basic

still noticeably outperforms Naive. MAOF_Basic improves
performance in both RMSE and MAPE compared to Naive

regardless of a base model. This result shows that our approach
is model-agnostic.

We also examine the improvements by MAOF_Enhanced

compared to MAOF_Basic. When there is no concept drift,
MAOF_Enhanced degrades performance slightly compared
to MAOF_Basic, whereas MAOF_Enhanced improves per-
formance compared to MAOF_Basic when concept drift hap-
pens. The degree of improvement increases as the degrada-
tion ratio increases. For example, in the case of LightGBM
with the T1_SN scenario, the improvement percentage in
RMSE increases from 14.2% to 52.2% as the degradation ratio

increases from 0.1 to 0.5. In T6_RD and T7_RT scenarios,
the maximum improvement percentages are 11.1% and 23.6%,
while the maximum improvement percentage in the other cases
are over 50% due to the same reason mentioned above. One
interesting observation is that MAOF_Enhanced decreases
RMSE and sustains MAPE as the degradation ratio increases in
T1_SN, T2_SM, T4_IN, and T5_IM scenarios. This is because
the target value is decreased in generating test concept drift
scenarios and that MAOF_Enhanced follows the decreased
target value quite well. The above results show that simple
pre-adjustment (explained in Algorithm 3) leads to notice-
able improvement.

4.3 Comparison

We compare MAOF_Enhanced with the existing method. As
a representative method of the existing approach, we re-train a
model periodically. For the re-training-based method, we apply
three different window sizes: 480 (i.e. recent 10 days), 1,440
(i.e. recent 30 days), and all previous data including the train
data. After the model is trained using the train data, the trained
model is re-trained whenever 48 new data points are acquired
(i.e. every day). To re-train a LightGBM model, we re-train a
model from scratch using the given data because the current
Python library does not support the updating of a model. To
re-train an LSTM model, we update a trained model using the
given data. Throughout the following figures, MAOF, RS, RM,
and RL indicate MAOF_Enhanced, re-training with recent
480 data, re-training with recent 1,440 data, and re-training with
all previous data, respectively. Among the seven test scenarios,
we show representative results (Figures 6 and 9).

4.3.1 No concept drift

In both LightGBM and LSTM cases, MAOF, RM, and RL

show similar performance (Figures 7 and 8), whereas RL shows
the best performance. This means that using long history for
re-training a model under no concept drift is desirable.

4.3.2 T1_SN, T2_SM, T4_IN, and T5_IM

These four scenarios show similar results. Thus, we just discuss
the results of T1_SN. MAOF sustains the effectiveness of
a target model regardless of the degradation ratio in both
LightGBM and LSTM. With LightGBM, MAOF decreases
RMSE (MAPE) from 6.91 (14.68) to 4.5 (13.97) as the degra-
dation ratio increases from 0.1 to 0.5 (Figure 6(a,b)). With
LSTM, MAOF decreases RMSE (MAPE) from 10.61 (22.86)
to 8.02 (23.59) as the degradation ratio increases from 0.1 to
0.5 (Figure 9(a,b)). MAOF shows the best performance in
both LightGBM and LSTM. The re-training method shows
different performance for different window sizes in both
LightGBM and LSTM. RL shows the worst performance in
both LightGBM and LSTM cases. This result shows that using
long history for re-training a model, under these scenarios,



LEE ET AL. 9

TABLE 3 Improvements by MAOF (in RMSE / MAPE)

LightGBM LSTM

Degradation ratio Naive MAOF_Basic MAOF_Enhanced Naive MAOF_Basic MAOF_Enhanced

No concept drift

0 7.1 / 14.8 7.16 / 14.46 7.53 / 14.46 12.3 / 22.6 12.9 / 22.9 13.3 / 23.41

Sudden degradation without recovery (T1_SN)

0.1 9.51 / 20.87 8.06 / 17.48 6.91 / 14.68 12.24 / 26.38 12.01 / 24.43 11.66 / 22.82

0.2 14.71 / 32.48 8.63 / 20.35 6.38 / 14.88 15.61 / 36.17 12.55 / 27.03 10.61 / 22.86

0.3 20.68 / 48.97 8.9 / 22.83 5.84 / 14.96 20.68 / 49.67 13.34 / 30.81 10.02 / 23.06

0.4 27.29 / 71.31 9.05 / 25.31 5.13 / 14.13 26.51 / 70.19 13.98 / 35.78 9.15 / 24.89

0.5 33.86 / 104.24 9.41 / 30.69 4.5 / 13.97 32.52 / 101.81 14.62 / 44.56 8.02 / 27.17

Sudden degradation with manual recovery (T2_SM)

0.1 9.53 / 19.93 7.9 / 16.22 6.65 / 13.18 12.59 / 25.05 12.3 / 23.07 11.85 / 21.5

0.2 15.04 / 31.88 8.49 / 18.59 6.03 / 13.18 15.78 / 34.23 12.44 / 25.59 10.52 / 21.43

0.3 21.32 / 48.99 8.92 / 22.14 5.54 / 13.61 21.19 / 49.42 13.69 / 30.39 10.12 / 22.41

0.4 27.88 / 72.05 9.12 / 25.01 4.9 / 13.16 27.16 / 70.31 14.58 / 36.24 9.66 / 23.28

0.5 34.63 / 105.57 9.66 / 31.23 4.41 / 13.08 33.86 / 104.36 14.84 / 44.29 8.06 / 22.68

Sudden degradation with incremental recovery (T3_SI)

0.5 30.38 / 61.34 11.92 / 22.34 5.84 / 8.47 29.11 / 60.39 13.92 / 27.13 9.46 / 16.76

0.6 36.44 / 88.74 12.48 / 29.06 5.83 / 11.05 36.71 / 90.47 16.29 / 36.94 10.09 / 19.17

0.7 43.40 / 134.44 13.07 / 36.71 6.88 / 13.87 41.44 / 127.28 16.45 / 45.44 9.39 / 20.35

0.8 49.94 / 213.13 14.19 / 53.69 9.10 / 23.84 48.1 / 203.13 18.07 / 66.27 10.06 / 25.39

0.9 57.16 / 398.16 14.99 / 83.04 14.74 / 63.07 55.99 / 391.56 19.44 / 105.44 14.37 / 54.6

Incremental degradation without recovery (T4_IN)

0.1 9.2 / 20.09 7.93 / 17.19 6.89 / 14.57 11.8 / 25.68 11.57 / 23.97 11.18 / 22.33

0.2 14.06 / 31.31 8.65 / 20.43 6.48 / 15.25 15.02 / 34.75 12.4 / 27.3 10.78 / 23.4

0.3 19.7 / 45.73 8.67 / 22 5.71 / 14.41 19.98 / 47.86 13.25 / 30.35 10.18 / 23.27

0.4 25.64 / 65.95 8.75 / 24.11 5 / 13.78 25.07 / 65.9 13.94 / 35.35 9.59 / 23.53

0.5 31.86 / 95.67 9.24 / 29.41 4.27 / 13.53 31.38 / 96.33 14.2 / 42.01 8.13 / 22.82

Incremental degradation with manual recovery (T5_IM)

0.1 9.14 / 19.04 7.74 / 15.86 6.66 / 13.16 12.04 / 24.29 11.89 / 22.73 11.56 / 21.41

0.2 14.04 / 30.28 8.55 / 19.09 6.19 / 13.75 15.43 / 32.93 12.78 / 25.48 11.08 / 21.64

0.3 19.55 / 44.86 8.83 / 21.79 5.6 / 13.67 20.18 / 45.93 13.53 / 29.26 11.08 / 21.9

0.4 25.86 / 64.81 8.81 / 23.54 4.75 / 12.52 24.71 / 64.55 14.16 / 35.18 9.7 / 23.1

0.5 31.87 / 93.74 9.22 / 28.58 4.05 / 12.43 30.82 / 92.79 13.92 / 39.83 7.9 / 21.1

Recurring degradation with daily repetition (T6_RD)

0.1 10.51 / 20.94 9.19 / 18.2 8.86 / 17.32 13.26 / 26.34 13.08 / 24.83 13.3 / 24.23

0.2 16.69 / 32.85 10.93 / 22.87 9.92 / 20.82 17.49 / 36.53 15.44 / 31.47 14.62 / 29.02

0.3 23.39 / 48.66 12.2 / 27.06 10.94 / 24.17 23.17 / 50.19 16.51 / 34.89 14.78 / 30.7

0.4 30.79 / 71.82 13.72 / 32.66 12.24 / 28.61 29.91 / 71.24 19.01 / 44.36 16.37 / 37.49

0.5 38.27 / 105.04 15.4 / 41.97 13.68 / 35.98 36.78 / 105.5 20.54 / 56.88 17.15 / 45.83

Recurring degradation with temporal drop (T7_RT)

0.1 9.72 / 14.97 8.23 / 13.05 7.59 / 12.11 13.95 / 17.58 13.56 / 16.47 13.78 / 16.31

0.2 15.77 / 36.96 12.55 / 29.73 9.46 / 22.64 17.96 / 37.96 15.81 / 32.29 14.35 / 27.26

0.3 25.16 / 45.22 18.87 / 34.86 13.8 / 25.51 22.65 / 47.62 17.1 / 34.58 14.54 / 28.88

0.4 33.22 / 69.79 23.4 / 49.67 17.74 / 36.79 31.53 / 71.05 22.79 / 51.14 18.44 / 42.08

0.5 38.06 / 103.03 26.27 / 71.25 20.06 / 54.23 38.52 / 105.55 25.02 / 67.59 19.56 / 51.47
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FIGURE 6 Comparison of results (LightGBM as a base model)

FIGURE 7 Performance comparison under no concept drift (LightGBM)

FIGURE 8 Performance comparison under no concept drift (LSTM)

leads to poor performance. Among the three re-training meth-
ods, RS shows the best performance in both LightGBM and
LSTM cases.

4.3.3 T3_SI

This scenario is challenging to both MAOF and the re-
training methods. But, MAOF still noticeably outperforms
the re-training methods (i.e. the maximum improvement in
percentage is 79%). With LightGBM, MAOF increases RMSE
(MAPE) from 5.84 (8.47) to 14.29 (55.84) as the degradation
ratio increases from 0.5 to 0.9 (Figure 6(c,f)). With LSTM,
MAOF increases RMSE (MAPE) from 9.46 (16.76) to 14.37
(54.6) as the degradation ratio increases from 0.1 to 0.5 (Fig-
ure 9(c,f)). The re-training methods show worse performance.
With LightGBM, RS (the best among the three re-training
methods) increases RMSE (MAPE) from 23.44 (44.88) to 40.33
(264.89) as the degradation ratio increases from 0.1 to 0.5. This
result shows that the re-training methods are not helpful in
this scenario.

4.3.4 T6_RD

In this scenario, the re-training methods show good perfor-
mance in both LightGBM (Figure 6(d,g)) and LSTM (Fig-
ure 9(d,g)). RS shows the best performance. This is because the
degradation is repeated in the same pattern and thus re-training
is useful to handle a concept drift. RL shows the worst perfor-
mance because the data used for re-training includes data before
concept drift. In contrast, MAOF does not show the best per-
formance in this case. The degradation happens during a short
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FIGURE 9 Comparison of results (LSTM as a base model)

period (i.e. 3H, including 6 data points). It is not easy for MAOF

to adapt to the degradation during a short period without using
degradation patterns previously observed, which are used by the
re-training methods. However, even with this difficulty, MAOF

shows competitive results.

4.3.5 T7_RT

Unlike T6_RD, where the degradation is repeated in the same
pattern, this scenario is challenging to the re-training methods
in both LightGBM (Figure 6(e,h)) and LSTM (Figure 9(e,h)).
This is because no useful history is available for re-training a
model. As a result, RS, RM, and RL show similar and bad per-
formance. This scenario is also challenging to MAOF due to the
same reason mentioned before (i.e. degradation during a short
period). As a result, MAOF increases RMSE and MAPE as the
degradation ratio increases. However, MAOF still shows better
performance than the re-training methods (i.e. the maximum
improvement percentage in RMSE is 47.8%).

4.3.6 Summary

MAOF shows reliable and desirable performance under var-
ious concept drift scenarios regardless of a base model,

whereas the re-training method shows unreliable performance.
In utilising re-training methods, we need to solve several
issues such as determining type and degree of concept drift,
and selection of window size. Even with those solutions,
some cases like T3_SI and T7_RT are still very challenging
to them.

5 CONCLUSION

Even though solar energy is considered as one of the most
promising alternatives to fossil fuels, building a reliable fore-
casting model for PV power output is still a challenge faced
by those in this area of study. In this paper, we explore a suc-
cessful method of handling concept drift in the field of PV
power output forecasting. To realise a reliable forecasting model
under concept drift scenarios, we propose a model-agnostic
online forecasting that utilises an online learning algorithm with
effective domain transformation. Experiments using the real-
world data show that our method achieves reliable and desirable
performance under various concept drift scenarios. As future
work, we plan to study an ensemble method, using multiple
data transformations, in applying an online learning algorithm.
It would also be interesting to study a method of selecting
a proper online optimisation solver adaptively, under dynamic
environments.
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